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Abstract: Autonomic computing embeds self-management features in software systems using
external feedback control loops, i.e., autonomic managers. In existing models of autonomic
computing, adaptive behaviors are defined at the design time, autonomic managers are statically
configured, and the running system has a fixed set of self-* capabilities. An autonomic computing
design should accommodate autonomic capability growth by allowing the dynamic configuration of
self-* services, but this causes security and integrity issues. A secure, scalable and elastic autonomic
computing system (SSE-ACS) paradigm is proposed to address the runtime inclusion of autonomic
managers, ensuring secure communication between autonomic managers and managed resources.
Applying the SSE-ACS concept, a layered approach for the dynamic adaptation of self-* services
is presented with an online ‘Autonomic_Cloud’ working as the middleware between Autonomic
Managers (offering the self-* services) and Autonomic Computing System (requiring the self-*
services). A stock trading and forecasting system is used for simulation purposes. The security impact
of the SSE-ACS paradigm is verified by testing possible attack cases over the autonomic computing
system with single and multiple autonomic managers running on the same and different machines.
The common vulnerability scoring system (CVSS metric) shows a decrease in the vulnerability
severity score from high (8.8) for existing ACS to low (3.9) for SSE-ACS. Autonomic managers
are introduced into the system at runtime from the Autonomic_Cloud to test the scalability and
elasticity. With elastic AMs, the system optimizes the Central Processing Unit (CPU) share resulting
in an improved execution time for business logic. For computing systems requiring the continuous
support of self-management services, the proposed system achieves a significant improvement
in security, scalability, elasticity, autonomic efficiency, and issue resolving time, compared to the
state-of-the-art approaches.

Keywords: Autonomic computing; scalable computing; elastic computing; self-management process;
self-* services; self-* capabilities as a service (S*SAAS); cloud computing

1. Introduction

Autonomic computing is about software self-management. It aims at the provision of self-*
capabilities to computing systems to make them behave like the human autonomous nervous system.
The idea is to shift the human task of software controlling to policy and rules definition [1–3].
Self-healing, self-configuring, self-protecting, self-optimizing, self-awareness, context-awareness,
openness and anticipation are basic self-* characteristics of autonomic computing systems [1–3].
The introduction of self-* capabilities as a service (S*SAAS) for software self-management is motivated
by taking advantage of the powerful processing and storage abilities of cloud computing. With the
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integration of autonomic software management and cloud computing, multiple applications can be
served by a self-management service at the same time.

The application model of the proposed system is as follows:

• A computing system implements a manageability interface to shares its data with external
autonomic managers.

• An autonomic manager registers with the autonomic cloud offering software
management services.

• The computing system registers its managed resources with the autonomic cloud to buy the
management services.

In an autonomic computing system (ACS), the self-behavior and external environment is
continuously monitored to adapt to the changing conditions. The most widely used model for
autonomic computing is International Business Machines (IBM)’s reference model [1,3–10]. The two
main components of the reference model are the autonomic manager (AM) and managed resource
(MR). MAPE-K (monitor, analyse, plan, execute and knowledge base) is the control loop through which
an AM controls and manages the system resources (i.e., MRs) [11]. MRs provide touchpoints consisting
of sensors, effectors and manageability mechanisms to share data and control with AMs [9–12].
The addition of self-* capabilities [1,2,4,5] into a computing system cause the system to behave just like
a human autonomous nervous system [3,6,13].

In IBM’s autonomic computing reference model, AMs are statically configured with MRs,
producing a fixed set of self-* capabilities. The design of an ACS should support a runtime
inclusion/exclusion of the autonomic manager into/out of the computing system to provide a dynamic
configuration of more autonomic capabilities in the ACS. The ACS needs to be scalable and elastic,
which is possible if a provision has been made for the runtime registration of AMs. Moreover, the ability
to learn from experience (like the human nervous system) is possible with the addition of new rules
to the knowledge base. An expert can also add or edit the rules in the knowledge base. However,
the inclusion of new rules may conflict with the access privileges of an autonomic manager. An AM is
allowed to access privileged resources only and not to affect the unprivileged areas of the computing
systems. The provision of the runtime configuration of AMs and the addition of conflicting rules
compromises the security and integrity of an ACS. Therefore, there should be some authentication and
validation when an autonomic manager and a managed resource interact. The lack of authentication is
exploitable specifically in case of distributed or decentralized autonomic computing systems.

This research improves the autonomic computing design concept by presenting a secure, scalable
and elastic autonomic computing system (SSE-ACS) paradigm. Registration, authentication, and
validation steps are introduced to the existing ACS design for this purpose. The SSE-ACS paradigm is
based on two algorithms, Registration, Authentication and Validation (RAV) and Self-Management
Process (SMP). The RAV algorithm is responsible for the registration, authentication and validation of
AMs. It uses ciphering to secure the interaction between MR and AM. Through RAV, the SSE-ACS
paradigm allows off-the-shelf AMs to become part of the running system without a breach of integrity.
The SMP algorithm implements the self-management process following the Monitor, Analyze, Plan,
Execute and Knowledgebase (MAPE-K) loop style.

To offer self-* capabilities as a service (S*SAAS), a layered approach is proposed, utilizing the
SSE-ACS design concept. An ‘Autonomic_Cloud’ is introduced to offer dynamic adaptation of self-*
services. The cloud works as the middleware between AMs (offering the self-* services) and ACS
(requiring the self-* services). The cloud can also offers its own self-* services. The Autonomic_Cloud
comprises an AM_Repository, an MR_Repository and a ConnectivityRecord table. The RAV concept
of SSE-ACS is applied to register the AMs and MRs of an ACS with the Autonomic_Cloud. When
the ACS selects a required self-* service, the Autonomic_Cloud links its AM with the relevant MRs.
The Autonomic_Cloud charges the ACS for the service as a revenue paid to AMs. By enabling such an



Symmetry 2018, 10, 141 3 of 24

integration, self-*capability-as-a-service (S*SAAS) can provide a self-management service to multiple
applications at the same time, instead of the current model, which serves a dedicated application.

To evaluate the proposed SSE-ACS paradigm and for performance measures of the
Autonomic_Cloud, a stock trading and forecasting system has been developed applying the
SSE-ACS paradigm. The RAV algorithm controls the autonomic managers (serverFarm and
loadBalancingManager, forecastManager, and intruderManager) as per their access privileges
and restricts the managers’ access to unauthorized parts of the managed resources (trade-server,
trade-database). The security impact of the SSE-ACS paradigm is verified by testing possible attack
cases over the autonomic computing system with single and multiple autonomic managers running
on the same and different machines. The common vulnerability scoring system (CVSS metric) from
First.org [14,15] is used to evaluate the severity of the vulnerability of the existing ACS model and
SSE-ACS paradigm. CVSS showed a decrease in the vulnerability severity score from high (8.8) for the
existing ACS to low (3.9) for SSE-ACS.

To simulate the scalability and elasticity of the SSE-ACS paradigm, autonomic managers, namely
serverAppProtectionManager, databaseConnectivityManager and logbaseManager, were introduced
into the working system from the Autonomic_Cloud.

- If the serverApp becomes corrupted due to system-file(s) delete/overwrite/corrupt, the
serverAppProtectionManager automatically copies the corrupted/deleted file(s) from the backup
and keeps the server working. In an ordinary system (with no protection), the server stays down
until files are manually uploaded/reinstalled.

- The databaseConnectivityManager keeps the database-server active so that the connection with
the trading-server is live.

- The logbaseManager controls the memory space used by the trade log of clients.

It is experimentally demonstrated that dynamically configured self-* services divide the
processing load of the ACS, utilizing the computing resources from the network. Hence, the system
optimizes the CPU share using elastic AMs, which results in an improved execution time for
the business logic. This produces a better response rate compared to the existing approach. By
introducing S*SAAS, the autonomic computing paradigm achieves a significant improvement in
security, scalability, elasticity, autonomic efficiency, and issue resolving time, compared to the
state-of-the-art approaches (IBM [1,4,7,8], Intelligent Machine Design (IMD) [13], the data stream
model and Service Oriented Architecture (SOA) [16], and the policy-based model [17]) that implement
static self-management services.

In summary, the following contributions are made by this paper.

• A secure, scalable and elastic autonomic computing system (SSE-ACS) paradigm is presented to
improve the autonomic computing design concept.

• An efficient service adaptation scheme is designed to offer self-management capabilities as
S*SAAS from an autonomic cloud.

• Experimental evaluations are logged for statically-configured local AMs, dynamically-configured
AMs from a server machine, and the runtime registering of AMs from the autonomic cloud.
The system optimizes the CPU share using elastic AMs, which resulted in the improved execution
time of the business logic.

• For software applications requiring the continuous support of self-management services,
the proposed system achieves a significant improvement in security, scalability, elasticity,
autonomic efficiency, and issue resolving time, compared to the state-of-the-art approaches.

Related work is presented in Section 2. Section 3 is entitled Materials and Methods, describing
the SSE-ACS paradigm and related material. Results and discussion are provided in Section 4, where
simulations of stock market data are illustrated to test the applicability of the proposed SSE-ACS
paradigm. The research is concluded in Section 5.
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2. Related Work

Paul Horn [18] at IBM introduced the concept of autonomic computing with a vision to apply
the human nervous system principles of self-regulation and separation of concerns to the design of
computer systems. The term autonomic element is used for the combination of AM and MR [19]. Each
autonomic element is responsible for its own management (internal state, behavior and interaction
with others) driven by the goals prescribed by its designer [19]. In the architectural approach to
autonomic computing, an autonomic element is responsible for managing its own behavior, based on
defined internal and external interfaces, behaviors, policies, relationships and interaction integrity [2].

Self-management capabilities reduce the cost and complexity of managing system resources
and save human time spent managing the computing system [20]. IBM developed a toolkit for the
development of autonomic computing systems and described example scenarios in its red book [9].
IBM presented an architectural blueprint for autonomic computing with system resources at the bottom
layer and manageability interfaces (touchpoints) encapsulating one or more resources [11]. Touchpoints
provide sensors and effectors for interfacing. Touchpoints exploit attributes or properties of the
computing systems to sense running behavior. Abuseta [21] termed such attributes and properties
as ‘context attributes’. Sensors and effectors respectively offer the ability to obtain and set the value
of context attributes at runtime [22]. The autonomic manager uses sensor interfaces to retrieve
information either via the ‘request response’ or ‘send notification’ style. The effector interface is used
by the autonomic manager to manage the element action. Effectors have a ‘perform operation’ and
‘solicit response’ style of working [12].

The initiative towards a fully autonomic IT infrastructure is an evolutionary process, starting from
a basic level and continuing to predictive, managed, adaptive and fully autonomic levels [14]. Different
architectures [1,3,7,13], models [4,8,16,17] and design patterns [2,21,23] exist for autonomic computing
systems. A great deal of research [1,3,7,9,10] supports IBM’s reference model for autonomic computing
systems. Some research [15–17] presents models different to IBM’s concept. Shuaib et al. [15] extended
the intelligent machine design (IMD) architecture to define autonomic computing architecture.
Reaction, routine and reflection layers are defined to apply autonomic solutions as either hardwired
(direct fixed solving), learned (policies are accessed from working memory and applied according to
the context), or derived (policies are defined at runtime using learning and partial reasoning). Technical
autonomic maturity indices were presented to align the intelligent machine design architecture
with IBM’s concepts. Nzekwa et al. [16] suggested a model-driven approach for feedback control
loops that is based on a data streaming model and service component architecture. The presented
component-based architecture handles feedback control loops inside the architecture instead of
implementing it as an external loop. Bazerra et al. [17] presented a policy-based model with autonomic
capabilities to manage the quality of the service in computer networks. The autonomic policy-based
management model is divided into the information plane (receives data related to the network status
and converts it into symptoms using the XML format and considering Service Level Agreement (SLA)
conformance, decision plane (finds a solution from the knowledge base that meets the specified SLA),
and the execution plane (generates an executable policy through the policy compiler and activator).
The research gist and differences of the existing approaches to autonomic computing are summarized
in Table 1.

Some research works [4,8] present conceptual models that match IBM’s concept. Peer2peer,
aggregator–escalator peer, and chain of configurator and configuration manager are different
architectural approaches to adaptive computing [4]. These architectural approaches are characterized
based on the relationship of sensors to monitors and executors to effectors. Design patterns, behaviors,
policies, relationships and interfaces are key aspects when engineering self-adaptive and autonomic
systems [2,21,23]. Chen et al. integrated the Internet-of-things and software-as-a-service by presenting
a case-study-based model of logistic systems [24]. Kim et al. designed DIAAS (infrastructure as a
service with desktop) for the fast distribution of work utilizing distributed computing and storage
services [25].



Symmetry 2018, 10, 141 5 of 24

Table 1. Research gist and differences of existing approaches to autonomic computing.

Author-Year Autonomic
Perspective

Control
Loop

No of
Layers

Building
Blocks Generic Technique

Used
Policy
Format

Policy
Storage

Mittal et al.
2014 [7] IBM Explicit 4

Autonomic
Manager +
Resources

Yes Not Defined Available Knowledge
Base

Ahuja &
Dangey 2014 [1] IBM Explicit 4

Autonomic
Manager +
Resources

Yes Policy Based Not
Available

Knowledge
Base

Kumar & Naik
2014 [8] IBM Explicit 4

Autonomic
Manager +
Resources

Not
Defined Rule-Based Algorithm Implicit

Shuaib et al.
2011 [13] IMD Explicit 3 Layers Yes Rule-Based Rules MIB

Nzekwa et al.
2010 [16]

Data stream
model & SOA Implicit 1 Agents No Data-Oriented

Model Implicit Implicit

Bazerra et al.
2009 [17] PB Model Explicit 3 Modules Not

Defined Policy-Based XML-Based Autonomic
Database

Okon & Asagba
2014 [4] IBM Explicit 1 Modules Yes Policy/Rule Not

Defined
Not

Defined

A distributed computing environment requires continuous runtime monitoring to ensure the
functioning and security of the system [26]. Authentication, access rights, global credentials and
authorization are main security issues in a distributed environment [27–29]. Scalable key management
using Public Key Infrastructure (PKI) X.509 ensures Confidentiality, Integrity, Availability (CIA),
Authentication and Authorization [30]. Bing Y. et al. presented a scalable and robust approach for the
adaptive migration of Virtual Machines (VMs) to cost-effective servers [31]. Masood R. et al. focus on
authorization issues in the cloud environment, presenting access control as a service, to restrict the
access of confidential data and resources to unauthorized users [32]. Shi and He [33] identified phases
(initialization, registration, login-authentication and change password) of security compliance and
analyzed an authentication scheme for mutual authentication, anonymity, offline password guessing
attacks, privileged insider attacks, stolen-verifier attacks, man-in-the-middle attacks, replay attacks
and impersonation attacks.

Lounis et al. presented an innovative architecture to manage a huge amount of highly sensitive
data generated by medical sensor networks covering scalability, availability and security issues [34].
Bonanno et al. proposed a cloud-based distributed toolbox to optimally manage the energy dispatch
from renewable resources utilizing Graphics Processing Unit (GPU) and Wavelet Recurrent Neural
Networks (WRNN) predictors [35]. Yang et al. implemented cloud-based energy serving a multi-agent
system using web service techniques with backend information agents involved [36]. Napoli et al.
developed a neural-network-driven forecasting setup to manage the power production and dispatch
systems of smart grids applying cloud computing [37].

3. Materials and Methods

This section is divided into two parts. Firstly, a modified architectural design for secure, scalable
and elastic ACSs is presented in Section 3.1 with the following aspects.

• A layer for initial registration, authentication and validation is added on the resource side.
• A connection controller is defined inside the autonomic manager.
• An algorithm is provided for initial registration, continuous authentication and validation.
• An algorithm is provided for the elastic self-management process.

Secondly, a layered approach for the dynamic adaptation of self-* services is proposed
in Section 3.2. The proposed approach utilizes the SSE-ACS design concept and introduces
self-management capabilities as a service, i.e., S*SAAS.
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3.1. Modified Design for Secure, Scalable and Elastic ACSs

The modified design of the SSE-ACS paradigm consists of two main modules, as shown in Figure 1.
The first is the ‘system-under-observation’, requiring self-* behavior. The system-under-observation
consists of the managed resources and touchpoints for each managed resource containing sensors and
effectors. A layer for registration, authentication and validation is incorporated above the resource
touchpoints to secure their access, labeled as RAV in Figure 1.

Figure 1. Modified design for SSE-ACSs.

The second module is the ‘autonomic manager’, which consists of monitor, analyze, plan, execute,
and knowledge-base entities (the working of each entity is specified in Figure 1). The autonomic
manager is responsible for the management of the ACS. The autonomic manager is equipped with
a connection controller, labeled as Connection Controller (CC) in Figure 1, for connecting with the
managed resources.

The procedure of the modified design consists of the initial registration, continuous authentication
and validation, and a process for self-management. For initial registration, CC inside the autonomic
manager generates a subscribing request with credentials for the RAV layer (inside the resource
touchpoint). The RAV validates the request and provokes the autonomic manager, thus linking the
resource’s sensor(s) and effector(s) to the corresponding monitoring and execution of AM. Ciphered
data/information flows between RAV and CC. The process is outlined in Figure 2.

Figure 2. Process of initial registration/login.
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After successful registration, the autonomic manager gets control over the resource. On the
detection of an anomaly or perturbation, the SMP-algorithm gets triggered to retain stability. A flow
graph explaining an SMP process is provided as Figure 3.

Figure 3. Flow graph of a self-management process (SMP).

Algorithms to elaborate these steps are provided in the following sections:

(a) RAV-Algorithm for Registration, Authentication, and Validation

The RAV-algorithm is used to perform registration, authentication, and validation, which secures
the communication between AM and MR. Step(0) in Figure 1 represents the RAV-based initial setup. An
AM sends a request to the resource’s RAV to subscribe the AM’s monitoring and execution with specific
sensors and effectors of the resource. The registrar validates the credentials and adds a relationship
to the authentication table. The registrar is responsible for registering the AM with an autonomic
computing system by entering the AM_Id in the authentication table. It stores the sensorId–monitorId
and executorId–effectorId relationships in the authorization table. The authenticator (inside the RAV
layer) uses stored credentials to authenticate each incoming request from the AMs. The validator
validates the request so that the permitted autonomic manager can access a managed resource. A secure,
persistent connection is established on successful validation, and is used for future communications
until the connection is closed by either party.

The RAV algorithm is provided below as Table 2.
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Table 2. Registration, Authentication, Validation (RAV) algorithm.

Input: A registration/connection/interaction request.
Output: A secure connection for communication between the AM and MR.
Start
1. Receive AM request at the MR touchpoint
2. Identify request type

a) If (registration based request)
Get registration credentials //Registrar is activated
If (credential correct)

Enter AM_Id in the AuthenticationTable
Store SensorId-MonitorId and ExecutorId-EffectorId relationships in AuthorizationTable
Allot login credentials
Forward request with login credentials to (b)

Else
Display Error ‘Invalid Registration Credentials’
End

b) If (Login-credential-based request)
Get login credentials //Authenticator in action
If (Authentic credentials)

Generate token for further communication
Forward as token-based request to (c)

Else
Display Error ‘Invalid Login Credentials’
End

c) If (Token-based request)
Get token //Validator is triggered
If (valid token)

Grant access to the touchpoint
End

Else
Display Error ‘Invalid Token’
End

End

A pictorial representation of the RAV algorithm is provided in Figure 4, to explain the flow of
controlled access to resource touchpoints by autonomic managers. When AM sends a registration
request to a resource’s RAV to subscribe the AM monitors and executors with specific resource sensors
and effectors, the RAV interprets the request type to be either a registration, login or a token-based
interaction. If it is a registration request, the registrar verifies the registration credentials (involving
Public Key Infrastructure (PKI) [38]) and allots login credentials to the AM. The registrar enters AM_Id
in the authentication table. The sensorId–monitorId and executorId–effectorId relationships are stored
in the authorization table. The request is converted into a login request.
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Figure 4. Flow diagram of the controlled access to resources touchpoint (RAV algorithm).

If a login/connect request is received, the authenticator (inside the RAV) uses the credentials
stored in the authentication table to authenticate the request from the AM. The authenticator assigns a
token to the AM for further communication. The request is converted to a token-based request.

If a token-based interaction request is received, the validator validates the token so that the
allowed AM can access a managed resource. A secure, persistent connection is established on successful
validation. SMP starts using the established connection. The connection is closed on completion of the
SMP process or when the AM is unregistered.

To secure the data over a communication channel, we used Rivest, Shamir and Adleman
(RSA) encryption/decryption-based ciphering of data. PKI [38] and scalable key management with
rekeying [39] are used for distributing and managing authentication and encryption credentials.

(b) SMP-Algorithm for the Self-Management Process

The SMP algorithm provides a procedure for the self-management process in connection with the
RAV-algorithm. The steps of the SMP algorithm are provided below, as Table 3.
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Table 3. Self-Management Process (SMP) algorithm.

Input: The value of context attributes from sensors.
Output: System state is readjusted accordingly.
Start

1 - Sensor gets context attribute value on event or periodically
- Sensor sends context attribute’s reading to monitor

2 - Monitor reads thresholds for context attributes from threshold table
If (Threshold violation)

Log the violation in system state log
Notify the violation to Analyser

Else
Log the state change in system state log
End

3 - Analyser reads violations from system state log
- Analyser determines the cause of violation by consulting symptoms repository.

If (cause of violation determined)
Send adaptation request to Planner

Else
Display/Log ‘violation occurred’ on screen/logFile
End

4 - Planner interprets adaptation request
If (policies exist for adaptation request)

Prepare change plan from policies
Send List of actions to Executor

Else
Display/Log adaptation request with a message ‘contact system expert’
End

5 - Repeat until all change plans executed by Executer
- Send a change plan with parameter values to concerned Effectors
- Effectors set attributes values in CAs
- Effector send acknowledgement to Executor

End
6 - Executor updates the system state log

End

3.2. Layered Approach for Dynamic Adaptation of Self-* Services: Offering Self-* Capabilities as a Service

In existing models of autonomic computing, the self-* characteristics are defined at the time of
design, AMs are statically configured, and the running system has an absolute set of self-management
capabilities. To facilitate the dynamic adaptation of self-* services, a layered approach consisting of
three layers is proposed (given in Figure 5). First layer is of AMs, which implements: (1) the CC part
of the RAV algorithm; and (2) the SMP algorithm. The second layer is an online Autonomic_Cloud
that works as a middleware between AMs and MRs. AMs register with the Autonomic_Cloud to offer
dynamically adaptable self-* services.

The third layer comprises the MRs of ACSs requiring self-management services. An MR
implements the RAV algorithm and shares internal data in the form of CAs to be used by AMs for
surveillance and management purposes. The ACS registers itself and its MR(s) with the MR_Repository
inside the Autonomic_Cloud to obtain self-management services from live AMs.
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Figure 5. Autonomic cloud offering self-* capabilities as a service to ACSs (the S*SAAS).

The process for the dynamic adaptation of self-* services is provided in Table 4.

Table 4. Process for the dynamic adaptation of self-* services.

(1) AM registers itself with the AM_Repository in the Autonomic_Cloud by sending a registration request.
(2) ACS asks for available self-management services from the Autonomic_Cloud and selects a required service.
(3) ACS registers itself and its MR(s) with the MR_Repository in the Autonomic_Cloud by a sending
registration request.
(4) Autonomic_Cloud links the AM with the MR of the ACS by storing a record in the ConnectvityRecord table.
(5) ACS uses the self-* service provided by the AM with a pay-per-use policy.
(6) Autonomic_Cloud keeps track of the services provided by AM and used by the ACS to facilitate its
pay-per-use policy.

The RAV algorithm, given in Section 3.1(a), addresses the registration of autonomic managers
with ACS resources. The RAV also ensures secure communication between the AM and MR through
authentication and validation. The SMP algorithm (provided in Section 3.1(b)), implements the
self-management process. The Autonomic_Cloud charges the ACS according to a pay-per-use policy,
as a revenue paid to the AMs.

4. Results and Discussion

To evaluate the proposed SSE-ACS paradigm and the performance measures of the
Autonomic_Cloud, a stock trading and forecasting system was implemented. It facilitates buyers,
brokers and shareholders in bargaining and trading via an e-stock exchange.

4.1. Experimental Setup

The Scripting Languages, Hypertext Preprocessor (PHP ver 5.4) and JAVASCRIPT, were used
for the development of the stock trading and forecasting system, which runs over a serverFarm.
Structured Query Language (MYSQL ver 5.6) was used for the management of the stock trading
database. VMware ESXi (4.1.0, VMWare Inc., Palo Alto, CA, USA) [40] was used for the serverFarm
set-up in a virtualized environment. A Dell PowerEdge (1950 MKII, Dell Inc., Round Rock, TX, USA)
was used to host the hypervisors. Five server virtual machines (VMs) (1 vCPU, 2GB RAM, 20GB SCSI
datastore, and Windows Server 2008 R2 Standard) were created with an idle state. VMware vSphere
Client (4.1.0 VMWare Inc., Palo Alto, CA, USA) was installed on the VM for performance measures
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with the stock trading system on board. The experimental deployment is provided below as Figure 6,
describing the interaction of the relevant hardware (hypervisors manager and 100 clients) and software
(RAV algorithm, SMP algorithm, and Psutil-based monitoring component [41]).

Figure 6. Experimental deployment to demonstrate self-* capabilities.

Experimental evaluations of the self-* capabilities were demonstrated by following the
following sequence:

Initial State: VM1 and VM2 are ON but the client’s requests are processed by VM1 only.
The ServerFarm&Load Manager runs on VM1 to activate/deactivate the VMs according to the
increase/decrease of server load as a result of an increase/decrease in client requests.
Activated Self-* services: The self-* services provided below were executed for the stock
trading system.

• Stock trade forecasting service: Australian stock market information [42] is retrieved for leading
companies and the forecasting service is executed using this data to predict stock trends.

• Server-farm management and server-load balancing service: Five VMs are created to handle
the client’s requests. The ServerFarm&Load manager activates/deactivates VMs with the
increase/decrease of the processing load.

• Installed application protection service: Server program files are manually deleted while the
server is active. This service recovers the deleted files from the backup to keep the system running.

• Database connectivity control service: The Database (DB)-service is manually reduced to cause
an interruption. This service restarts the DB-service immediately to keep the DB live.

• Log-base memory management service: Continuous client requests cause the log memory to fill.
This service deletes old files to clear the required space.

These self-* services implement SMP-algorithms to incorporate self-management capabilities
inside the trading system.

Client Setup: A setup of 100 computers (corei7 CPU, 8 GB RAM) are prepared, which connect as client
machines to the trading server.
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Increase/Decrease of Server Load: The clients are connected in a random sequence to increase and
decrease the server processing load.

# The load balancer checks the load for VM1. If it exceeds the set limit, it shifts the extra load to
VM2 and boots VM3 to idle state.

# If the load in VM2 is too high, it shifts the extra load to VM3 and boots VM4, and so on.
# On the decrease of the processing load, the load balancer turn off idle VMs, keeping at least two

VMs always active.

Performance Monitoring: The Psutil (version 5.4.2) library of Python [41] was utilized to develop a
monitoring program to measure the use of the CPU, memory and disk for the running of processes
and system utilization.
Securing the interaction between AMs and the Trading System: The RAV algorithm was applied
to maintain secure the interaction between the AMs offering self-* services and the trading system.
The security impact of the SSE-ACS paradigm was verified by testing possible attack cases over the
autonomic computing system with single and multiple autonomic managers running on the same and
different machines.
Comparison with State-of-the-Art Approaches: Experimental results are logged for statically
configured local AMs, dynamically configured AMs from a server machine, and runtime registering
of AMs from the Autonomic_Cloud. To increase the requirement of self-management services, the
system achieves a significant improvement in the scalability, elasticity, autonomic efficiency, and
issue resolving time, compared to state-of-the-art approaches like IBM [1,4,7,8], IMD [13], the data
stream model and SOA [16], and the policy-base model [17]. These approaches implement static
self-management services, whereas the proposed approach brings dynamism. The system optimizes
CPU sharing using elastic AMs.

4.2. Experimental Results

A set of AMs are implemented to provide self-* services to the stock trading system.
The experimental process and relevant results for AMs offering self-* services are provided below.

4.2.1. Autonomic Managers Delivering Self-* Services

The detailed working and relevant results of each autonomic manager are provided in sections (a)
through (e).

(a) Stock Trade Forecast Manager

The forecastManager predicts the future value of a company’s stock and financial trades. It helps
users in deciding whether to sell or buy the shares. The context attributes chosen to obtain stock
market data for prediction generation are provided in Table 5.

Table 5. Context attributes (CAs) for stock trade prediction.

Given period's close-ups and close-downs

Most recent closing price

Lowest and highest of previous 14 trading sessions (L14, H14)

High, low and closing stock prices

Volume traded

The technical analysis method [43] is used to estimate and predict the next day’s trade. The data
received for CAs is used by sensors to calculate the values of technical indicators. The technical
indicators selected to be used by the forecastManager for trade prediction are provided in Table 6.
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Table 6. Technical indicators for stock trade prediction [44].

Relative Strength Index (RSI)
Stochastic Oscillator (SO)
William’s % R
Money Flow Index (MFI)
Moving Average Convergence Divergence (MACD)

Sensors send the values of technical indicators to the forecastManager. The thresholds for the
technical indicators, symptoms possible and relevant decisions were defined as the rule base of the
forecastManager, shown in Table 7.

Table 7. Rule-base of the forecasting manager.

Condition Symptom Action

RSI < 30 Indicates stock oversold, showing buy signal

Buy shares
SO-%D < 20 Indicates oversold, price will increase in near future

MFI < 20 Shares oversold
%R < −80 Buy signal

MACD above the signal line Indicates buy signal

RSI > 70 Indicates stock overbought, showing sell signal

Sell shares
SO-%D > 80 Indicates overbought, price will decrease in near future
%R > −20 Sell signal
MFI > 80 Shares overbought

MACD below the signal line Indicates sell signal

Australian stock market information [42] was retrieved for leading companies to validate the
accuracy of the prediction forecaster. The Yahoo finance API [45] and Yahoo Query Language (YQL) [46]
was used to retrieve the required data. Figure 7 shows a comparative relation of actual trade volume
and technical indicator prediction results for Yahoo for a period of 30 days starting from 01/19/17.
The continuous line represents the percentage change in actual trade volume. Grey bars represent
the number of technical indicators generating a buy signal. Black bars show the number of technical
indicators generating a sell signal. The prediction results are based on a larger number of indicators
predicting an outcome. The comparative relation shows that the forecastManager mostly made
accurate predictions.

Figure 7. Actual stock trading vs. technical indicator prediction.
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(b) serverFarm&loadBalancing_Manager

The serverFarm&loadBalancingManager manages the serverFarm and controls the processing
load for sever instances to effectively respond to client requests. CPU usage, number of queued
processes and the turnaround time for client requests were taken as context attributes. Server load was
measured base on CPU usage and the number of queued process waiting for the CPU. The results of
the simulation are demonstrated in Figure 8.

Figure 8. Experimental results (Server Virtual Machines (serverVMs) management against
increase/decrease of processing load).

The serverFarm&loadBalancing_Manager transfers client requests to serverVMs balancing the
processing load for the maximum utilization of server-VMs. The manager adds or removes a serverVM
into/from a serverFarm whenever the cumulative processing load increases above 80% or decreases
below 10%, respectively. Whenever the latency of a client request approaches 10 s, a new serverVM is
added. A serverVM is shut down when the latency decreases to 1 s and the load on any serverVM is
less than 80%. The relevant rules are defined in the policy base; the upper and lower limits are defined
for active servers in the threshold table.

(c) Server Application Protection Manager (SAPM)

When a file is deleted/corrupted, the server application process crashes. In an ordinary system,
the server stays down until the file is uploaded/reinstalled. The SAPM automatically copies the
corrupted/deleted files from the backup and the system starts working again in a much shorter time.
The SAPM compares the application file’s count and hash value with the application backup. If a
difference is found, the files are updated from the backup. This keeps the server application secure
from corruption and recovers the application process if it crashes.

The dotted line in Figure 9 shows the percent of CPU used by the trading server. It reaches zero if
the server process crashes when a file is deleted/corrupted. The continuous line in Figure 9 shows
the percent of CPU usage by the trading server when the SAPM heals the affected file and the trading
server process starts working within a shorter time.
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Figure 9. Simulation results for the ServerAppProtection_Manager.

(d) Database Connectivity Manager (DCM)

The trading server continuously uses data from the DB_server. If the DB_server fails, the trading
server is halted. The DCM is designed to keep the database server connected to the trading server. On
database disconnection, the trading server informs the DCM. The DCM asks the application-server to
delay its database usage and wait until the DB-server responds. DCM sends a restart command to the
DB_server. Database restart is communicated to the application server. The application server resumes
its connection with the database.

The dotted line in Figure 10 shows the number of requests/second processed by the database
server. It hits zero when the DB_server goes down until the server process is manually restarted,
which takes a significant amount of time. The continuous line in Figure 10 shows the number of
requests/second processed by the database server with the DCM restarting the DB_server in a shorter
time, with the server process suffering less delay.

Figure 10. Simulation results for the database connectivity manager.

(e) LogBase_Manager (LBM)

LBM controls the memory space used by the trading-log of clients. For simulation purposes,
we set the available log memory size to 1000 KB, and the client’s logfile size was set to maximum
10 KB. Client log files are created, updated and deleted as they signup, login, logout and leave. If
the size of a logfile reaches 10 KB, the oldest contents are deleted to store information on the new
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transactions. The LBM keeps the client log files sorted by date modified. When the total available
memory is consumed, the LBM deletes the old log files. The graph in Figure 11 shows the results of
the simulation. Whenever the log memory size reaches 1000 KB limit, a minimum number of oldest
logfiles is deleted to fulfill the need at hand.

Figure 11. Simulation results for the logbase manager.

4.2.2. The Security Impact of the SSE-ACS Paradigm

In existing autonomic computing architectures, autonomic managers—namely
serverFarm&loadBalancing_Manager, forecastManager and intruderManager—can interfere
in the vicinity of each other. A security issue arises in the following cases:

Vulnerability-i: The serverFarm&loadBalancingManager accesses information related to the
forecastManager, which is an access privilege concern.

Vulnerability-ii: The forecastManager accesses the serverFarm and turns a server ON/OFF in the
serverFarm. It transfers the server’s load without having privileges.

Vulnerability-iii: An intruder autonomic manager uses the sensors/effectors of the forecastManager
to manipulate stock trade data.

We tested the IBM-ACS-based implementation of the stock trading and forecasting system for
possible attacks with the following implementation fashions.

Implementation-1: A single AM controls the server and performs the tasks of
serverFarm&loadBalancingManager and forecastManager. AM and MR
run on the same machine.

Implementation-2: The AM of case1 runs on another machine and controls the server.
Implementation-3: The serverFarm&loadBalancingManager and forecastingManager are

implemented as separate managers. The AMs and MRs run on the same machine.
Implementation-4: The AMs of case 3 and MR (server) run on separate machines.

The results from these implementation fashions are compared with the results of the
SSE-ACS-based implementations. The CIA triad-based security parameters, possible attack cases,
vulnerabilities involved and their effect on the distinctive styles of implementation are compared in
Table 8. The SSE-ACS paradigm avoids the attacks by validating the access privileges defined in the
ACS authentication and validation tables.
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Table 8. Evaluation of the security impact of the SSE-ACS paradigm.

Security
Parameters Attack Cases Vulnerability

Involved

ACS with
Single AM

(AM and MR
Running on

Same
Machine)

ACS with
Single AM

(AM and MR
Running on

Different
Machines)

ACS with
Multiple AM
(AM and MR
Running on

Same
Machine)

ACS with
Multiple AM
(AM and MR
Running on

Different
Machines)

SSE-ACS
Paradigm
Based on
the ACS
System

Access Control
(Authorization,
Authentication)

Wrongly pretending to
be someone else Vulnerability-i X X

Confidentiality
Unauthorized Access Vulnerability-i

Vulnerability-ii XX XX

Eavesdropping Vulnerability-iii X X

Snooping Vulnerability-iii X X

Integrity

Denial of Receipt Vulnerability-i
Vulnerability-ii XX XX

Repudiation Vulnerability-i
Vulnerability-ii XX XX -,

Spoofing Vulnerability-iii X X

Modification Vulnerability-iii X X

Unauthorized Access Vulnerability-i
Vulnerability-ii XX XX

CPU overload Vulnerability-iii XX XX

Communication Errors Vulnerability-iii X

Availability

Denial of Receipt Vulnerability-iii XX - X -

Delay Vulnerability-iii X X

Repudiation Vulnerability-i
Vulnerability-ii XX XX - -,

Note: Symbol X denotes, “Attack not applicable, as not exposed to network”; Symbol XX denotes, “Attack not
applicable, as single manager handling ServerFarm, ServerLoad and Forecasting Process”; Symbol denotes, “No
authentication, authorization & encryption employed, hence attack succeeds”; Symbol denotes, “Managers can

interfere in the vicinity of each other”; Symbol - denotes, “No proof of delivery”; Symbol denotes, “Authentication,

authorization & encryption via RAV solves the issue”; Symbol denotes, “Resolved by maintaining ProcessID,
SocketNo, PassKey and SessionID”; Symbol denotes, “Issue solved via proof of origin/delivery”.

The common vulnerability scoring system (CVSS metric) from First.org [14,15] was used to
evaluate the severity of the vulnerability of IBM’s ACS model and the SSE-ACS paradigm. CVSS
captures principal characteristics of a vulnerability and produces a numerical score to reflect the
severity. The results of the test applied to IBM’s model of ACS and the SSE-ACS paradigm are shown
in Table 9. The CVSS shows a decrease in the vulnerability severity score from high (8.8) for the existing
model of ACS to low (3.9) for the SSE-ACS based system.
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Table 9. CVSS metric evaluation (IBM’s ACS model vs. SSE-ACS paradigm).

Parameter Without Security
(IBM-ACS)

With Security
(SSE-ACS) Comments

Attack Vector Local Local

The attacked point is a resource touchpoint and the
vulnerability is exploited by autonomic managers. In the case
of an existing model, the unauthorized AM succeeds. In
SSE-ACS, the attack fails.

Attack
Complexity Low High

With no authentication, specialized access condition does not
exist. The attacker obtains repeatable success against the
vulnerable component. With an authentication layer, the
attack is unsuccessful.

Privileges
Required Low High

In the existing model, an attacker presents itself as a
privileged component and exploits the system. Authentication
layer and privilege maintenance in SSE-ACS makes the attack
unsuccessful.

User Interaction None None The vulnerability is exploited by an AM. User interaction is
not required for the attack.

Scope Changed Changed

The vulnerability exploitation is initiated by an unauthorized
autonomic manager. The under-attack component is a
touchpoint and the affected component is the resource. In the
existing model, the attack succeeds, whereas the SSE-ACS
prevents the attack.

Confidentiality
Impact High Low

In the existing model, access to restricted information is
obtained from the attacked resource. The disclosed
information may present a serious impact. In SSE-ACS,
authentication restricts the attack and hence the
confidentiality impact is low.

Integrity
Impact High None

In the existing model, the absence of authentication causes the
loss of confidentiality, as all resources under the touchpoint
are disclosed to the attacker. In SSE-ACS, the authentication
layer controls unauthorized access and hence the integrity
impact is cleared.

Availability
Impact High Low

In the existing model, the attacker AM denies access to
resources under the impacted touchpoint. The RAV controls
access of a resource and hence the availability impact is low in
SSE-ACS

Attack vector without authentication:
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:C /C:H/I:H/A:H
CVSS Score:8.8

Attack vector with authentication:
CVSS:3.0/AV:L/AC:H/PR:H/UI:N/S:C/C:L/I:N/A:L
CVSS Score:3.9

4.2.3. Scalability and Elasticity Impact of SSE-ACS Paradigm

To simulate the scalability and elasticity of the SSE-ACS paradigm, the first experiment was
carried out with five statically-configured AMs (the working of each AM is discussed above) running
on the same machine. The CPU usage of the AM processes was logged within time slices of 5 msec for
1 h. The process was repeated five times at different times of the day. The experimental evaluation
found 33.47% average CPU usage and 4820 KBs of memory usage by the AMs, as shown in Table 10,
whereas the average CPU usage of the stock trading system was logged as 30.16%.

Table 10. Percentage CPU and memory usage by AMs.

Process Name
No. of Times Process Was

Activated in One Hour
Process Action

Time (AVG)
AVG CPU %Age

Usage
AVG Memory
Usage (KBs)

serverFarm & loadBalancingManager 8 5 s 4.42 916
Forecast Manager 5 2 s 1.31 773

serverApp Protection Manager 2 90 s 8.55 596
Database Connectivity Manager 2 110 s 14.65 926

Logbase Manager 12 20 s 4.54 1609
Total 33.47 4820
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The second experiment was carried out with two number statically-configured AMs
(serverFarm&loadBalancingManager, Forecast Manager) and three AMs (serverAppProtectionManager,
DatabaseConnectivityManager, LogbaseManager) dynamically registered in the Autonomic_Cloud.
The CPU usage of the autonomic stock trading system was again logged with time slices of 5 msec for 1 h.
The experiment was repeated five times. The average CPU usage of 6.47% for the two static AMs and
30.16% for the stock trading system was logged on the local machine. The average CPU usage of 29.56%
was measured on the network machine where the Autonomic_Cloud with three dynamically-configurable
AMs were running. The results show that the processing load of the autonomic computing was distributed
in the Autonomic_Cloud. Hence, the system optimized the CPU share with elastic AMs and an improved
execution time was achieved.

4.2.4. S*SAAS Performance Measures

For comparative performance evaluation of the autonomic service styles, we defined the average
response quality (ARQ) metrics, as in the following equation:

ARQ =
∑ServiceCount

i=1 (ServiceCon f igurationTime + ∑
serviceRequestsCount
j=0 IssueResolvingTime)

TotalServiceRequestsCount
(1)

The ARQ evaluates the autonomic efficiency of a set of self-* services for an increasing number of
self-management requests. A lesser value of ARQ means that the autonomic efficiency is better.

An experimental evaluation was logged by generating a request to the pool of five AMs in three
scenarios: (1) statically configured local AMs; (2) dynamically configured AMs from a server machine;
and (3) runtime registered AMs from the Autonomic_Cloud. The evaluation results of ARQ using
Equation (1) are provided as Figure 12. It shows that autonomic efficiency degraded with the increasing
number of self-management requests for the static AMs. The dynamic AMs utilizing the CPU share
from the server machine produced a better response. The S*SAAS responded best to the increased
number of self-management requests.

Figure 12. Average response quality for static, dynamic and S*SAAS services.

Thus, for software applications requiring continuous support from self-management services,
the proposed system achieves a significant improvement in the autonomic efficiency and issue
resolution time, compared to the state-of-the-art approaches.

In addition to the experimentally-demonstrated self-* services from the Autonomic_Cloud, ideas
from different research works can be offered as self-* services from the Autonomic_Cloud. For example:
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- The management of a huge amount of highly sensitive data generated by medical sensor networks
covering scalability, availability and security issues [34].

- A cloud-based distributed toolbox to optimally manage the energy dispatch from renewable
resources utilizing the GPU and WRNN predictors [35].

- Cloud-based energy serving a multi-agent system using web service techniques with backend
information agents involved [36].

- A neural-network-driven forecasting setup to manage the power production and dispatch in a
smart grid [37]

- A user wants to run their own application over the cloud to process their own data utilizing
encrypted computation [47]

4.3. Socio-Economic Benefits of the Proposed Research

The socio-economic benefits of the proposed research include but are not limited to data centers,
big data analysis, and energy management, etc. Applications include electric, defense, computer
programs, networks and data centers. Interruption due to varying conditions of these processes and
structures can occur before the system operators find out about the damage and remove its cause.
The design of control systems that integrate and configure self-* services from the cloud offer the
dynamic incorporation of self-management capabilities. This facilitates the control systems for the
detection of anomalies of large-scale distributed systems and to alleviate the process interference, and
humans receive better software services as the system works intelligently to manage its perturbations.

4.4. Complexity Analysis

The complexity of the RAV process is linear. The registration time is constant, whereas the search
for a monitor–sensor and executor–effector entry in the authentication table depends on the table size
(for example, ‘n’). Hence, O(n) drops to log(n) if binary searching is used. The complexity of the SMP
process is linear. It depends on the number of context attributes, the size of the threshold table, the size
of the symptoms repository, and the size of the rules base.

5. Conclusions

This research improves the autonomic computing design concept in two aspects. Firstly, a
modified architectural design for a secure, scalable and elastic autonomic computing system was
presented. The SSE-ACS paradigm was defined, consisting of a self-management process (SMP) and a
registration, authentication and validation process (RAV). The RAV secures the use of the sensors and
effectors of a resource from unauthorized autonomic managers. The RAV layer inside the touchpoint
allows the addition and removal of autonomic managers at the runtime without any unauthorized
usage concerns. The potential to accommodate the autonomic system’s growth at runtime renders
SSE-ACS scalable and elastic.

Secondly, self-* capabilities as a service (S*SAAS) are offered by the introduction of an
Autonomic_Cloud. A layered approach for the dynamic adaptation of self-* services was proposed for
this purpose. With a pay-per-use policy imitating the cloud computing style, the proposed approach
allows the continual growth of self-* capabilities with less investment. The system optimizes the CPU
share using elastic AMs resulting in an improved execution time of the business logic. For software
applications requiring the continuous support of self-management services, the proposed system
achieved a significant improvement in autonomic efficiency and issue resolving time, compared to the
state-of-the-art approaches.

The structure breakdown of the autonomic manager and knowledge base into sub-entities
provided high cohesion, low coupling, and allowed system implementation in a distributed
environment. This is useful in cases of high-performance systems and thread-based systems.
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Nomenclature

ACS Autonomic Computing System
AM Autonomic Manager
CC Connection Controller
CIA Confidentiality, Integrity, Availability
CPU Central Processing Unit
CVSS Common Vulnerability Scoring System
MR Managed Resource
PC Personal Computer
PKI Public Key Infrastructure
RAV Registration, Authentication and Validation
RSA Rivest, Shamir & Adleman (public key encryption technology)
RSI Relative Strength Index
SSE-ACS Secure, Scalable and Elastic Autonomic Computing System
SMP Self-Management Process
SO Stochastic Oscillator
William’s % R William’s % Relative Strength
MFI Money Flow Index
MACD Moving Average Convergence Divergence
L14 Lowest of the previous 14 trading sessions
H14 Highest of the previous 14 trading session
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