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Abstract: Nowadays, unmanned ground vehicles (UGVs) are widely used for many applications.
UGVs have sensors including multi-channel laser sensors, two-dimensional (2D) cameras, Global
Positioning System receivers, and inertial measurement units (GPS-IMU). Multi-channel laser sensors
and 2D cameras are installed to collect information regarding the environment surrounding the vehicle.
Moreover, the GPS-IMU system is used to determine the position, acceleration, and velocity of the
vehicle. This paper proposes a fast and effective method for modeling nonground scenes using multiple
types of sensor data captured through a remote-controlled robot. The multi-channel laser sensor returns
a point cloud in each frame. We separated the point clouds into ground and nonground areas before
modeling the three-dimensional (3D) scenes. The ground part was used to create a dynamic triangular
mesh based on the height map and vehicle position. The modeling of nonground parts in dynamic
environments including moving objects is more challenging than modeling of ground parts. In the
first step, we applied our object segmentation algorithm to divide nonground points into separate
objects. Next, an object tracking algorithm was implemented to detect dynamic objects. Subsequently,
nonground objects other than large dynamic ones, such as cars, were separated into two groups: surface
objects and non-surface objects. We employed colored particles to model the non-surface objects.
To model the surface and large dynamic objects, we used two dynamic projection panels to generate
3D meshes. In addition, we applied two processes to optimize the modeling result. First, we removed
any trace of the moving objects, and collected the points on the dynamic objects in previous frames.
Next, these points were merged with the nonground points in the current frame. We also applied slide
window and near point projection techniques to fill the holes in the meshes. Finally, we applied texture
mapping using 2D images captured using three cameras installed in the front of the robot. The results
of the experiments prove that our nonground modeling method can be used to model photorealistic
and real-time 3D scenes around a remote-controlled robot.

Keywords: multimedia; modeling; dynamic environment; remote-controlled system

1. Introduction

In recent years, many multimedia applications using multi-sensors have been proposed. These
applications are widely used in many areas, such as artificial intelligence in cloud environments [1,2],
Internet of Things (IoT) [3], virtual reality [4], and unmanned ground vehicles (UGVs) [5-12]. This study
is related to multi-sensor data processing for UGV control. UGVs are often employed in areas where
the terrain is rough, dangerous, or impossible to navigate for a human operator. UGVs are of two main
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types: autonomous and remote controlled. In both cases, sensors are installed to collect information
regarding the environment surrounding the vehicle. In particular, for a remote-controlled robot [9-12],
we usually employ multi-channel laser sensors, two-dimensional (2D) cameras, and Global Positioning
System—inertial measurement unit (GPS-IMU) sensors. Each laser range sensor returns a point cloud
frame-by-frame. Based on the 2D images obtained from the cameras and the position and direction
obtained from the GPS-IMU sensors, we can reconstruct the three-dimensional (3D) scene of the
working environment of a robot from the point clouds. 3D scene modeling is highly important for any
remote-controlled robot system. From the reconstructed 3D scene surrounding the robot, a user can
remotely control the robot in a more accurate manner. Therefore, the modeling of a 3D scene from point
clouds has been gaining considerable interest, with various studies having already been conducted [9-16].
However, establishing an efficient trade-off between real-time and high-quality modeling is a challenging
problem, for which a solution is actively being pursued.

Before modeling an outdoor terrain, we often divide a point cloud into two areas: ground and
nonground. In general, modeling the ground part is simpler than modeling the nonground part.
The modeling of the nonground part is more difficult in dynamic environments with many moving
objects than in static environments because of two reasons: (1) we may lose many points on the moving
objects in each frame, resulting in holes when the data are reconstructed; and (2) the trace data of the
moving objects develop into long chains when many frames are collected.

Hence, in this study, we focused on modeling the nonground part of the terrain in a dynamic
environment. Our objective was to design a fast and photorealistic modeling method. For a better
reconstruction quality, we used images captured using 2D cameras attached to the front of the robot to
implement texture mapping and obtain colored particles. In addition, we applied an existing method [9] to
model the ground part using the robot location and height map. The ground modeling was implemented
using a graphics processing unit (GPU) for speed-up. After modeling both parts, we combined the results
for visualization.

The remainder of this paper is organized as follows. In Section 2, we provide an overview of the
studies related to surface reconstruction and 3D scene modeling. Section 3 presents our novel method.
In Section 4, the experiments and analyses are discussed. Finally, we summarize the main conclusions
of this study and present the direction of our future work in Section 5.

2. Related Works

Many studies conducted in the past few years have focused on 3D scene modeling for remote-
controlled robots [9-12]. However, the performance of these modeling methods is poor. We broadly
categorize these techniques and algorithms in relation to our present research as follows.

In [10,11], the authors employed colored particles to model nonground objects. This method is
fast and has an adaptive real-time performance. The particle modeling results are photorealistic in
the far view, but quite poor in the near view. Although this method is suitable for non-surface objects,
such as trees or bushes, the reconstruction quality of surface objects, such as walls or buildings, is not
photorealistic. Kelly at al. [12] presented a modeling method for reconstructing walls. The authors
used small cubes stacked on top of each other like Legos. However, a good photorealistic result cannot
be obtained using the cube method because of the low display resolution.

In addition, the authors [13-16] proposed different methods for reconstructing 3D point clouds
using the Delaunay triangulation algorithm. These methods exhibited high surface quality; however,
they are time-consuming. Some authors have proposed parallel algorithms using a GPU [15,16];
however, the performance does not meet the real-time requirement. Therefore, these methods are only
suitable for modeling small objects with dense point clouds. Because of this limitation, these methods
are inefficient for remote-controlled robots in both indoor and outdoor environments.

The above limitations motivated us to develop an approach that can achieve a higher modeling
quality and real-time performance in dynamic outdoor environments. In our method, a fast object
segmentation and tracking algorithm was required. In previous studies [17-35], the authors proposed
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numerous detection and tracking-of-moving-objects (DATMO) systems. However, DATMO systems
are time-consuming because of the high computation complexity. Therefore, in this study, we employed
our previous DATMO system [36-38] to detect dynamic objects and collect points on the dynamic
objects in previous frames. In addition, because of the dynamic environment, an algorithm is required
to eliminate the traces of dynamic objects. To this end, we employed our previous study [39] for trace
elimination. For texture mapping and color projection between 2D images and 3D points, we employed
the extrinsic calibration algorithm proposed elsewhere [40]. As mentioned previously, to model the
ground part, we employed an existing method [9] based on the height map and robot location.

3. Proposed Method

The main objective of our study was to design a fast 3D modeling method for nonground parts
in a dynamic environment. Figure 1 shows the proposed system framework. The proposed system is
inputted with 3D nonground points. As mentioned above, the nonground points are obtained after
applying the segmentation algorithm. In the first step, the nonground points are segmented into separate
objects based on a flood-fill algorithm proposed elsewhere [37]. In the second step, a fast object tracking
algorithm [38] is applied to obtain a list of dynamic objects. Based on the length and width of each
object, we easily separated large and small dynamic objects. The large and small objects are described in
more detail in Sections 3.2 and 4. In the third step, based on the lists of objects and dynamic objects in
the current frame, we propose a surface object detection algorithm, which is presented in Section 3.1.
After the third step, the objects were divided into three groups: large dynamic objects, surface objects,
and non-surface objects. The small dynamic objects are considered in the non-surface group. We collected
all the points on these objects for modeling using a different method. Before the modeling, we used a
trace elimination method proposed elsewhere [39] to remove past data of the moving objects. For the
non-surface objects, we employed the colored particle method [9]. On the other hand, we propose a new
mesh modeling method based on two dynamic projection panels for surface and large dynamic objects.
The mesh modeling method is proposed in Section 3.2. After the mesh generation step, we employed
slide window and near point projection techniques for mesh enhancement, as shown in Section 3.3.
Next, we designed a texture mapping method, which is given in Section 3.4. The mesh modeling
results are used for both visualization and maintainable checking. The maintainable checking step
is implemented to save the modeling results of the static surface objects for subsequent visualization.
We describe the maintainable checking step in Section 3.5. Finally, the colored particles, current mesh
modeling results, and accumulated results are combined for visualization.
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Figure 1. Overview of the proposed 3D nonground modeling method for dynamic environments.
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3.1. Surface Object Detection

In this section, we present a detection algorithm for surface objects, which are objects having
a roughly flat shape, such as walls and buildings. In addition, objects having a curved surface,
such as cars and lighthouses, are considered surface objects. Non-surface objects include bushes and
trees. Small and tall-thin objects, such as pedestrians, lamps, and traffic lights, are also considered
non-surface objects. First, we divide each object into vertical lines. We assume an m-channel laser
scanner. Each vertical line connects all the points from scanline 0 to scanline m — 1 at the scanning
time. We ignore all the lost points on the vertical lines because they have no location information.
The vertical lines are indicated in red, as shown in Figure 2.

(b)

Figure 2. Examples of vertical lines (red color) of some popular objects: (a) a wall; (b) a car; (c) a tree.

Using Equation (1), we calculated the distortion value d; corresponding to all the vertical lines in
the three objects. These objects were chosen because they are the most representative of the surface
and non-surface objects in the outdoor environment. Here, (Px,jr Pz,j) s the location of point Pjin the
Oxz coordinate, and n is the number of points on the vertical line i. E, ; and E, ; are the mean values of
line i along the Ox and Oz directions, respectively.

27;01 |Px,j - Ex,i| + 27;01|Pz,j —E;;
2n

di = @

Figure 3 shows the distortion values of a tree, car, and wall. The red line represents the distortion
values of the tree, which are significantly higher than those of the car and wall. Based on this
observation, we separated the surface and non-surface objects. The details of the method are shown in
Algorithm 1. We applied the CHECK_SURFACE_OBJECT() function for all the objects. The return
values 0, 1, and 2 correspond to non-surface, surface, and large dynamic objects, respectively.
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Figure 3. Distortion values of the tree, car, and wall.
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Algorithm 1. Surface object detection.

Function CHECK_SURFACE_OBJECT(Object obj)
h<—obj. Get_Height()
w+—obj. Get_Width()
If obj. Get_Object_Type() = Dynamic then
If h < dgyn AND w < dg,p,; then
Return 0 //non-surface object
Else
Return 2 //large dynamic object
End
Else if h < dg;,,; AND w < dg,; then
Return 0 //non-surface object
End
ng<0
Fori=0.n—1do
d<—obj. Calculate_Distortion()
If d < d .y then
Nng—ng + 1
End
End
r<ns/n
If r > 1y, then
Return 1 //surface object
Else
Return 0 //non-surface object
End

3.2. 3D Mesh Generation for Nonground Surfaces

In the mesh generation step, we generated triangular meshes for all the surface objects. The large
dynamic objects, such as cars and trucks, were also modeled using meshes, whereas small dynamic
objects, such as pedestrians and cyclists, were modeled using particles. Figure 4 shows the overview
of the mesh generation method. In our system, we installed three 2D cameras in the front of the robot;
therefore, the back area has no information for texture mapping. A camera was set up facing the front
direction of the robot. Two more cameras were installed on the left and right of the first camera at 45°.
Because of this limitation, only the area in front of the robot could be reconstructed.

4501450
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Reconstruction area
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Figure 4. Overview of the mesh generation method for surface objects.



Symmetry 2018, 10, 83 6 of 15

In each frame, two dynamic projection panels were created at infinity. The angle between each
panel and the direction of the robot is 45°. We divided the points on the surfaces and large dynamic
objects into two parts. The points located in area 1 (left) are projected onto the left panel. The remaining
points are projected onto the right panel. Once a point is projected onto a panel, the depth value of the
corresponding quantized points in the panel will be updated. After projecting all the points on the
surface and large dynamic objects, we generated triangular meshes from each panel. The generation
method is similar to the generation of ground meshes. We saved the generated meshes using the mesh
node model. Each mesh node contains a vertex node, an index node, and a texture node. Details
regarding this are given in Section 3.4.

3.3. Mesh Enhancement

In the mesh enhancement step, we applied two techniques to enhance the quality of the meshes.
First, we used a sliding window for filling the holes in each mesh panel. Figure 5 shows a 7 x 7 slide
window used for filling holes. The sliding window is indicated in yellow, whereas the scanning area is
indicated in green. If the center position of the window has no mesh point, we consider the center
horizontal row and the center vertical column of the sliding window. If there are at least two points
located on the “left and right” or “up and down” of the center position, we insert the new point at the
center with the average coordinate values of the existing points in the sliding window.

Figure 5. Example of a sliding window for filling holes.

In addition, we proposed another technique to enhance the mesh quality. We consider all the
particles near any surface objects. If the distance between a particle and a mesh point is small, the particle
is removed. Figure 6 shows an example of this technique. Particles 1 to 4 are removed because they are
located near the mesh points. Moreover, particles 5 to 7 are removed; however, they help in adding two
new mesh points.

Before

Figure 6. Example of merging of particles near the surface meshes.
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3.4. Texture Mapping

In this section, we propose an optimization texture mapping method for surface objects.
As mentioned above, the generated meshes are saved using the mesh node model, as shown in
Figures 7 and 8. For saving the textures, we created several texture nodes corresponding to the vertex
and index nodes. We used a square texture node. Each texture node contains k x k cells. Each texture
cell maps with four vertices in the vertex node and six indices in the index node. For each texture node,
we calculated the UV mapping using Algorithm 2. If two projection panels with a size of nyy x ny
(width x height) are used, we require nt texture nodes, which can be calculated using Equation (2).
Figure 9 shows an example of the texture nodes with k = 4. Each texture node has 16 texture cells.
The texture nodes 1, 2, and 3 are saved with the textures of green, red, and blue areas, shown in
Figure 7, respectively. Texture nodes 1 and 2 are full. On the other hand, texture node 3 has five blank
cells. The empty cells will be used for other meshes.

nr = +1 (2)

Figure 7. Example of the meshes after enhancement.

Cell 1 Cell 16
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Figure 8. Examples of vertex and index nodes.
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Figure 9. Example of texture nodes.

Algorithm 2. Calculate UV for texture mapping.

Procedure CALCULATE_UV()

Fori=0..kxk do
row<—i/k
col+i—row X k
ulix 4]« col/k
vlix4]«+ (row + 1)/k
ulix4 + 1]<(col + 1)/k
vlix4 + 1]« (row + 1)/k
ulix4 + 2]+(col + 1)/k
v[ix4 + 2]«row/k
ulix4 + 3]<col/k
vlix4 + 3]<row/k

End

3.5. Maintenance of Mesh Modeling Results

In this step, we maintain a part of the previous mesh modeling results of the static surface objects
such as walls and buildings. Large dynamic objects are not retained and are re-modeled in the next
frame. If we maintain all modeling results of the surface objects in each frame, the data will overlap.
This problem takes up considerable memory for saving the modeling results because the used memory
in the next frame includes all the used memory from the initial frame to the current frame. In addition,
this problem leads to a flickering visualization error. To solve these problems, we divided the space
into three parts, as shown in Figure 4. In the reconstruction area, the previous mesh modeling results
are deleted. Otherwise, the previous modeling results of the surface objects are maintained in the
maintainable area. In the overlapping area, we saved only the center points of each cell. Thereafter,
we combined the center points with the point clouds of the surface and large dynamic objects for
subsequent modeling.

4. Experiments and Analysis

We conducted several experiments to verify the effectiveness of our nonground modeling method
in dynamic environments. The data were obtained from a Velodyne HDL-32E sensor, a GPS-IMU
sensor, and three 2D cameras attached to a moving robot. The datasets were captured in both
static and dynamic environments. The environments included many moving objects, surface objects,
and non-surface objects.

For the experiments, a computer with an Intel Core i7-6700 CPU (3.4 GHz) and 16 GB of RAM
was used. In addition, we used an NVIDIA GTX-970 graphics card and 4 GB of VRAM. For the object
segmentation and object tracking steps, we employed the parameters employed elsewhere [38]. In the
trace elimination step, the size of each voxel was 40 x 40 x 40 cm®. We used two voxel maps, each with
a size of 100 x 100 x 100 (width x height x depth). Currently, the system can be used to filter a
40 x 40 x 40 m? space. For the mesh modeling step, we created two projection panels with a size
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of 100 x 100 (width x height). In addition, the size of each cell was 30 x 30 cm? for initialization.
We set « = 60° and 8 = 10°. For the other LiDAR sensors, different parameters were chosen based
on the resolution of the laser sensors. For the surface object detection algorithm, we set ds;,,;; =1 m,
Amax = 30 cm, and 7,,,;,, = 0.5.

We employed a node texture with 128 x 128 cells. The resolution of each texture cell was
8 x 8 pixels. Hence, the resolution of each texture node was 1024 x 1024 pixels. Based on Equation (2),
only two mesh nodes are required for each frame. The three 2D cameras returned three images per
frame, with a resolution of 640 x 480 pixels. These images were used for the texture mapping step.

4.1. Experimental Results

Figure 10 shows the results of the proposed method for large dynamic, surface, and non-surface
objects. In Figure 10, the images on the left show the wire-frame mode, whereas the images on the right
show the final results after the mapping texture. Figures 11 and 12 show the results of the full system,
including the ground and nonground modeling. Walls, buildings, and cars were efficiently modeled
using the mesh method. Trees, bushes, and tall-thin objects were modeled using the colored particle
method. All the experiments show photorealistic results in both the far and near views, thus proving
the effectiveness of the proposed nonground modeling method.

()

Figure 10. Results of the proposed nonground modeling method for: (a,b) car (large dynamic object);
(c,d) wall (surface object); (e,f) tree (non-surface object).
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Figure 11. Results of the full system in a static environment obtained using the proposed method for
nonground modeling; and using an existing method [9] for ground modeling in: (a,b,d) suburban
environments; (¢) mountainous environment.

Figure 12. Results of the full system in a dynamic environment obtained using the proposed method
for nonground modeling, and using an existing method [9] for ground modeling: (a) two cars move

across the robot in opposite directions; (b) two cars move along with and in front of the robot.

4.2. Experimental Analysis

We compared our proposed mesh modeling method with the colored particle method [10-12].
Figure 13 shows the comparison results for the static surface objects such as walls and buildings.
Figure 14 shows the comparison results for large moving objects such as cars. In both the cases,
our method provides better photorealistic results than the previous methods. Because Velodyne
HDL-32E has a low resolution in the vertical direction, the reconstruction results using particles
contain many holes and blank areas. In our method, we applied some techniques to fill the holes,
thereby significantly enhancing the quality.
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Figure 13. Comparison of colored particle method [10-12] (a,c,e) and proposed method (b,d,f) for

static surface objects.

(b)

(d)

(e)

()

Figure 14. Comparison of colored particle method [10-12] (a,c,e) and proposed method (b,d,f) for large

dynamic objects.
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Furthermore, the processing time of each step was recorded, as shown in Figure 15 and Table 1.
Figure 15d shows the total processing time with respect to the frame count for the proposed nonground
modeling method. Table 1 lists the processing times of each step in the full modeling system.
In each frame, we processed approximately 100,000 accumulated points for particle modeling and
100,000 accumulated points for mesh modeling. The average processing time of the proposed
nonground modeling for each frame was 28.98 ms. The full system requires 93.61 ms per frame.
Hence, we were able to process more than 10 frames per second (fps). In addition, the Velodyne
HDL-32E sensor works at a rate of 10 fps. Thus, our 3D scene modeling system can perform effectively
in real time.

Table 1. Average processing time of full modeling system.

Step Processing Time (ms)
Ground segmentation 3.69
Object segmentation 4.56
Object tracking 0.34
Surface object detection 12.34
Ground modeling 43.7
Nonground modeling 28.98
Total time 93.61
40 T v T 11
35 1 i 10 +
09 ¥
30 4
-g - 08 ¥
25 Sori
£ E o6t
223 2
H $°°1
g1 § o4t
< 10 i e 03%
5 4 'M{un‘\
01 ¥
04 . : . . ¢ . 00 l : ¢ t ' } +
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Frame Count Frame Count
(a) (b)
30 - - - - - = 60 . : .
25 4 m 1 50 4+
Eni ] Tl
£ £
E 15 ] E 30 L
g 10 ] ] g 20 4
a o
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0 + + + + + + 0 + + + +
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Frame Count Frame Count
(0) (d)

Figure 15. Processing time per frame in: (a) surface object detection step; (b) colored particle modeling
step; (c¢) mesh modeling step; (d) nonground modeling method.

5. Conclusions

In this paper, we focused on a fast and efficient method for modeling nonground objects using
multiple types of sensor data. For nonsurface objects, we applied the colored particle method. On the
other hand, we implemented the mesh modeling method based on two projection panels for surface
and large dynamic objects. For ground modeling, we applied an existing method. To conduct the
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experiments, we employed a multi-channel LiDAR sensor, a GPS-IMU sensor, and three 2D cameras.
The experimental results show that our method is able to achieve high reconstruction quality in real
time. For the Velodyne HDL-32E sensor, the presented approach required only 28.98 ms for the
nonground modeling per frame. Moreover, the full modeling system was able to perform in real time.
However, the processing time required for the ground modeling was quite high. In the near future,
we intend to upgrade our modeling system to further reduce the processing time required for ground
modeling and enable it to operate in different types of complex terrains.
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