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Abstract: The interval neutrosophic set (INS) is a subclass of the neutrosophic set (NS) and a
generalization of the interval-valued intuitionistic fuzzy set (IVIFS), which can be used in real
engineering and scientific applications. This paper aims at developing new generalized Choquet
aggregation operators for INSs, including the generalized interval neutrosophic Choquet ordered
averaging (G-INCOA) operator and generalized interval neutrosophic Choquet ordered geometric
(G-INCOG) operator. The main advantages of the proposed operators can be described as follows:
(i) during decision-making or analyzing process, the positive interaction, negative interaction or
non-interaction among attributes can be considered by the G-INCOA and G-INCOG operators;
(ii) each generalized Choquet aggregation operator presents a unique comprehensive framework
for INSs, which comprises a bunch of existing interval neutrosophic aggregation operators; (iii) new
multi-attribute decision making (MADM) approaches for INSs are established based on these
operators, and decision makers may determine the value of λ by different MADM problems or
their preferences, which makes the decision-making process more flexible; (iv) a new clustering
algorithm for INSs are introduced based on the G-INCOA and G-INCOG operators, which proves
that they have the potential to be applied to many new fields in the future.

Keywords: generalized aggregation operators; interval neutrosophic set (INS); multi-attribute
decision making (MADM); Choquet integral; fuzzy measure; clustering algorithm

1. Introduction

The neutrosophic set (NS) is a powerful comprehensive framework that comprises the concepts
of the classic set, fuzzy set (FS), intuitionistic fuzzy set (IFS), hesitant fuzzy set (HFS), paraconsistent
set, paradoxist set, and interval-valued fuzzy set (IVFS) [1–4]. It was introduced by Smarandache
to deal with incomplete, indeterminate, and inconsistent decision information, which includes the
truth membership, falsity membership, and indeterminacy membership, and their functions are
non-standard subsets of ]−0, 1+[ [5]. However, without a specific description, it is difficult to apply
the NS in practical application. Therefore, scholars proposed the interval neutrosophic set (INS),
single-valued neutrosophic set (SVNS), rough neutrosophic set (RNS), multi-valued neutrosophic
set (MVNS) as some special cases of the NS, and studied their related properties in [6–9]. Recently,
numbers of new neutrosophic theories have been proposed and applied to image segmentation,
image processing, rock mechanics, stock market, computational intelligence, multi-attribute decision
making (MADM), medical diagnosis, fault diagnosis, and optimization design as described in [10–13].

The INS is a subclass of the NS and generalization of the IFS and IVIFS, which was proposed
by Wang [6]. Motivated by some aggregation operators and decision-making methods for IFSs,
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IVIFSs, and NSs [14–19], a lot of theories about INSs have been put forward successively, and their
basic concepts and aggregation tools play important roles in practical applications. For instance,
Wang et al. [6] defined the basic operational relations for INSs and Zhang et al. [20] pointed out
some drawbacks of these operational laws and improved them. Then they also put forward some
basic aggregation operators to deal with MADM problems with interval neutrosophic information.
Besides, Broumi [21] introduced the definition of correlation coefficient between INSs. Then Zhang
et al. [22] pointed out some shortcomings of the existing correlation coefficient and they also
proposed the definition of improved weighted correlation coefficient. Ye [23] defined some distance
measures and similarity measures for INSs and applied these measures in practical MADM problems,
and he also [24] proposed the interval neutrosophic ordered weighted arithmetic and geometric
averaging operators, and further constructed a possibility degree ranking method under the interval
neutrosophic environment. Moreover, Liu et al. [25–27] proposed the power generalized aggregation
operators, the prioritized ordered weighted aggregation operators and induced generalized interval
neutrosophic Shapley hybrid geometric averaging/mean operators for INSs under an interval
neutrosophic environment.

For some practical problems, there exists mutual influence and interaction among attributes,
which should be considered in decision-making or other analyzing process. The interaction between
attributes can be classified into three types, which are positive interaction, negative interaction, and
non-interaction [28,29]. Failure to consider the interactions among attributes may directly lead to errors
of decision results. To solve this problem under the interval neutrosophic environment, we first intend
to define some aggregation operators in this paper by combining the definition of Choquet integral to
process the mutual influence and interaction among attributes with respect to fuzzy measure [30,31].

Besides, cluster analysis, or clustering, is defined as the unsupervised process of group (a set of
data objects) in such a way that objects in the same group (called a cluster) are somehow more similar
to each other than those in other groups (clusters) [32]. There are many algorithms for clustering
which differ significantly in their notion of what constitutes a cluster and how to efficiently find them.
Under a hesitant fuzzy environment, Chen et al. [33] proposed an algorithm to cluster hesitant fuzzy
data into different clusters. Using the algorithm as a reference, we also intend to propose an effective
new clustering algorithm under the interval neutrosophic environment.

Moreover, the generalized aggregation operators are a new class of operators, which have been
widely applied in fuzzy areas, since they can be used to synthesize multi-dimensional evaluation
values represented by kinds of hesitant fuzzy values or intuitionstic fuzzy values into collective
values. Overall, this paper aims at proposing new generalized Choquet aggregation operators for
INSs—namely, the G-INCOA operator and G-INCOG operator—which can be applied in MADM and
clustering using interval neutrosophic information. In some special cases, each generalized aggregation
operator reduces to various existing non-generalized interval neutrosophic aggregation operators.

To do so, the rest of this paper is organized as follows: Section 2 introduces some basic definitions
about the Choquet integral and INS. In Section 3, the G-INCOA operator and G-INCOG operator
are put forward and some desirable properties of them are discussed and proved. We also consider
special cases of these operators and distinguish them in two main classes, the first class focuses on the
parameter λ, and the second class on the fuzzy measure µ

(
xj
)
. In Section 4, we put forward some novel

MADM methods based on the proposed operators to deal with interval neutrosophic information and
utilize an illustrative example to validate the proposed MADM approaches by taking different values of
parameter λ of the proposed operators. In Section 5, a new clustering algorithm for INSs is introduced
based on the G-INCOA operator and the G-INCOG operator. Then, a numerical example concerning
clustering is utilized as the demonstration of the application and effectiveness of the proposed clustering
algorithm. Finally, conclusions and future research directions are drawn in Section 6.
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2. Preliminaries

To facilitate the following discussion, some basic definitions about the Choquet integral and INS
are briefly introduced in this section.

2.1. Interval Neutrosophic Sets (INS)

The NS was firstly introduced by Smarandache [5], which is a comprehensive framework for
expressing and processing incomplete and indeterminate information.

Definition 1. ([5]) Let X be a non-empty fixed set, a NS on X is defined as:

TA(x), IA(x), FA(x) : X → ]−0, 1+[, (1)

where TA(x), IA(x), FA(x) representing the truth membership function, indeterminacy membership
function and falsity membership function, respectively, and satisfying the limit: 0− ≤ sup TA(x) +
supIA(x) + supFA(x) ≤ 3+.

It is not difficult to find that the NS is difficult to apply in the real applications. Therefore,
Wang et al. [6] proposed the interval neutrosophic set (INS) as an instance of the NS, which is
defined as:

Definition 2. ([6]) Let X be a non-empty finite set, an INS in X is expressed by:

N = {〈x, [t̃L(x), t̃U(x)], [ĩL(x), ĩU(x)], [ f̃ L(x), f̃ U(x)〉]| x ∈ X }, (2)

where t̃(x) = [̃tL(x), t̃U(x)] ⊆ [0, 1], ĩ(x) = [̃iL(x), ĩU(x)] ⊆ [0, 1], f̃ (x) = [ f̃ L(x), f̃ U(x)] ⊆ [0, 1]
representing truth, indeterminacy, and falsity membership functions of the element x ∈ X,
and satisfying limits: 0 ≤ t̃U(x) + ĩU(x) + f̃ U(x) ≤ 3.

For convenience, we call ñ = 〈[t̃L, t̃U ], [ĩL, ĩU ], [ f̃ L, f̃ U ]〉 an interval neutrosophic element (INN).
The basic operational relations of INNs are defined as:

Definition 3. ([6]) Let ñ1 = 〈[t̃L
1 , t̃U

1 ], [ĩ
L
1 , ĩU1 ], [ f̃ U

1 , f̃ U
1 ]〉 and ñ2 = 〈[t̃L

2 , t̃U
2 ], [ĩL

2 , ĩU2 ], [ f̃ U
2 , f̃ U

2 ]〉 be two
INNs, then:

1. ñ1 ⊕ ñ2 = 〈[t̃L
1 + t̃L

2 − t̃L
1 t̃L

2 , t̃U
1 + t̃U

2 − t̃U
1 t̃U

2 ], [ĩ
L
1 ĩL

2 , ĩU1 ĩU2 ], [ f̃ L
1 f̃ L

2 , f̃ U
1 f̃ U

2 ]〉;

2. ñ1 ⊕ ñ2 = 〈[t̃L
1 t̃L

2 , t̃U
1 t̃U

2 ], [ĩ
L
1 + ĩL

2 − ĩL
1 ĩL

2 , ĩU1 + ĩU2 − ĩU1 ĩU2 ], [ f̃ L
1 + f̃ L

2 − f̃ L
1 ĩL

2 , f̃ U
1 + f̃ U

2 − f̃ U
1 f̃ U

2 ]〉;

3. rñ1 = 〈[1− (1− t̃L
1 )

r, 1− (1− t̃U
1 )

r
], [(ĩL

1 )
r
, (ĩU1 )

r
], [( f̃ L

1 )
r
, ( f̃ U

1 )
r
]〉;

4. ñ1
r = 〈[(t̃L

1 )
r, (t̃U

1 )
r
], [1− (1− ĩL

1 )
r
, 1− (1− ĩU1 )

r
], [1− (1− f̃ L

1 )
r
, 1− (1− f̃ U

1 )
r
]〉.

2.2. Some Concepts of INSs

On the basis of the distance measures of INSs [23], Ye defined some similarity measures between
INSs ñ1 and ñ2, which can be given as:

Definition 4. Let ñ1 = 〈[t̃L
1 , t̃U

1 ], [ĩ
L
1 , ĩU1 ], [ f̃ U

1 , f̃ U
1 ]〉 and ñ2 = 〈[t̃L

2 , t̃U
2 ], [ĩL

2 , ĩU2 ], [ f̃ U
2 , f̃ U

2 ]〉 be two INNs,
thus, the similarity function between ñ1 and ñ2 is defined by:

C(ñ1, ñ2) = 1−
(
(t̃L

1−t̃L
2 )

2
+(ĩL

1−ĩL
2 )

2
+( f̃ L

1 − f̃ L
2 )

2
+(t̃U

1 −t̃U
2 )

2
+(ĩU1 −ĩU2 )

2
+( f̃ U

1 − f̃ U
2 )

2)
6 . (3)

According to the value range of the similarity measures, we can obtain the value range of the
cosine function, we can obtain the following property 0 ≤ C(ñ1, ñ2) ≤ 1. Suppose the best ideal
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alternative ñ+ = 〈[t̃L+

1 ,̃tU+

1 ], [ĩL+

1 , ĩU
+

1 ], [ f̃ L+

1 , f̃ U+

1 ]〉 = 〈[1, 1], [0, 0], [0, 0]〉, then, the similarity measures
between ñ1 and ñ+ can be described as:

C(ñ1, ñ2) = 1−
(
(1−t̃L

1 )
2
+(ĩL

1 )
2
+( f̃ L

1 )
2
+(1−t̃U

1 )
2
+(ĩU1 )

2
+( f̃ U

1 )
2)

6 . (4)

The score function are effective tools to rank INNs, and here we give its definition:

Definition 5. ([25]) For ñ, the score function s(ñ) is defined as:

s(ñ) =
(
(t̃L

1+t̃U
1 )

2 +

(
1− (ĩL

1+ĩU1 )
2

)
+

(
1− ( f̃ L

1 + f̃ U
1 )

2

))
/3 (5)

obviously, s(ñ) ∈ [0, 1]. If s(ñ1) > s(ñ2), then ñ1 > ñ2.

2.3. The Fuzzy Measure and Choquet Integral

The Choquet integral is a powerful operator to aggregate kinds of fuzzy information in MADM
with respect to fuzzy measure.

Definition 6. ([30]) Let (X, A, µ) be a measurable space and µ : A → [0, 1] , if it satisfies the conditions:

1. µ(∅) = 0;
2. µ(A) ≤ µ(B) whenever A ⊂ B, A, B ∈ A;
3. I f A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . . , An ∈ A, then µ

(
∪∞

n=1 An
)
= limn→∞µ(An) ;

4. I f A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . , An ∈ A, then µ
(
∪∞

n=1 An
)
= limn→∞µ(An) ;

then, we call µ be a fuzzy measure defined by Sugeno M.

To avoid the problems with computational complexity in paractical applications, gλ fuzzy
measure also called λ-fuzzy measure, was proposed by Sugeno M [30], which satisfies an additional
properties: µ(X ∪Y) = µ(X) + µ(Y) + gλ µ(X)µ(Y), gλ ∈ (−1, ∞) for all X, Y ∈ A and X ∩ Y = ∅.
Specially, the expression of gλ fuzzy measure defined on a finite set X = {x1, x2, . . . , xm} can be
simplified as:

Theorem 1. ([30]) Let X be a set (X = {x1, x2, . . . , xm}), λ-fuzzy measure defined on X is expressed as:

µ(X) =


1
λg

(
∏

i∈X

(
1 + λgµ(xi)

)
− 1
)

, i f λg 6= 0,

∑
i∈X

µ(xi), i f λg = 0,
(6)

where xi ∩ xj = ∅ for all i, j = 1, 2, 3, . . . , m and i 6= j.

Then, the Choquet integral with respect to fuzzy measures, is defined as:

Definition 7. ([31]) When µ is a fuzzy measure, X = {x1, x2, . . . , xm} is a finite set. The Choquet integral
of a function f : X → [0, 1] with respect to fuzzy measure µ can be expressed as:

∫
f dµ =

m
∑

i=1

(
µ
(

Fφ(i)

)
− µ

(
Fφ(i−1)

))
⊕ f

(
xφ(i)

)
, (7)

where (φ(1), φ(2), . . . φ(i), . . . , φ(m)) is a permutation of (1, 2, . . . i, . . . , m) such that f
(

xφ(1)

)
≤

f
(

xφ(2)

)
≤ , . . . ,≤ f

(
xφ(i)

)
≤ , . . . ,≤ f

(
xφ(m)

)
, Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)} and Fφ(0) = ∅.
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3. Generalized Interval Neutrosphic Choquet Aggregation Operators

In what follows, based on the operational relations of INNs and Choquet aggregation operator,
we shall develop new generalized Choquet aggregation operators under the interval neutrosophic
environment, such as the generalized interval neutrosophic Choquet ordered averaging (G-INCOA)
operator and generalized interval neutrosophic Choquet ordered geometric (G-INCOG) operator.

3.1. The G-INCOA and G-INCOG Operators

Definition 8. When ñj(j = 1, 2, 3, . . . , m) is a collection of INNs, X= {x1, x2, x3, . . . , xm} is the set of
attributes and µ measure on X, the G-INCOA and G-INCOG operators are defined as:

G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1

(
µ
(

Fφ(j)

)
− µ

(
Fφ(j−1)

))
ñφ(j)

λ
) 1

λ , (8)

G− INCOGµ,λ{ñ1, ñ2, . . . , ñm} =
(
⊗m

j=1

(
µ
(

Fφ(j)

)
− µ

(
Fφ(j−1)

))
ñφ(j)

λ
) 1

λ , (9)

where λ > 0, µφ(i) = µ
(

Fφ(i)

)
−µ
(

Fφ(i−1)

)
. where (φ(1), φ(2), . . . φ(i), . . . , φ(m)) is a permutation of

(1, 2, . . . i, . . . , m) such that f
(

xφ(1)

)
≤ f

(
xφ(2)

)
≤ , . . . ,≤ f

(
xφ(i)

)
≤ , . . . ,≤ f

(
xφ(m)

)
, Fφ(0) = ∅

and Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)}.

Theorem 2. When ñj(j = 1, 2, 3, . . . , m) is a collection of INNs, then the aggregated value obtained
by the G-INCOA operator is also a INN, and:

G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1

(
µ
(

Fφ(j)

)
− µ

(
Fφ(j−1)

))
ñφ(j)

λ
) 1

λ

=


(1−

m
∏
j=1

(
1−

(
tL
φ(j)

)λ
)µφ(j)

) 1
λ

,

(
1−

m
∏
j=1

(
1−

(
tU
φ(j)

)λ
)µφ(j)

) 1
λ

,

1−
(

1−
m
∏
j=1

(
1−

(
1− iL

φ(j)

)λ
)µφ(j)

) 1
λ

, 1−
(

1−
m
∏
j=1

(
1−

(
1− iU

φ(j)

)λ
)µφ(j)

) 1
λ

,

1−
(

1−
m
∏
j=1

(
1−

(
1− f L

φ(j)

)λ
)µφ(j)

) 1
λ

, 1−
(

1−
m
∏
j=1

(
1−

(
1− f U

φ(j)

)λ
)µφ(j)

) 1
λ

.

(10)

Similarly, the aggregated value obtained by the G-INCOG operator is also a INN,

G− INCOGµ,λ{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1

(
µ
(

Fφ(j)

)
− µ

(
Fφ(j−1)

))
ñφ(j)

λ
) 1

λ ,

=


1−

(
1−

m
∏
j=1

(
1−

(
1− tL

φ(j)

)λ
)µφ(j)

) 1
λ

, 1−
(

1−
m
∏
j=1

(
1−

(
1− tU

φ(j)

)λ
)µφ(j)

) 1
λ

,

(1−
m
∏
j=1

(
1−

(
iL
φ(j)

)λ
)µφ(j)

) 1
λ

,

(
1−

m
∏
j=1

(
1−

(
iU
φ(j)

)λ
)µφ(j)

) 1
λ

,

(1−
m
∏
j=1

(
1−

(
f L
φ(j)

)λ
)µφ(j)

) 1
λ

,

(
1−

m
∏
j=1

(
1−

(
f U
φ(j)

)λ
)µφ(j)

) 1
λ

.

(11)

Proof. The result of m = 1 follows quickly from Definition 8, below we prove Equations (10) and (11)
by means of mathematical induction on m, here, take Equation (11) as an example.

(a) For m = 2, based on the operation relations of INNs defined in Definition 3, we have:
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(
µφ(1)ñφ(1)

λ
) 1

λ
=


1−

(
1−

(
1−

(
1− tL

φ(1)

)λ
)µφ(1)

) 1
λ

, 1−
(

1−
(

1−
(

1− tU
φ(1)

)λ
)µφ(1)

) 1
λ

,

(1−
(

1−
(

iL
φ(1)

)λ
)µφ(1)

) 1
λ

,
(

1−
(

1−
(

iU
φ(1)

)λ
)µφ(1)

) 1
λ

,

(1−
(

1−
(

f L
φ(1)

)λ
)µφ(1)

) 1
λ

,
(

1−
(

1−
(

f U
φ(1)

)λ
)µφ(1)

) 1
λ

;

(
µφ(2)ñφ(2)

λ
) 1

λ
=


1−

(
1−

(
1−

(
1− tL

φ(2)

)λ
)µφ(2)

) 1
λ

, 1−
(

1−
(

1−
(

1− tU
φ(2)

)λ
)µφ(2)

) 1
λ

,

(1−
(

1−
(

iL
φ(2)

)λ
)µφ(2)

) 1
λ

,
(

1−
(

1−
(

iU
φ(2)

)λ
)µφ(2)

) 1
λ

,

(1−
(

1−
(

f L
φ(2)

)λ
)µφ(2)

) 1
λ

,
(

1−
(

1−
(

f U
φ(2)

)λ
)µφ(2)

) 1
λ

;

thus, for m = 2, the G− INCOGµ, λ{ñ1, ñ2} can be obtained as:

G− INCOGµ,λ{ñ1, ñ2} =
(

µφ(1)ñφ(1)
λ
) 1

λ ⊕
(

µφ(2)ñφ(2)
λ
) 1

λ
=

1−
(

1−
(

1−
(

1− tL
φ(1)

)λ
)µφ(1)

(
1−

(
1− tL

φ(2)

)λ
)µφ(2)

) 1
λ

, 1−
(

1−
(

1−
(

1− tU
φ(1)

)λ
)µφ(1)

(
1−

(
1− tU

φ(2)

)λ
)µφ(2)

) 1
λ

,

(1−
(

1−
(

iL
φ(1)

)λ
)µφ(1)

(
1−

(
iL
φ(2)

)λ
)µφ(2)

) 1
λ

,
(

1−
(

1−
(

iU
φ(1)

)λ
)µφ(1)

(
1−

(
iU
φ(2)

)λ
)µφ(2)

) 1
λ

,

(1−
(

1−
(

f L
φ(1)

)λ
)µφ(1)

(
1−

(
f L
φ(2)

)λ
)µφ(2)

) 1
λ

,
(

1−
(

1−
(

f U
φ(1)

)λ
)µφ(1)

(
1−

(
f U
φ(2)

)λ
)µφ(2)

) 1
λ

,

thus, Equation (11) holds for m = 2.

(b) If Equation (11) holds for m = k, then:

G− INCOGµ,λ{ñ1, ñ2, . . . , ñk} =


1−

(
1−

k
∏
j=1

(
1−

(
1− tL

φ(j)

)λ
)µφ(j)

) 1
λ

, 1−
(

1−
k

∏
j=1

(
1−

(
1− tU

φ(j)

)λ
)µφ(j)

) 1
λ

,

(1−
k

∏
j=1

(
1−

(
iL
φ(j)

)λ
)µφ(j)

) 1
λ

,

(
1−

k
∏
j=1

(
1−

(
iU
φ(j)

)λ
)µφ(j)

) 1
λ

,

(1−∏k
j=1

(
1−

(
f L
φ(j)

)λ
)µφ(j)

) 1
λ

,
(

1−∏k
j=1

(
1−

(
f U
φ(j)

)λ
)µφ(j)

) 1
λ

.

For m = k + 1,

G− INCOGµ,λ{ñ1, ñ2, . . . , ñk, ñk+1} =
(
⊕k

j=1

(
µ
(

Fφ(j)

)
− µ

(
Fφ(j−1)

))
ñφ(j)

λ
) 1

λ ⊕
(

µφ(k+1)ñφ(k+1)
λ
) 1

λ
=

1−
(

1−
k

∏
j=1

(
1−

(
1− tL

φ(j)

)λ
)µφ(j)

) 1
λ

, 1−
(

1−
k

∏
j=1

(
1−

(
1− tU

φ(j)

)λ
)µφ(j)

) 1
λ

,(1−
k

∏
j=1

(
1−

(
iL
φ(j)

)λ
)µφ(j)

) 1
λ

,

(
1−

k
∏
j=1

(
1−

(
iU
φ(j)

)λ
)µφ(j)

) 1
λ

,(1−
k

∏
j=1

(
1−

(
f L
φ(j)

)λ
)µφ(j)

) 1
λ

,

(
1−

k
∏
j=1

(
1−

(
f U
φ(j)

)λ
)µφ(j)

) 1
λ

⊗
1−

(
1−

(
1−

(
1− tL

φ(k+1)

)λ
)µφ(k+1)

) 1
λ

, 1−
(

1−
(

1−
(

1− tU
φ(k+1)

)λ
)µφ(k+1)

) 1
λ

,(1−
(

1−
(

iL
φ(k+1)

)λ
)µφ(k+1)

) 1
λ

,
(

1−
(

1−
(

iU
φ(k+1)

)λ
)µφ(k+1)

) 1
λ

(1−
(

1−
(

f L
φ(k+1)

)λ
)µφ(k+1)

) 1
λ

,
(

1−
(

1−
(

f U
φ(k+1)

)λ
)µφ(k+1)

) 1
λ


=


1−

(
1−

k+1
∏
j=1

(
1−

(
1− tL

φ(j)

)λ
)µφ(j)

) 1
λ

, 1−
(

1−
k+1
∏
j=1

(
1−

(
1− tU

φ(j)

)λ
)µφ(j)

) 1
λ

,(1−
k+1
∏
j=1

(
1−

(
iL
φ(j)

)λ
)µφ(j)

) 1
λ

,

(
1−

k+1
∏
j=1

(
1−

(
iU
φ(j)

)λ
)µφ(j)

) 1
λ

,(1−
k+1
∏
j=1

(
1−

(
f L
φ(j)

)λ
)µφ(j)

) 1
λ

,

(
1−

k+1
∏
j=1

(
1−

(
f U
φ(j)

)λ
)µφ(j)

) 1
λ

.

That is, for m = k + 1, the Equation (11) still holds, by the proof Equation (11), it is not difficult to
get Equation (10).
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This completes the proof of Theorem 2. �

Theorem 4. The G-INCOA and G-INCOG operators have the following desirable properties, taking
the G-INCOA operator as:

1. (Idempotency) Let ñj = ñ for all j = 1, 2, 3, . . . , m, and ñ = {[t̃L, t̃U ],[ĩL, ĩU ], [ f̃ L, f̃ U ]}, then:

G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} = {[t̃L, t̃U ],[ĩL, ĩU ], [ f̃ L, f̃ U ]}.

2. (Boundedness) Let ñ− = {[̃tL− , t̃U− ],[̃iL+ , ĩU
+
], [ f̃ L+ , f̃ U+

]}, ñ+ = {[̃tL+ , t̃U+
],[̃iL− , ĩU

−
], [ f̃ L− , f̃ U− ]},

ñ− ≤ G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} ≤ ñ+.

3. (Commutativity) If {ñ′1, ñ′2, . . . , ñ′m} is a permutation of {ñ1, ñ2, . . . , ñm}, then,

G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} = G− INCOAµ,λ{ñ′1, ñ′2, . . . , ñ′m}.

4. (Monotonity) If ñj ≤ ñ′j for ∀j ∈ {1, 2, . . . , n}, then,

G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} ≤ G− INCOAµ,λ{ñ′1, ñ′2, . . . , ñ′m}.

Proof. Suppose (1, 2, 3, . . . , m) is a permutation such that ñ1 ≤ ñ2 ≤ ñ3 . . . ,≤ ñm.

1. For ñ = {[t̃L, t̃U ],[ĩL, ĩU ], [ f̃ L, f̃ U ]}, according to Theorem 1, it follows that:

G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} =


(1−

(
1−

(
tL
φ(j)

)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

,

(
1−

(
1−

(
tU
φ(j)

)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

,1−
(

1−
(

1−
(

1− iL
φ(j)

)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

, 1−
(

1−
(

1−
(

1− iU
φ(j)

)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

,1−
(

1−
(

1−
(

1− f L
φ(j)

)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

, 1−
(

1−
(

1−
(

1− f L
φ(j)

)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

 .

Since ∑m
j=1
(
µ
(
Fj
)
− µ

(
Fj−1

))
= 1, thus, G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} = {[̃tL, t̃U],[̃iL, ĩU], [ f̃ L, f̃ U]}.

2 For any t̃j = [t̃L
j , t̃U

j ], ĩj = [ĩL
j , ĩUj ] and f̃ j = [ f̃ U

j , f̃ U
j ], j = 1, 2, . . . , m, we have,

t̃L− ≤ t̃L
j ≤ t̃L+

; t̃U− ≤ t̃U
j ≤ t̃U+

; ĩL− ≤ ĩL
j ≤ ĩL+

;

ĩU
− ≤ ĩUj ≤ ĩU

+
; f̃ L− ≤ f̃ L

j ≤ f̃ L+
; f̃ U− ≤ f̃ U

j ≤ f̃ U+
.

Since y = xa(0 < a < 1) is a monotone increasing function when x > 0 and values in the G-INCOA
operator are all valued in [0, 1], therefore,

(
1−

(
1−

(
t̃L−
)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

+

(
1−

(
1−

(
t̃U−
)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

≤
(

1−
m
∏
j=1

(
1−

(
tL
φ(j)

)λ
)(µ(Fj)−µ(Fj−1))

) 1
λ

+

(
1−

m
∏
j=1

(
1−

(
tU
φ(j)

)λ
)(µ(Fj)−µ(Fj−1))

) 1
λ

≤
(

1−
(

1−
(

t̃L+
)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

+

(
1−

(
1−

(
t̃U+
)λ
)∑m

j=1 (µ(Fj)−µ(Fj−1))
) 1

λ

.

Since ∑m
j=1
(
µ
(

Fj
)
− µ

(
Fj−1

))
= 1, the above equation is equivalent to:
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t̃L− + t̃U− ≤
(

1−
m
∏
j=1

(
1−

(
tL
φ(j)

)λ
)(µ(Fj)−µ(Fj−1))

) 1
λ

+

(
1−

m
∏
j=1

(
1−

(
tU
φ(j)

)λ
)(µ(Fj)−µ(Fj−1))

) 1
λ

.

≤ t̃L+
+ t̃U+

Analogously, we have:

ĩL− + ĩU
− ≥ 1−

(
1−

m
∏
j=1

(
1−

(
1− iL

φ(j)

)λ
)µφ(j)

) 1
λ

+ 1−
(

1−
m
∏
j=1

(
1−

(
1− iU

φ(j)

)λ
)µφ(j)

) 1
λ

≥ ĩL+
+ ĩU

+
;

and

f̃ L− + f̃ U− ≥ 1−
(

1−
m
∏
j=1

(
1−

(
1− f L

φ(j)

)λ
)µφ(j)

) 1
λ

+ 1−
(

1−
m
∏
j=1

(
1−

(
1− f L

φ(j)

)λ
)µφ(j)

) 1
λ

.

≥ f̃ L+
+ f̃ U+

;

Since s(ñ−) ≤ s(ñ) ≤ s(ñ+), namely, ñ− ≤ G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} ≤ ñ+.

3 Suppose (φ(1), φ(2), . . . , φ(m)) is a permutation of both {ñ′1, ñ′2, . . . , ñ′m} and {ñ1, ñ2, . . . , ñm},
such that ñφ(1) ≤ ñφ(2), . . . ,≤ ñφ(m), Fφ(i) = {xφ(1), xφ(2), . . . , xφ(i)}, then,

G− INCOAµ,λ{ñ1, ñ2, . . . , ñm} = G− INCOAµ,λ{ñ′1, ñ′2, . . . , ñ′m} = ⊕m
j=1

((
µ
(

Fφ(j)

)
− µ

(
Fφ(j−1)

))
ñφ(j)

)
.

4 In general, it can be derived from the second theorem.

This completes the proof of Theorem 4. �

3.2. Families of G-INCOA and G-INCOG Operators

In this section, we consider special cases of the G-INCOA and G-INCOG operators and distinguish
them in two main classes, the first class focuses on the parameter λ, and the second class on the fuzzy
measure µ

(
xj
)
.

3.2.1. Analyzing the Parameter λ

Like other generalized operators, both the G-INCOA and G-INCOG can reduce to some general
circumstances when the parameter λ takes different values, which are described as:

(1) When λ = 1, the G-INCOA operator reduces to the interval neutrosophic Choquet ordered
averaging (INCOA) operator,

INCOAµ{ñ1, ñ2, . . . , ñm} = ⊕m
j=1

((
µ
(

Fφ(j)

)
− µ

(
Fφ(j−1)

))
ñφ(j)

)
=

{[
1−

m
∏
j=1

(
1− tL

φ(j)

)µφ(j)
, 1−

m
∏
j=1

(
1− tU

φ(j)

)µφ(j)

]
,

[
m
∏
j=1

(
iL
φ(j)

)µφ(j)
,

m
∏
j=1

(
iU
φ(j)

)µφ(j)

]
,

[
m
∏
j=1

(
f L
φ(j)

)µφ(j)
,

m
∏
j=1

(
f U
φ(j)

)µφ(j)

]
.

Similarly, the G-INCOG operator reduces to the interval neutrosophic Choquet ordered geometric
(INCOG) operator when λ = 1.

(2) If λ→ 0 , the G-INCOA operator reduces to the INCOG operator,

INCOGµ{ñ1, ñ2, . . . , ñm} = ⊗m
j=1

(
ñφ(j)

(µ(Fφ(j))−µ(Fφ(j−1)))
)
=

{[
m
∏
j=1

(
tL
φ(j)

)µφ(j)
,

m
∏
j=1

(
tU
φ(j)

)µφ(j)

]
,[

1−
m
∏
j=1

(
1− iL

φ(j)

)µφ(j)
, 1−

m
∏
j=1

(
1− iU

φ(j)

)µφ(j)

]
,

[
1−

m
∏
j=1

(
1− f L

φ(j)

)µφ(j)
, 1−

m
∏
j=1

(
1− f U

φ(j)

)µφ(j)

]}
.

Similarly, the G-INCOG operator reduces to the INCOA operator.
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(3) When λ = 2, the G-INCOA operator can reduce to the interval neutrosophic Choquet ordered
quadratic averaging (INCOQA) operator,

INCOQAµ{ñ1, ñ2, . . . , ñm} =
(

µφ(1)ñ
2
φ(1) ⊕ µφ(2)ñ

2
φ(2) ⊕ . . .⊕ µφ(m)ñ

2
φ(m)

)1/2
.

Similarly, then the G-INCOG operator can reduce to the interval neutrosophic Choquet ordered
quadratic geometric (INCOQG) operator.

(4) If λ = 3, then the G-INCOA operator can reduce to the interval neutrosophic Choquet ordered
cubic averaging (INCOCA) operator,

INCOCAµ{ñ1, ñ2, . . . , ñm} =
(

µφ(1)ñ
3
φ(1) ⊕ µφ(2)ñ

3
φ(2) ⊕ . . .⊕ µφ(m)ñ

3
φ(m)

)1/3
.

Similarly, then the G-INCOG operator can reduce to the interval neutrosophic Choquet ordered
cubic geometric (INCOCG) operator.

3.2.2. Analyzing the Fuzzy Measure µ
(

xj
)

When considering different circumstances of the fuzzy measure µ
(
xj
)
, some special cases of the

G-INCOA and G-INCOG operators are given as:

(1) When µ(F) ≡ 1, then G− INCOAµ, λ{ñ1, ñ2, . . . , ñm} = max{ñ1, ñ2, . . . , ñm};
(2) When µ(F) ≡ 0, then G− INCOAµ, λ{ñ1, ñ2, . . . , ñm} = min{ñ1, ñ2, . . . , ñm};
(3) The G-INCOA operator reduces to the generalized interval neutrosophic weighted averaging

(G-INWA) operator, if the independent condition µ
(

xφ(j)

)
= µ

(
Fφ(j)

)
− µ

(
Fφ(j−1)

)
holds.

G− INWA{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1µ
(
xj
)
⊕ ñφ(j)

λ
) 1

λ
=

(1−
m
∏
j=1

(
1−

(
tL
φ(j)

)λ
)µ(xj)

) 1
λ

,

(
1−

m
∏
j=1

(
1−

(
tU
φ(j)

)λ
)µ(xj)

) 1
λ

,1−
(

1−
m
∏
j=1

(
1−

(
1− iL

φ(j)

)λ
)µ(xj)

) 1
λ

, 1−
(

1−
m
∏
j=1

(
1−

(
1− iU

φ(j)

)λ
)µ(xj)

) 1
λ

,1−
(

1−
m
∏
j=1

(
1−

(
1− f L

φ(j)

)λ
)µ(xj)

) 1
λ

, 1−
(

1−
m
∏
j=1

(
1−

(
1− f U

φ(j)

)λ
)µ(xj)

) 1
λ

.

(4) When µ
(

xj
)
= 1/m, for j = 1, 2, 3, . . . , m, both the G-INCOA and G-INWA operators reduce to

the generalized interval neutrosophic averaging (G-INA) operator, which is defined as:

G− INWA{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1
1
m ⊕ ñφ(j)

λ
) 1

λ
=

(1−
m
∏
j=1

(
1−

(
tL
φ(j)

)λ
) 1

m
) 1

λ

,

(
1−

m
∏
j=1

(
1−

(
tU
φ(j)

)λ
) 1

m
) 1

λ

,

1−
(

1−
m
∏
j=1

(
1−

(
1− iL

φ(j)

)λ
) 1

m
) 1

λ

, 1−
(

1−
m
∏
j=1

(
1−

(
1− iU

φ(j)

)λ
) 1

m
) 1

λ

,

1−
(

1−
m
∏
j=1

(
1−

(
1− f L

φ(j)

)λ
) 1

m
) 1

λ

, 1−
(

1−
m
∏
j=1

(
1−

(
1− f U

φ(j)

)λ
) 1

m
) 1

λ


.
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(5) When µ(F) = ∑
|F|
j=1 ωj for all F ⊆ X, where |F| is the number of elements in F, then ωj =

µ
(

Fφ(j)

)
− µ

(
Fφ(j−1)

)
, j = 1, 2, . . . , m, where ω = (ω1,ω2, . . . ,ωm)T such that ωj ≥ 0 and

∑m
j=1 ωj = 1. In such a situation, the G-INCOA operator reduces to the generalized interval

neutrosophic ordered weighted averaging (G-INOWA) operator as:

G− INOWA{ñ1, ñ2, . . . , ñm} =
(
⊕m

j=1ωj ⊕ ñφ(j)
λ
) 1

λ

=


(1−

m
∏
j=1

(
1−

(
tL
φ(j)

)λ
)ωj

) 1
λ

,

(
1−

m
∏
j=1

(
1−

(
tU
φ(j)

)λ
)ωj

) 1
λ

,1−
(

1−
m
∏
j=1

(
1−

(
1− iL

φ(j)

)λ
)ωj

) 1
λ

, 1−
(

1−
m
∏
j=1

(
1−

(
1− iU

φ(j)

)λ
)ωj

) 1
λ

,1−
(

1−
m
∏
j=1

(
1−

(
1− f L

φ(j)

)λ
)ωj

) 1
λ

, 1−
(

1−
m
∏
j=1

(
1−

(
1− f U

φ(j)

)λ
)ωj

) 1
λ

.

Particularly, when µ(F) = |F|/m, for all F ⊆ X, then the G-INCOA operator and G-INOWA
operator can reduce to the G-INA operator. Similarly, the G-INCOG can reduce to G-INOWG operator,
the G-ING operator, the G-INOWG operator and others.

4. Application in MADM under Interval Neutrosophic Environment

This section puts forward new approaches based on the G-INCOA and G-INCOG operators for
MADM problems with interval neutrosophic information, where the characteristics of the alternatives
are represented by INSs and the interaction relationship among attributes can be considered. Thus,
the remaining issue is to use these aggregation operators in practical MADM problems to verify the
correctness and practicality of them.

4.1. Approaches Based on the G-INCOA and G-INCOG Operators for MADM

Let X = {X1, X2, . . . , Xm} be a finite set of m inter-related attributes and C = {C1, C2, . . . , Cn} be
a set of n choices. Suppose that with respect to the attributes, the alternatives C = {C1, C2, . . . , Cn}
denoted by an interval neutrosophic matrix N = (ñij = {t̃ij, ĩij, f̃ij})n×m, in detail, t̃ij, ĩij, f̃ij indicate
the truth, indeterminacy and falsity membership function of Ci satisfying xj given by decision-makers,
respectively. Next, to get the best choice, the G-INCOA and G-INCOG operators are utilized to
establish MADM methods with interval neutrosophic information, which involves the following steps:

Step 1. Reorder the decision matrix

With respect to attributes X = {X1, X2, . . . , Xm}, reorder m INNs ñij of Ci (i = 1, 2, . . . , m) from
smallest to largest, according to their score function values s

(
ñij
)

calculated by Equation (5), the reorder
sequence for i = 1, 2, . . . , m is (φ(1), φ(2), . . . , φ(m));

Step 2. Confirm fuzzy measures of m attributes

Use gλ fuzzy measure defined in Equation (6) to determine fuzzy measures µ of X, in which the
interaction relationship among attributes is considered;

Step 3. Aggregate decision information by the G-INCOA or G-INCOG operators

Aggregate m INNs ñiφ(j) of Ci based on the G-INCOA and G-INCOG operator defined in Equation
(8) or (9), with respect to attributes X = {X1, X2, . . . , Xm}, as proved by Theorem 2, the aggregated
values obtained by the G-INCOA and G-INCOG operators are also INNs;

Step 4. Rank all alternatives

Rank all alternatives to select the most desirable one by their score function values between ñi,
described in Equation (5).
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4.2. Numerical Example

An illustrative example concerning selecting is utilized to verify feasibility of the proposed MADM
approaches. Suppose that a fund manager in a wealth management firm is assessing four potential
investment opportunities, there is a panel with four possible alternatives denoted by C1, C2, C3, C4.
During MADM process, some attributes should be taken into account: (1) X1 is risk; (2) X2 is growth;
(3) X3 is socio-political issues and environmental impacts. Experts are required to evaluate the four
possible enterprises Ci(i = 1, 2, 3, 4) under these attributes, and interval neutrosophic decision matrix
N =

(
ñij
)

4×3 is constructed as:

N =


([0.4, 0.5], [0.1, 0.2], [0.2, 0.4]) ([0.3, 0.5], [0.2, 0.3], [0.3, 0.5]) ([0.5, 0.6], [0.2, 0.3], [0.2, 0.3])
([0.3, 0.5], [0.2, 0.3], [0.2, 0.4]) ([0.2, 0.4], [0.2, 0.3], [0.3, 0.3]) ([0.3, 0.4], [0.3, 0.4], [0.1, 0.4])
([0.5, 0.8], [0.1, 0.2], [0.1, 0.2]) ([0.5, 0.6], [0.1, 0.3], [0.2, 0.4]) ([0.5, 0.7], [0.1, 0.2], [0.1, 0.2])
([0.3, 0.5], [0.2, 0.4], [0.3, 0.4]) ([0.3, 0.5], [0.3, 0.4], [0.2, 0.5]) ([0.2, 0.5], [0.3, 0.4], [0.3, 0.4])

.

Step 1. Get score function values of ñij calculated by Equation (5), shown as Table 1,

Table 1. Score values of ñij.

Ci

Xj X1 X2 X3

C1 0.667 0.583 0.683
C2 0.617 0.65 0.583
C3 0.817 0.683 0.767
C4 0.538 0.567 0.55

To facilitate the following calculation and accord to their score function values, the reordered
decision matrix N′ can be constructed as:

N′ =


([0.3, 0.5], [0.2, 0.3], [0.3, 0.5]) ([0.4, 0.5], [0.1, 0.2], [0.2, 0.4]) ([0.5, 0.6], [0.2, 0.3], [0.2, 0.3])
([0.3, 0.4], [0.3, 0.4], [0.1, 0.4]) ([0.3, 0.5], [0.2, 0.3], [0.2, 0.4]) ([0.2, 0.4], [0.2, 0.3], [0.3, 0.3])
([0.5, 0.6], [0.1, 0.3], [0.2, 0.4]) ([0.5, 0.7], [0.1, 0.2], [0.1, 0.2]) ([0.5, 0.8], [0.1, 0.2], [0.1, 0.2])
([0.3, 0.5], [0.2, 0.4], [0.3, 0.4]) ([0.2, 0.5], [0.3, 0.4], [0.3, 0.4]) ([0.3, 0.5], [0.3, 0.4], [0.2, 0.5])

.

Step 2. First, if the fuzzy measures of all inter-related attributes are given as follows: µ(x1) = 0.25,
µ(x2) = 0.38, µ(x3) = 0.46. According to Equation (6), the value of λg is obtained: λg = −0.24. Thus,
we have µ(x1, x2) = 0.6072, µ(x2, x3) = 0.798, µ(x1, x3) = 0.6824, µ(X) = 1.

Step 3. Aggregate ñij(j = 1, 2, 3; i = 1, 2, 3, 4) by utilizing the G-INCOA operator (in which λ = 1) to
derive the comprehensive score values ñi for ai(i = 1, 2, 3, 4).

ñ1 = {[0.431, 0.549], [0.172, 0.277], [0.158, 0.367]};

ñ2 = {[0.327, 0.427], [0.267, 0.338], [0.195, 0.354]};

ñ3 = {[0.500, 0.669], [0.100, 0.228], [0.125, 0.249]};

ñ4 = {[0.260, 0.500], [0.348, 0.400], [0.264, 0.430]}.

Step 4. Ranking the comprehensive score values ñi for ai(i = 1, 2, 3, 4), we get:

s(ñ1) = 0.618, s(ñ2) = 0.6, s(ñ3) = 0.745, s(ñ4) = 0.553.

Therefore, we have a3 > a1 > a2 > a4 and a3 is the best choice.
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If we utilize the G-INCOG operator for this MADM problem, aggregate ñij(j = 1, 2, 3; i = 1, 2, 3, 4)
to derive the comprehensive score value ñi for ai(i = 1, 2, 3, 4).

ñ′1 = {[0.418, 0.544], [0.182, 0.290], [0.178, 0.379]};

ñ′2 = {[0.322, 0.454], [0.270, 0.370], [0.247, 0.360]};

ñ′3 = {[0.500, 0.689], [0.100, 0.232], [0.133, 0.267]};

ñ′4 = {[0.253, 0.500], [0.364, 0.400], [0.270, 0.434]}.

Then, ranking the score function values of INNs, we get:

s
(
ñ′1
)
= 0.656, s

(
ñ′2
)
= 0.588, s

(
ñ′3
)
= 0.743, s

(
ñ′4
)
= 0.548.

Rank ai according to the score values a3 > a1 > a2 > a4 . Therefore, we can see that a3 is the best
choice. Obviously, the above two kinds of ranking orders are the same, therefore, the above example
clearly indicates that the proposed MADM methods are applicable and effective under an interval
neutrosophic environment.

4.3. Rank Alternatives for Different Values of λ

In real life, decision makers may determine the value of λ by different MADM problems or their
preferences, which makes the decision-making process more flexible. In this section, we use different
values of parameter λ of the G-INCOA and G-INCOG operators, such as λ→ 0 or λ = 1− 10, to rank
alternatives of the numerical example in Section 4.2.

Combined with the proposed approaches for MADM with interval neutrosophic information, we
can obtain their score function values of four alternatives, the ranking results for different values of
λ determined by the G-INCOA and G-INCOG operator are shown in Figures 1 and 2, respectively.
As shown in Figures 1 and 2, the best choice is always a3 and the worst alternative is always a4,
which means they have higher accuracy and greater reference value. Besides, the changing trends of
decision results with parameter λ calculated by the G-INCOA operator presents an increasing trend,
meanwhile, the changing trends of decision results with λ calculated by the G-INCOG operator shows
a declining trend, which further validates the duality of the proposed operators.

Figure 1. The changing trends of decision results with λ calculated by the G-INCOA operator.
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Figure 2. The changing trends of decision results with λ calculated by the G-INCOG operator.

5. Apply the Proposed Operators for INSs to Cluster Analysis

5.1. New Clustering Algorithm for INSs

In this section, we intend to propose a new clustering algorithm for INSs to illustrate the
efficiency of the proposed operators. Let N = (ñij = {t̃ij, ĩij, f̃ij})n×m be a matrix of INNs on
X = {X1, X2, . . . , Xm}, the algorithm can be described as:

Step 1. Using the proposed operator, here, take the G-INCOA operator as an example, to aggregate m
INNs of each alternative to an comprehensive INN ñi; Using the similarity measures function defined
in Equation (3) to calculate measures between ñj and ñk (j, k = 1, 2, . . . , m), the corresponding results
are recorded in a matrix Sm×m = Sjk;

Step 2. Check whether the measure matrix S satisfies S2 ⊆ S, where S2 = S ◦ S =
(

S′jk
)

m×m
, and

ñ′jk = maxp

{
min

{
Sjp, Spk

}}
, (j, k = 1, 2, . . . , m). If it does not hold, then construct the equivalent

matrix: S2p
: S→ S2 → S4 → . . .→ until S2p

= S2(p+1)
;

Step 3. For a given confident level α ∈ [0, 1], construct a α-cutting matrix Sα =
(

Sα
jk

)
m×m

, where Sα
jk is

defined as:

Sα
jk =

{
0, if Sjk < α;
1, if Sjk ≥ α.

Step 4. Classify the INSs by the rule: if all elements of the jth line in Sα are the same as the
corresponding elements of the kth line, thus, the INSs ñj and ñk are supposed as the same type.

5.2. Numerical Example

A numerical example concerning investing is utilized to demonstrate the application of these
aggregation operators, as well as the effectiveness of them. Suppose there are five attributes to
be considered: (1) X1 : profitability; (2) X2 : operating capacity; (3) X3 : market competition.
The fuzzy measures of attributes in X are given as follows: µ(x1) = 0.362, µ(x2) = 0.2,
µ(x3) = 0.438. Firstly, according to Equation (7), the value of λg is obtained: λg = 0.856 .
Thus, µ(x1, x2) = 0.626, µ(x2, x3) = 0.713, µ(x1, x3) = 0.936, µ(X) = 1. Experts are required
to evaluate 10 firms Ci(i = 1, 2, . . . , 10) under the three attributes, and interval neutrosophic decision
matrix N =

(
ñij
)

10×3 is constructed as:
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N =



([0.3, 0.5], [0.5, 0.6], [0.4, 0.6]) ([0.4, 0.5], [0.4, 0.6], [0.4, 0.5]) ([0.7, 0.8], [0.2, 0.3], [0.3, 0.5])
([0.4, 0.6], [0.3, 0.5], [0.3, 0.7]) ([0.6, 0.8], [0.3, 0.4], [0.2, 0.4]) ([0.2, 0.3], [0.8, 0.9], [0.7, 0.8])
([0.5, 0.7], [0.2, 0.3], [0.4, 0.5]) ([0.7, 0.9], [0.2, 0.4], [0.1, 0.2]) ([0.3, 0.4], [0.5, 0.7], [0.7, 0.8])
([0.3, 0.5], [0.4, 0.6], [0.5, 0.8]) ([0.8, 0.9], [0.1, 0.2], [0.2, 0.3]) ([0.7, 0.9], [0.2, 0.3], [0.2, 0.3])
([0.8, 1.0], [0.2, 0.3], [0.1, 0.3]) ([0.8, 1.0], [0.1, 0.2], [0.1, 0.3]) ([0.4, 0.6], [0.3, 0.4], [0.4, 0.6])
([0.4, 0.6], [0.4, 0.6], [0.5, 0.7]) ([0.2, 0.3], [0.6, 0.8], [0.7, 0.9]) ([0.9, 1.0], [0.1, 0.2], [0.1, 0.2])
([0.5, 0.6], [0.4, 0.5], [0.5, 0.6]) ([0.7, 0.9], [0.2, 0.3], [0.2, 0.4]) ([0.6, 0.8], [0.3, 0.4], [0.2, 0.5])
([0.9, 1.0], [0.1, 0.2], [0.1, 0.2]) ([0.7, 0.8], [0.2, 0.3], [0.3, 0.4]) ([0.4, 0.5], [0.4, 0.6], [0.5, 0.7])
([0.4, 0.6], [0.6, 0.7], [0.2, 0.4]) ([0.9, 1.0], [0.1, 0.2], [0.1, 0.2]) ([0.6, 0.7], [0.3, 0.4], [0.3, 0.5])
([0.8, 0.9], [0.2, 0.4], [0.2, 0.3]) ([0.6, 0.8], [0.3, 0.5], [0.3, 0.4]) ([0.5, 0.8], [0.3, 0.6], [0.4, 0.5])


.

In the following, we use the proposed clustering algorithm to cluster these alternatives:

Step 1. Aggregated the G-INCOA operator defined in Equation (8) and calculated by the similarity
measure function defined in Equation (5), the weighted measures Sjk between each pair of alternatives
are recorded in a matrix S10×10.

S =



1 0.5984 0.458 0.4635 0.3964 0.7100 0.5572 0.4761 0.4143 0.3984
0.5984 1 0.5 0.5136 0.4456 0.4667 0.5409 0.5456 0.5051 0.3851
0.4580 0.5 1 0.6811 0.5596 0.4080 0.6994 0.6875 0.6682 0.4753
0.4635 0.5136 0.6811 1 0.5421 0.4540 0.7236 0.6744 0.731 0.4747
0.3964 0.4456 0.5596 0.5421 1 0.3762 0.5734 0.6517 0.625 0.7511
0.7100 0.4667 0.4080 0.4540 0.3762 1 0.5431 0.4647 0.3813 0.4019
0.5572 0.5409 0.6994 0.7236 0.5734 0.5431 1 0.7023 0.6726 0.5211
0.4761 0.5456 0.6875 0.6744 0.6517 0.4647 0.7023 1 0.6615 0.6063
0.4143 0.5051 0.6682 0.7310 0.6250 0.3813 0.6726 0.6615 1 0.5372
0.3984 0.3851 0.4753 0.4747 0.7511 0.4019 0.5211 0.6063 0.5372 1


.

Step 2. The equivalent measure matrix can be constructed as follows, as S8 = S4, therefore, S4 is an
equivalent measure matrix.

S2 =



1 0.5984 0.5572 0.5572 0.5572 0.5431 0.5572 0.5572 0.5572 0.5211
0.5984 1 0.5456 0.5456 0.5456 0.5984 0.5572 0.5456 0.5456 0.5456
0.5572 0.5456 1 0.6994 0.6517 0.5431 0.6994 0.6994 0.6811 0.6063
0.5572 0.5456 0.6944 1 0.6517 0.5431 0.7236 0.7023 0.7310 0.6063
0.5572 0.5456 0.6517 0.6517 1 0.5431 0.6517 0.6517 0.6517 0.7511
0.5431 0.5984 0.5431 0.5431 0.5431 1 0.5572 0.5431 0.5431 0.5211
0.5572 0.5572 0.6994 0.7236 0.6517 0.5572 1 0.7023 0.7236 0.6063
0.5572 0.5456 0.6994 0.7023 0.6517 0.5431 0.7023 1 0.6744 0.6517
0.5572 0.5456 0.6811 0.7310 0.6517 0.5431 0.7236 0.6744 1 0.6520
0.5211 0.5456 0.6063 0.6063 0.7511 0.5211 0.6063 0.6517 0.6250 1


.

S4 =



1 0.5984 0.5572 0.5572 0.5572 0.5984 0.5572 0.5572 0.5572 0.5572
0.5984 1 0.5572 0.5572 0.5572 0.5984 0.5572 0.5572 0.5572 0.5572
0.5572 0.5572 1 0.6994 0.6517 0.5431 0.6994 0.6994 0.6944 0.6517
0.5572 0.5572 0.6944 1 0.6517 0.5572 0.7236 0.7023 0.7310 0.6517
0.5572 0.5572 0.6517 0.6517 1 0.5572 0.6517 0.6517 0.6517 0.7511
0.5984 0.5984 0.5572 0.5572 0.5572 1 0.5572 0.5572 0.5572 0.5572
0.5572 0.5572 0.6994 0.7236 0.6517 0.5572 1 0.7023 0.7236 0.6517
0.5572 0.5572 0.6994 0.7023 0.6517 0.5572 0.7023 1 0.7023 0.6517
0.5572 0.5572 0.6944 0.7310 0.6517 0.5572 0.7236 0.7023 1 0.6520
0.5572 0.5572 0.6517 0.6517 0.7511 0.5572 0.6517 0.6517 0.6517 1


.
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S8 =



1 0.5984 0.5572 0.5572 0.5572 0.5984 0.5572 0.5572 0.5572 0.5572
0.5984 1 0.5572 0.5572 0.5572 0.5984 0.5572 0.5572 0.5572 0.5572
0.5572 0.5572 1 0.6994 0.6517 0.5431 0.6994 0.6994 0.6944 0.6517
0.5572 0.5572 0.6944 1 0.6517 0.5572 0.7236 0.7023 0.7310 0.6517
0.5572 0.5572 0.6517 0.6517 1 0.5572 0.6517 0.6517 0.6517 0.7511
0.5984 0.5984 0.5572 0.5572 0.5572 1 0.5572 0.5572 0.5572 0.5572
0.5572 0.5572 0.6994 0.7236 0.6517 0.5572 1 0.7023 0.7236 0.6517
0.5572 0.5572 0.6994 0.7023 0.6517 0.5572 0.7023 1 0.7023 0.6517
0.5572 0.5572 0.6944 0.7310 0.6517 0.5572 0.7236 0.7023 1 0.6520
0.5572 0.5572 0.6517 0.6517 0.7511 0.5572 0.6517 0.6517 0.6517 1


.

Step 3. For a given confident level α ∈ [0, 1], we can construct a α-cutting matrix Sα =
(

Sα
jk

)
10×10

for

S8 =
(

Sjk

)
10×10

, different α produces different α-cutting matrix, for example, if α = 0, the α-cutting

matrix can be constructed as Sα =
(

Sα
jk = 1

)
10×10

, since S8 =
(

Sjk > 0
)

10×10
.

Step 4. Based on the α-cutting matrix Sα, we can classify 10 alternatives into different clusters,
the possible classification of these choices is shown in Table 2.

Table 2. Different clusters of 10 alternatives with respect to different α.

Class Confidence Level Clusters

8 0.731 < α ≤ 1 {{C1}, {C2}, {C3}, {C4}, {C5}, {C6}, {C7}, {C8}, {C9}, {C10}}
7 0.7236 < α ≤ 0.731 {{C1}, {C2}, {C3}, {C4, C9}, {C5}, {C6}, {C7}, {C8}, {C10}}
6 0.7023 < α ≤ 0.7236 {{C1}, {C2}, {C3}, {C4, C7, C9}, {C5}, {C6}, {C8}, {C10}}
5 0.6994 < α ≤ 0.7023 {{C1}, {C2}, {C3}, {C4, C7, C8, C9}, {C5}, {C6}, {C10}}
4 0.6517 < α ≤ 0.6994 {{C1}, {C2}, {C3, C4, C7, C8, C9}, {C5, C10}, {C6}}
3 0.5984 < α ≤ 0.6517 {{C1}, {C2}, {C3, C4, C5, C7, C8, C9, C10}, {C6}}
2 0.5572 < α ≤ 0.5984 {{C1, C2, C6}, {C3, C4, C5, C7, C8, C9, C10}}
1 0 < α ≤ 0.5572 {{C1, C2, C3, C4, C5, C6, C7, C8, C9, C10}}

With respect to different values of α, different clusters of 10 alternatives are shown in Table 2. When
0 < α ≤ 0.5572, all alternatives belong to the same cluster, then 0.5572 < α ≤ 0.5984, 10 alternatives are
divided in to two clusters, namely, {C3, C4, C5, C7, C8, C9, C10} and {C1, C2, C6}, until 0.731 < α ≤ 1,
each alternative is an independent cluster.

6. Conclusions

This paper studies new MADM methods and clustering algorithm under an interval neutrosophic
environment, in which the attributes are inter-related. Motivated by the idea of the generalized operator,
we proposed the G-INCOA and G-INCOG operators based on the related research of the NS and SVNS
theories, which can reduce to the existing aggregation operators of INSs and have some desirable
properties. By taking different values of the parameters and comparing them with existing methods
for MADM problems, under interval neutrosophic environment, results obtained by the proposed
operators are consistent and accurate, which illustrates their practicability in application. The new
clustering algorithm are established on the G-INCOA and G-INCOG operators, a numerical example
concerning investing is utilized as the demonstration of the application of the proposed aggregation
operators, as well as the effectiveness of them. In the future, motivated by different MADM methods
under linguistic environment [34,35], it is worth investigating the use granular computing techniques
to develop new MADM methods with interval neutrosophic linguistic information.
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