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Abstract: In multicriteria decision making (MCDM), multi-hesitant fuzzy linguistic term sets
(MHFLTSs) can eliminate the limitations of hesitant fuzzy linguistic term sets (HFLTSs) and hesitant
fuzzy linguistic sets (HFLSs), and emphasize the importance of a repeated linguistic term (LT).
Meanwhile, there is usually an interrelation between criteria. The Maclaurin symmetric mean
(MSM) operator can capture the interrelationships among multi-input arguments. The purpose
of this paper is to integrate MHFLTSs with MSM operators and to solve MCDM problems.
Firstly, we develop the generalized MSM operator for MHFLTSs (MHFLGMSM), the generalized
geometric MSM operator for MHFLTSs (MHFLGGMSM), the weighted generalized MSM operator
for MHFLTSs (WMHFLGMSM) and the weighted generalized geometric MSM operator for MHFLTSs
(WMHFLGGMSM), respectively. Then, we discuss their properties and some special cases. Further,
we present a novel method to deal with MCDM problems with the MHFLTSs based on the proposed
MSM operators. Finally, an illustrative example about how to select the best third-party logistics
service provider is supplied to demonstrate the practicality and reliability of the proposed approaches
in comparison with some existing approaches.

Keywords: multi-hesitant fuzzy linguistic term sets (MHFLTSs); maclaurin symmetric mean (MSM);
multicriteria decision making (MCDM)

1. Introduction

Because human preferences are inherently vague, it is more suitable to deal with uncertainty and
imprecise information by linguistic terms (LTs). For example, when evaluating customer satisfaction
of a service or product, experts are inclined to select some LTs such as “poor”, “good” or “excellent”,
etc., to give their evaluation of the criteria. Since Zadeh [1] presented the fuzzy linguistic technique
in 1975, which utilized linguistic variables (LVs) to describe qualitative information, some methods
based on LVs have been utilized in a number of areas, such as supply chain management [2], qualify
function deploy [3], health care system [4], housing marker [5], risk evaluation [6], etc.

Generally, if the qualitative information is only represented by a single LT, it might sometimes
not accurately reflect what it means. When the decision-making problems become more ambiguous,
the experts might be hesitant among several LTs and need two or more LTs to express their preference.
Based on hesitant fuzzy set (HFS), Rodríguez et al. [7,8] defined a hesitant fuzzy LT set (HFLTS),
which is a set with ordered consecutive LTs. In real applications, experts can give several possible
LTs instead of a single LT to evaluate the criteria. Although HFLTS improves the previous linguistic
approaches, it is still difficult to express the hesitance preference of experts only by consecutive LTs.
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In addition, there are some limitations in the calculation of HFLTS and this will be illustrated in
Section 2 of this paper. Thus, hesitant fuzzy linguistic sets (HFLSs), as an extension of HFLTS, were
produced, which allow for inconsecutive LTs. However, in practice, when multi-persons give the
same LT in assessment information, this LT is handled as one time by default and the significance of
repeated LTs is neglected. Since the evaluation values {x1, x2, x3}, {x1, x2, x2, x3} and {x1, x2, x2, x2, x3}
are not equivalent to each other, the repeated occurrence of x2 can convey importance or a certain
special meaning. In addition, the LVs provided by experts generally fluctuate in evaluation period [9].
So, MHFLTS [10] was proposed based on multi-HFSs to solve the mentioned problems, and each
multi-hesitant LT element (MHFLTE) can contain inconsecutive and repeated LTs. Based on the
MHFLTS, one expert can assess an alternative under specific criteria by one or several arbitrary LTs,
and the assessment values from the different experts, can be collected, and the frequency of a LT can
be expressed in the assessment information [11]. In a word, MHFLTS is more energetic than the HFLTS
and HFLS, and it can be applied to present the hesitance linguistic information by multi-repeated LTs
in primary assessment information.

To date, many contributions have concentrated on the decision-making techniques based on
HFLTSs, which are from three domains: (1) the theory of foundations, for instance, operational
laws [7,8], comparative methods [12,13], distance and similarity measures [14], likelihood [15],
outranking degree [16], consistency [17] or multiplicative consistency [18],correlation coefficient [19]
and so on; (2) the extended multicriteria decision making (MCDM) approaches for HFLTS, such as
TOPSIS [20], ELECTRE [21], VIKOR [22], TODIM [23], Entropy [24], GRA [25] and other methods,
such as MACBETH [26], linear programming technique [27],Shapely [28], EDAS [29], Fuzzy Petri
Net [30] and so on; (3) the MCDM techniques based on aggregation operators of HFLS. The MCDM
methods based on aggregation operators can acquire the comprehensive values of alternatives by
aggregating all attribute values, and then rank the alternatives. Obviously, they have more superiority
than the traditional MCDM methods, and it is meaningful to research the aggregation operators and
then to solve the MCDM problems.

As an important tool for information fusion, a great number of research achievements about
aggregation operators of HFLS have been produced. Wang et al. [31] presented a 2-tuple linguistic
aggregation operator for MHFLTEs; Wu [32] applied possibility distribution to develop the weighted
average (WA) operator for HFLSs (HFLWA) and the ordered WA operator (OWA) for HFLSs
(HFLOWA). Gou et al. [33] developed the hesitant fuzzy linguistic BM operator for HFLSs (HFLBM)
and the weighted HFLBM operator (WHFLBM). Zhu et al. [34] investigated some linguistic hesitant
fuzzy power aggregation (LHFPA) operators. Wang et al. [35] proposed the cloud WA (CWA) operator,
cloud OWA (COWA) operator, and cloud hybrid arithmetic (CHA) operator for LVs. Liu et al. [36]
investigated prioritized WA operator for HIFLSs (HIFLPWA) and prioritized weighted geometric
operator for HIFLSs (HIFLPWG). However, these operators for HFLTSs do not pay attention to the
interrelation among input arguments.

MSM was proposed by Maclaurin [37] and was further developed by Detemple and Robertson [38],
which has distinct advantage, i.e., it can deal with the interrelationship among multi-inputs, however
Bonferroni mean (BM) operator and Heronian mean (HM) operator can only consider the correlation
between two arguments. Consequently, based on its main advantage of more flexible and robust
in information fusion, the related research achievements of MSM operator have been quite fruitful.
Liu and Zhang [39] introduced some MSM operator for single-valued trapezoidal neutrosophic
numbers. Yu et al. [33] developed the MSM operator for HFLSs and the weighted MSM operator
for HFLSs. Liu and Qin [40] extended the MSM operator for linguistic intuitionistic fuzzy numbers
(LIFNs). Qin and Liu [41] investigated the dual MSM (DMSM) operator and extended the DMSM
operator to uncertain LVs. Moreover, the MSM operators were also applied to handle the 2-tuple
linguistic information [42] and single-valued neutrosophic linguistic information [43] and so on.

However, research about MHFLTSs and their application in MCDM is limited. Wang et al. [31]
presented a generalized 2-tuple linguistic WA operator and a generalized 2-tuple linguistic OWA to deal
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with MHFLTSs. Afterwards, a likelihood-based TODIM method based on the MHFLTSs for evaluation
in logistics outsourcing was also proposed [11]. Then, Wang et al. [10] further developed the HM and
prioritized operators to solve the MCDM problem with the MHFLTSs. Liu and Teng [44] proposed
some normal neutrosophic number Heronian Mean operators for solving multiple attribute group
decision making problems. However, because MHFLTSs can describe inconsecutive and repeated LTs
and MSM aggregation operator can process the correlations among multi-inputs, to develop some
MSM operators to deal with MHFLTSs is an important work. So, the aim of this paper is to establish
some MSM operators for MHFLTSs and use them to solve the MCDM problem in which the attributes
take the form of MHFLTSs.

This paper is organized as follows. Section 2 reviews and discusses some basic concepts
and theories. Section 3 proposes some multi-hesitant fuzzy linguistic generalized MSM operators,
including the generalized MSM operator for MHFLTSs (MHFLGMSM), the generalized geometric
MSM operator for MHFLTSs (MHFLGGMSM), the weighted generalized MSM operator for
MHFLTSs (WMHFLGMSM) and the weighted generalized geometric MSM operator for MHFLTSs
(WMHFLGGMSM), and studies some properties and some particular examples of these operators.
Section 4, outlines an MCDM approach based on the proposed aggregation operators. Section 5 gives
a case to verify the availability of the presented methods. Section 6 presents a few conclusions.

2. Preliminaries

In this part, the definitions of HFLTSs, HFLSs and MHFLTEs are briefly reviewed and their
corresponding operations are given. Subsequently, the linguistic scale function (LSF) and score
function of MHFLTS were given.

2.1. HFLTSs

Assume that S = { si|i = 0, 1, 2, · · · , 2g, g ∈ N} is a LT set (LTs) with odd cardinality, where si is
called a LV. Then the following requirements must be satisfied [2]:

(1) The set is ordered: α > β⇔ sα > sβ ;

(2) There is a negation operator: neg(sα) = s2g−α.

Definition 1. Let S = { si|i = 0, 1, 2, · · · , 2g, g ∈ N}, then a HFLTS Hs is an ordered finite consecutive LTs
of S [31].

Definition 2. Let Hs, H1
s and H2

s be any three HFLTSs on S [31]. Then we have

(1) The upper bound hs+ : hs+ = max{ hτ |hτ ∈ Hs}; and the lower bound hs− of Hs: hs− =

min{hτ |hτ ∈ Hs} and hs− ≤ hs+ ;
(2) The intersection between H1

s and H2
s : H1

s ∩s H2
s =

{
hτ |hτ ∈ H1

s and hτ ∈ H2
s
}

;
(3) The union of H1

s and H2
s : H1

s ∪s H2
s =

{
hτ |hτ ∈ H1

s or hτ ∈ H2
s
}

.

Example 1. Assume that S = { si|i = 0, 1, 2, · · · , 8}, H1
s = {s5, s6}, H2

s = {s3, s4, s5} and H3
s = {s1, s2, s3}

are three HFLTSs on S. Then, we get:

(1) h1
s+ = {s6} and h1

s− = {s5};
(2) H1

s ∩s H2
s = {s5} and H1

s ∪s H3
s = {s1, s2, s3, s5, s6}.

Obviously, the union of H1
s and H3

s is not a HFLTS because the HFLTS must be consecutive LTs.
So, the HFLTSs were extended to HFLSs.
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2.2. HFLSs

In order to preserve the provided information, the LTs S is developed to a successive LTs
S = { sk|k ∈ [0, 2g]}. If sk ∈ S, then sk is named the original LT; if not so, sk is named the virtual LT
which has no practical meaning and only it is used to operational process.

Definition 3. Let X be a reference set and S = { sk|k ∈ [0, 2g]}. Then a HFLS HLS on X can be defined in
terms of a function HLS that returns a subset of S [32].

For simple and convenient, hLS(x) = hLS is called a HFLE.

Definition 4. Let S = { sk|k ∈ [0, 2g]} be a LTs, hLS, h1
LS and h2

LS be three HFLEs on S and λ ∈ [0, 1],
I(sk) = k [32]. Thus, the operations can be defined as follows:

h1
LS ⊕ h2

LS = ∪h
τ1∈h1

LS ,h
τ2∈h2

LS
{hτ1 ⊕ hτ2} = ∪h

τ1∈h1
LS ,h

τ2∈h2
LS

{
sI(h

τ1 )+I(h
τ2 )

}
(1)

h1
LS ⊗ h2

LS = ∪h
τ1∈h1

LS ,h
τ2∈h2

LS
{hτ1 ⊗ hτ2} = ∪h

τ1∈h1
LS ,h

τ2∈h2
LS

{
sI(h

τ1 )×I(h
τ2 )

}
(2)

λhLS = ∪hτ∈hLS{λhτ} = ∪hτ∈hLS

{
s(λI(hτ))

}
(3)

(hLS)
λ = ∪hτ∈hLS

{
(hτ)

λ
}
= ∪hτ∈hLS

{
s
(I(hτ))

λ

}
(4)

Example 2. Suppose that S = {sk|k ∈ [0, 8]} and h1
LS, h2

LS, h3
LS are three HFLEs on S. h1

LS = {s5, s6}, h2
LS =

{s3, s4, s5} and h3
LS = {s1, s2, s3}. Then, h1

LS ⊕ h2
LS = {s8, s9, s10, s11}, h1

LS ⊗ h3
LS = {s5, s6, s10, s12, s15, s18}.

The results obtained by Definition 4 have exceed the domain of S. Many elements based on the
subscript of LTs in h1

LS ⊕ h2
LS and h1

LS ⊗ h3
LS do not exist in S.

Definition 5. Let S = {sk|k ∈ [0, 2g]} be a LTs and hLS =
{

hτ

∣∣hτ ∈ S
}

be a HFLE on S [33]. The score
function of hLS is

S(hLS) =
1

#hLS
∑

hτ∈hLS

I(hτ)

2g
(5)

where #hLS indicates the count of elements in hLS. h1
LS, h2

LS are two arbitrary HFLEs, if S
(
h1

LS
)
> S

(
h2

LS
)

then
h1

LS > h2
LS , and if S

(
h1

LS
)
= S

(
h2

LS
)

then h1
LS = h2

LS.

Example 3. Assume that S = {sk|k ∈ [0, 8]} and h1
LS, h2

LS are two HFLEs on S. h1
LS = {s2, s4, s6},

h2
LS = {s2, s6}, S

(
h1

LS
)
= S

(
h2

LS
)
= 0.5, then h1

LS = h2
LS. However, this comparison result is insufficient due

to the existence of s4. Therefore, it is essential to give some revisions.

2.3. MHFLTS

Although the definitions of HFLTS and HFLS have been widely and consistently used, the
frequency of one repeated LT is assigned to be one time and the operations are contradictory to the
definitions. Thus, a further extended definition of them is proposed in this section.

Definition 6. Suppose X is a reference set, a multi-HFS on X can be defined about a function hE that returns a
multi-subset of values in [0, 1] [31].

Definition 7. Suppose X is a reference set and S = {sk|k ∈ [0, 2g]} is a LTs. Then a MHFLTS H on X is
defined about a function h that returns an ordered finite multi-subset of Ŝ, denoted by [31]:
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H = {〈x, h(x)〉|x ∈ X} (6)

where h(x) indicates the possible membership degrees of the element x ∈ X to the set X. For simple and
convenient, h(x) = h is a MHFLTE and Ĥ is the set of all MHFLTEs. There is the strong possibility that the
virtual LTs of h exist in S but not in S.

Essentially, MHFLTSs are a development of HFLTSs and HFLSs. If h is a set of successive LTs
and no duplicate LT, then h is a HFLTSs. If h is a set of discrete LTs with no duplicate LT, then h is a
HFLS. Therefore, all the operations and approaches on MHFLTSs can be applied to HFLTSs and HFLSs
because they are both special cases of MHFLTSs.

Definition 8. Let S = {sk|k ∈ [0, 2g]} be a LTs. The LSF ϑ : S→ R+ is a strictly monotone increasing and
continuous function satisfying ϑ(0) = 0 and ϑ(2g) = 1. The inverse function of ϑ exists and is denoted by
ϑ−1(·). Then ϑ−1(δ) = hτ , where hτ ∈ S and δ ∈ R+ [41,42].

There are five normal LSFs which are shown as below.

ϑ(hτ) =
I(hτ)

2g
I(hτ) ∈ [0, 2g] (7)

ϑ(hτ) =

(
I(hτ)

2g

)g
I(hτ) ∈ [0, 2g] (8)

ϑ(hτ) =

(
I(hτ)

2g

) 1
g

I(hτ) ∈ [0, 2g] (9)

ϑ(hτ) =


ag − ag−I(hτ)

2(ag − 1)
(I(hτ) ∈ [0, g])

ag + aI(hτ)−g − 2
2(ag − 1)

(I(hτ) ∈ [0, g])
(10)

ϑ(hτ) =


ga − (g− I(hτ))

a

2gα
(I(hτ) ∈ [0, g])

gβ + (I(hτ)− g)β

2gα
(I(hτ) ∈ [0, g])

, where α, β ∈ (0, 1] (11)

A great quantity of experiment research has proven the value of a in Equation (10) lies in the
interval [1.36, 1.4]. Suppose g = 4, a = 1.4 and α = β = 0.8, the character of Equations (7)–(11) can be
shown in Figure 1.

Figure 1. The graphical demonstration of Equations (7)–(11).
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The Equation (10) is regarded as one representative among all Equations for ϑ−1(·), thus we
choose it to deal with the MHFLTEs in this paper.

2.4. Basic Operations of MHFLTS

Definition 9. Let h1 and h2 be any two MHFLTEs on S. Then, we can give the following operations.

h1 ⊕ h2 =
{

ϑ−1(ϑ(hτ1) + ϑ(hτ2))
∣∣∣hτ1 ∈ h1, hτ2 ∈ h2

}
(12)

h1 ⊗ h2 =
{

ϑ−1(ϑ(hτ1) + ϑ(hτ2))
∣∣∣hτ1 ∈ h1, hτ2 ∈ h2

}
(13)

λh1 =
{

ϑ−1(λϑ(hτ))
∣∣∣hτ ∈ h1

}
(14)

(h1)
λ =

{
ϑ−1(ϑ(hτ))

λ
∣∣∣hτ ∈ h1

}
(15)

Definition 10. Let h, h1, h2 be arbitrary MHFLTEs on S. Then we give the score function of h as follows [31]:

S(h) =
1

#h ∑
hτ∈h

ϑ(hτ) (16)

and the variance function of h as follows:

V(h) =
1

#h ∑
hτ∈h

(ϑ(hτ)− S(h))2 (17)

where #h denotes the count of elements in h. Then the comparison rules for MHFLTEs can be re-defined
as follows:

(1) If ϑ
(
h−1
)
> ϑ

(
h+1
)
, then h1 is strictly greater than h2, denoted by h1 > h2;

(2) If S(h1) > S(h2), then h1 is greater than h2, denoted by h1 > h2; If S(h1) = S(h2), and V(h1) < V(h2),
then h1 > h2; If S(h1) = S(h2), and V(h1) = V(h2), then h1 = h2.

2.5. MSM Operator

Definition 11. Let ai(i = 1, 2, · · · , n) be a group of positive real values and m = 1, 2, · · · , n [43]. If

MSM(m)(a1, a2, · · · , an) =

(
∑1≤i1<···<im≤in ∏m

j=1 aij

Cm
n

) 1
m

(18)

Then MSM(m) is called the MSM operator where (i1, i2, · · · , im) traversal all the combination of
(1, 2, · · · , n), Cm

n is the binominal coefficient.

It is clear that the MSM(m) has the following properties:

(1) Idempotency. MSM(m)(a, a, · · · , a) = a;

(2) Monotonicity. MSM(m)(a1, a2, · · · , an) ≤ MSM(m)(b1, b2, · · · , bn), if ai < bi for all i;

(3) Boundedness. min{a1, a2, · · · , an} ≤ MSM(m)(a1, a2, · · · , an) ≤ max{a1, a2, · · · , an}.

Especially, if m = 1, then the MSM(1) reduces to the WA operator as follows:

MSM(1)(a1, a2, · · · , an) =
∑1≤i1≤in ai

n
(19)
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If m = 2, then the MSM(2) reduces to a BM operator (p = q = 1), as follows:

MSM(2)(a1, a2, · · · , an) =

(
∑1≤i1<i2≤in ∏2

j=1 aij

C2
n

) 1
2

=
( 2∑1≤i1<i2≤in ai1

ai2
n(n−1)

) 1
2

=

(
∑n

i,j=1,i 6=j ai1
ai2

n(n−1)

) 1
2
= BM1,1(a1, a2, · · · , an)

(20)

If m = 3, then the MSM(3) reduces to a generalized BM operator (p = q = u = 1) as follows:

MSM(3)(a1, a2, · · · , an) =

(
∑1≤i1<i2<i3≤in ∏3

j=1 aij

C3
n

) 1
3

=
( 6∑1≤i1<i2≤in ai1

ai2 ai3
n(n−1)(n−2)

) 1
3

=

(
∑n

i,j,r=1,i 6=j 6=r ai1
ai2 ai3

n(n−1)(n−2)

) 1
3
= GBM1,1,1(a1, a2, · · · , an)

(21)

Definition 12. Let ai(i = 1, 2, · · · , n) be a set of positive real values and m = 1, 2, · · · , n [43]. If

GMSM(m,p1,p2,··· ,pm)(a1, a2, · · · , an) =

∑1≤i1<···<im≤in ∏m
j=1 a

pj
ij

Cm
n


1

p1+p2+···+pm

(22)

Then GMSM(m,p1,p2,··· ,pm) is called the generalized MSM (GMSM) operator, where p1, p2, · · · , pm ≥ 0,
(i1, i2, · · · , im) traversal all the combination of (1, 2, · · · , n), Cm

n is the binominal coefficient.

The GMSM(m,p1,p2,··· ,pm) has the following properties:

Property 1.

(1) Idempotency. GMSM(m,p1,p2,··· ,pm)(a, a, · · · , a) = a;

(2) Monotonicity. GMSM(m,p1,p2,··· ,pm)(a1, a2, · · · , an) ≤ GMSM(m,p1,p2,··· ,pm)(b1, b2, · · · , bn),
if ai ≤ bi for all i;

(3) Boundedness. min{a1, a2, · · · , an} ≤ GMSM(m,p1,p2,··· ,pm)(a1, a2, · · · , an) ≤ max{a1, a2, · · · , an}.

Proof.

(1)
GMSM(m,p1 ,p2 ,··· ,pm)(a, a, · · · , a) =

(
∑1≤i1<···<im≤in ∏m

j=1 apj

Cm
n

) 1
p1+p2+···+pm

=

(
∑1≤i1<···<im≤in ap1+p2+···+pm

Cm
n

) 1
p1+p2+···+pm

=
(

Cm
n ap1+p2+···+pm

Cm
n

) 1
p1+p2+···+pm = a

(2) Assume that m-tuple (i1, i2, · · · , im) is given randomly, and p1, p2, · · · , pm ≥ 0. if 0 ≤ ai ≤ bi for

all i, then ∏m
j=1 a

pj
ij
≤ ∏m

j=1 b
pj
ij

and ∑1≤i1<···<im≤in ∏m
j=1 a

pj
ij
≤ ∑1≤i1<···<im≤in ∏m

j=1 b
pj
ij

, therefore,

∑1≤i1<···<im≤in ∏m
j=1 a

pj
ij

Cm
n


1

p1+p2+···+pm

≤

∑1≤i1<···<im≤in ∏m
j=1 b

pj
ij

Cm
n


1

p1+p2+···+pm

(3) Let a− = min{a1, a2, · · · , an} and a+ = max{a1, a2, · · · , an}. According to the
property of idempotency, min{a1, a2, · · · , an} = a− = GMSM(m,p1,p2,··· ,pm)(a−, a−, · · · , a−).
According to the property of monotonicity, when a− ≤ ai for all i, we have
GMSM(m,p1,p2,··· ,pm)(a−, a−, · · · , a−) ≤ GMSM(m,p1,p2,··· ,pm)(a1, a2, · · · , an). Similarly, we also
have GMSM(m,p1,p2,··· ,pm)(a1, a2, · · · , an) ≤ GMSM(m,p1,p2,··· ,pm)(a+, a+, · · · , a+).

Finally, MSM(m,p1,p2,··· ,pm)(a1, a2, · · · , an) ≤ MSM(m,p1,p2,··· ,pm)(b1, b2, · · · , bn). �
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Especially, if m = 1, then the GMSM(m,p1,p2)(a1, a2, · · · , an) reduces to the generalized
WA operator.

GMSM(1,p)(a1, a2, · · · , an) =

(
∑1≤i1≤in ap

i
n

) 1
p

(23)

If m = 2, then the GMSM(m,p1,p2)(a1, a2, · · · , an) reduces to the BM operator as follows:

GMSM(2,p1,p2)(a1, a2, · · · , an) =

(
∑1≤i1<i2≤in a

p1
i1

ap2
i2

C2
n

) 1
p1+p2

=

(
2∑1≤i<j≤n a

p1
i ap2

j
n(n−1)

) 1
p1+p2

=

(
∑n

i,j=1,i 6=j a
p1
i ap2

j
n(n−1)

) 1
p1+p2

= BMp1,p2(a1, a2, · · · , an)

(24)

If m = 3, then the GMSM(m,p1,p2,p3)(a1, a2, · · · , an) reduces to the GBM operator as follows:

GMSM(3,p1,p2,p3)(a1, a2, · · · , an) =

∑1≤i1<i2<i3≤in ∏3
j=1 a

pj
ij

C3
n

 1
p1+p2+p3

=

(
6∑1≤i1<i2≤in a

p1
i1

ap2
i2

a
p3
i3

n(n−1)(n−2)

) 1
p1+p2

=

(
∑n

i,j,r=1,i 6=j 6=r a
p1
i ap2

j a
p3
r

n(n−1)(n−2)

) 1
p1+p2+p3

= GBMp1,p2,p3(a1, a2, · · · , an)

(25)

Definition 13. Let ai(i = 1, 2, · · · , n) be a group of positive real values and m = 1, 2, · · · , n [43]. If

GGMSM(m,p1,p2,··· ,pm)(a1, a2, · · · , an) =
1

p1 + p2 + · · ·+ pm

(
∏

1≤i1<···<im≤in

m

∑
j=1

pjaij

) 1
Cm

n
(26)

Then GGMSM(m,p1,p2,··· ,pm) is called the generalized geometric MSM (GGMSM), where
p1, p2, · · · , pm ≥ 0, (i1, i2, · · · , im) traversal all the combination of (1, 2, · · · , n), Cm

n is the
binominal coefficient.

The GGMSM(m,p1,p2,··· ,pm) has the following properties:

Property 2.

(1) Idempotency. GGMSM(m,p1,p2,··· ,pm)(a, a, · · · , a) = a;

(2) Monotonicity. GGMSM(m,p1,p2,··· ,pm)(a1, a2, · · · , an) ≤ GGMSM(m,p1,p2,··· ,pm)(b1, b2, · · · , bn),
if 0 ≤ ai ≤ bi for all i;

(3) Boundedness. min{a1, a2, · · · , an} ≤ GGMSM(m,p1,p2,··· ,pm)(a1, a2, · · · , an) ≤ max{a1, a2, · · · , an}.

Property 2 is similar to the Property 1, the proof is omitted here.
Especially, if m = 1, then the GGMSM(m,p1,p2,··· ,pm) reduces to the generalized geometric operator

GGMSM(1,p)(a1, a2, · · · , an) =
1
p

(
n

∏
i=1

pai

) 1
n

(27)

If m = 2, then the GGMSM(m,p1,p2,··· ,pm) reduces to the geometric BM operator as follows:

GGMSM(2,p1,p2)(a1, a2, · · · , an) =
1

p1+p2

(
∏1≤i1<i2≤in

(
p1ai1 + p2ai2

)) 1
C2

n

= 1
p1+p2

(
∏n

i,j=1,i 6=j
(

p1ai + p2aj
)) 1

C2
n = GBMp1,p2(a1, a2, · · · , an)

(28)
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If m = 3, then the GGMSM(3,p1,p2,p3)(a1, a2, · · · , an) reduces to the generalized geometric BM
operator as follows:

GGMSM(3,p1,p2,p3)(a1, a2, · · · , an) =
1

p1+p2+p3

(
∏1≤i1<i2<i3≤in

(
p1ai1 + p2ai2 + p3ai3

)) 1
C3

n

= 1
p1+p2+p3

(
∏n

i,j,r=1,i 6=j 6=r
(

p1ai + p2aj + p3ar
)) 1

C3
n = GGBMp1,p2,p3(a1, a2, · · · , an)

(29)

3. Some Multi-Hesitant Fuzzy Linguistic MSM Operators

In this section, we will extend GMSM operator and GGMSM operator to process MHFLTSs
and develop the MHFLGMSM operator, MHFLGGMSM operator, WMHFLGMSM operator and
WMHFLGGMSM operator.

3.1. MHFLGMSM Operator

Definition 14. Let hi(i = 1, 2, · · · , n) be a group of MHFLTESs on S. A MHFLGMSM operator is a mapping
Ĥn → Ĥ defined as follows:

MHFLGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn) =

⊕1≤τi1
<···<τim<n

(
⊗m

j=1h
pj
τij

)
Cm

n


1

p1+p2+···+pm

(30)

where m = 1, 2, · · · n and Ĥ is the set of all MHFLTESs.

Based on the operations of the MHFLTESs described in Section 2, we can get the
following theorem.

Theorem 1. Let hi(i = 1, 2, · · · , n) be a set of MHFLTESs on S, the value aggregated by the MHFLGMSM
operator from (30) is still a MHFLTSs and

MHFLGMSM(m,p1 ,p2 ,··· ,pm)(h1, h2, · · · , hn) = ∪hτ1∈h1 ,hτ2∈h2 ,··· ,hτn∈hn

ϑ−1

∑Cm
n

k=1

(
∏m

j=1

(
ϑ

(
hτi

k
j

))pj
)

Cm
n


1

p1+p2+···+pm

 (31)

where m = 1, 2, · · · , n and k = 1, 2, . . . , Cm
n . hτi

k
j

represents the ijth element in kth union of each permutation

which consists of one element from each hi(i = 1, 2, · · · , n). Because the form of MHFLGMSM(m,p1,p2,··· ,pm)

involves selecting an element from each hi(i = 1, 2, · · · , n), each hi must mutual calculation and obviously the
MHFLGMSM operator will be used ∏(#hi, i = 1, 2, · · · , n) times, where #hi denotes the number of elements
in hi. The final aggregated result consists of ∏(#hi, i = 1, 2, · · · , n) elements because of each aggregated result
becomes an element which based on the operational laws of MHFLTSs.

Property 3. Let hi(i = 1, 2, · · · , n) be a set of MHFLTESs on S. The value aggregated by
MHFLGMSM(m,p1,p2,··· ,pm) operator has the following desirable properties:

(1) Idempotency. If the hi = h, then

S
(

MHFLGMSM(m,p1,p2,··· ,pn)(h, h, · · · , h)
)
= S(h)

(2) Monotonicity. If (h1, h2, · · · , hn) and
(
h′1, h′2, · · · , h′n

)
are two sets of MHFLTESs on S and h+i < h′−i ,

then for i = 1, 2, · · · , n,
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MHFLGMSM(m,p1,p2,··· ,pn)(h1, h2, · · · , hn) < MHFLGMSM(m,p1,p2,··· ,pn)
(
h′1, h′2, · · · , h′n

)
(3) Boundedness. If hmin

i is obtained by replacing the minimum of hi for each element of hi, hmax
i is obtained

by replacing the maximum of hi for each element of hi, then

MHFLGMSM(m,p1,p2,··· ,pn)
(
hmin

1 , hmin
2 , · · · , hmin

n
)
≤ MHFLGMSM(m,p1,p2,··· ,pn)(h1, h2, · · · , hn)

≤ MHFLGMSM(m,p1,p2,··· ,pn)
(
hmax

1 , hmax
2 , · · · , hmax

n
)

(4) Commutativity. Let
(
h′1, h′2, · · · , h′n

)
be any permutation of (h1, h2, · · · , hn), then

MHFLGMSM(m,p1,p2,··· ,pn)
(
h′1, h′2, · · · , h′n

)
= MHFLGMSM(m,p1,p2,··· ,pn)(h1, h2, · · · , hn)

Proof

(1) Since the MHFLTSs hi = h, then

S
(

MHFLGMSM(m,p1 ,p2 ,··· ,pn)(h, h, · · · , h)
)
= S

∪hτ1∈h1 ,hτ2∈h2 ,··· ,hτn∈hn

ϑ−1

(
∑

Cm
n

k=1

(
∏m

j=1(ϑ(hτi ))
pj
)

Cm
n

) 1
p1+p2+···+pm


= S

(
∪hτ1∈h1 ,hτ2∈h2 ,··· ,hτn∈hn

(
ϑ−1(ϑ(hτi ))

))
= 1

(#h)n ∑
(#h)n

k=1 ϑ(hτi ) = S(h).

(2) If (h1, h2, · · · , hn) and
(
h′1, h′2, · · · , h′n

)
are two sets of MHFLTESs on S and h+i < h′−i , then for

i = 1, 2, · · · , n

S
(

MHFLGMSM(m,p1,p2,··· ,pn)(h1, h2, · · · , hn)
)

= S

∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ−1

(
∑

Cm
n

k=1

(
∏m

j=1(ϑ(hτi ))
pj
)

Cm
n

) 1
p1+p2+···+pm


= 1

#h1×#h2×···×#hn
∑

hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ

ϑ−1

(
∑

Cm
n

k=1

(
∏m

j=1(ϑ(hτi ))
pj
)

Cm
n

) 1
p1+p2+···+pm


= 1

#h1×#h2×···×#hn
∑

hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

(
∑

Cm
n

k=1

(
∏m

j=1(ϑ(hτi ))
pj
)

Cm
n

) 1
p1+p2+···+pm

The h+i < h′−i , and for i = 1, 2, · · · , n states the minimum element of h′−i is more than the
maximum element of h+i , then ϑ

(
h+i
)
< ϑ

(
h′−i
)
. In addition, MHFLGMSM operator can satisfy

the property of monotonicity, so

∑Cm
n

k=1

(
∏m

j=1

(
ϑ
(

hτi

))pj
)

Cm
n


1

p1+p2+···+pm

<

∑Cm
n

k=1

(
∏m

j=1

(
ϑ
(

h′τi

))pj
)

Cm
n


1

p1+p2+···+pm

Finally,

MHFLGMSM(m,p1,p2,··· ,pn)(h1, h2, · · · , hn) < MHFLGMSM(m,p1,p2,··· ,pn)
(
h′1, h′2, · · · , h′n

)
(3) If hmin

i is obtained by replacing the minimum of hi for each element of hi and hmax
i is obtained

by replacing the maximum of hi for each element of hi, then hmin
τi
≤ hτi ≤ hmax

τi
and ϑ

(
hmin

τi

)
≤

ϑ(hτi ) ≤ ϑ
(

hmax
τi

)
for hmin

τi
∈ hmin

i , hτi ∈ hi, hmax
τi
∈ hmax

i . In addition, the MHFLGMSM operator
can satisfy the property of monotonicity, so
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(
∑

Cm
n

k=1

(
∏m

j=1

(
ϑ
(

hmin
τi

))pj
)

Cm
n

) 1
p1+p2+···+pm

≤
(

∑
Cm

n
k=1

(
∏m

j=1

(
ϑ
(

hτi

))pj
)

Cm
n

) 1
p1+p2+···+pm

≤
(

∑
Cm

n
k=1

(
∏m

j=1

(
ϑ
(

hmax
τi

))pj
)

Cm
n

) 1
p1+p2+···+pm

Then

S

∪hmin
τ1
∈hmin

1 ,hmin
τ2 ∈hmin

2 ,··· ,hmin
τn ∈hmin

n

ϑ−1

(
∑

Cm
n

k=1

(
∏m

j=1

(
ϑ
(

hmin
τi

))pj
)

Cm
n

) 1
p1+p2+···+pm


≤ S

∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ−1

(
∑

Cm
n

k=1

(
∏m

j=1(ϑ(hτi ))
pj
)

Cm
n

) 1
p1+p2+···+pm


≤ S

∪hmax
τ1
∈hmax

1 ,hmax
τ2 ∈hmax

2 ,··· ,hmax
τn ∈hmax

n

ϑ−1

(
∑

Cm
n

k=1

(
∏m

j=1

(
ϑ
(

hmax
τi

))pj
)

Cm
n

) 1
p1+p2+···+pm


Finally,

MHFLGMSM(m,p1,p2,··· ,pn)
(
hmin

1 , hmin
2 , · · · , hmin

n
)
≤ MHFLGMSM(m,p1,p2,··· ,pn)(h1, h2, · · · , hn)

≤ MHFLGMSM(m,p1,p2,··· ,pn)
(
hmax

1 , hmax
2 , · · · , hmax

n
)
.

(4) Because
(
h′1, h′2, · · · , h′n

)
is a permutation of (h1, h2, · · · , hn), so ∏(#hi, i = 1, 2, · · · , n) =

∏
(
#h′i, i = 1, 2, · · · , n

)
. Therefore

⊕1≤τi1
<···<τim<n

(
⊗m

j=1h
pj
τij

)
Cm

n


1

p1+p2+···+pm

=

⊕1≤τi1
<···<τim<n

(
⊗m

j=1

(
h′τij

)pj
)

Cm
n


1

p1+p2+···+pm

where ∃hτi ∈ hi for h′τi
∈ h′i. So

MHFLGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn)

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ−1

∑
Cm

n
k=1

(
∏m

j=1

(
ϑ

(
h

τi
k
j

))pj
)

Cm
n


1

p1+p2+···+pm


= ∪h′τ1
∈h′1,h′τ2

∈h′2,··· ,h′τn∈h′n

ϑ−1

∑
Cm

n
k=1

(
∏m

j=1

(
ϑ

(
h′

τi
k
j

))pj
)

Cm
n


1

p1+p2+···+pm


= MHFLGMSM(m,p1,p2,··· ,pm)(h′1, h′2, · · · , h′n).

The proof of Theorem 2 is completed now. �

Next, by taking into account diverse values of the parameter m, some particular cases of the
MHFLGMSM(m,p1,p2,··· ,pm) can be discussed as follows:
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(1) When m = 1, then

MHFLGMSM(1,p1)(h1, h2, · · · , hn) =

(
⊕n

i=1hp1
i

n

) 1
p1

= ∪hτ1∈h1 ,hτ2∈h2 ,··· ,hτn∈hn

ϑ−1

∑Cm
n

k=1

(
ϑ
(

hτk
i

))p1

n


1

p1

 (32)

(2) When m = 2, then

MHFLGMSM(2,p1,p2)(h1, h2, · · · , hn) =

(
⊕n

i=1,j=1,i 6=jh
p1
i hp2

j
n(n−1)

) 1
p1+p2

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ−1

∑n
i=1,j=1,i 6=j

(
ϑ

(
h

τk
i

))p1
(

ϑ

(
h

τk
j

))p2

n(n−1)


1

p1+p2


(33)

(3) When m = 3, then

MHFLGMSM(3,p1,p2,p3)(h1, h2, · · · , hn) =

(
⊕n

i=1,j=1,r=1,i 6=j 6=rh
p1
i hp2

j h
p3
r

n(n−1)(n−2)

) 1
p1+p2+p3

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ−1

∑n
i=1,j=1,r=1,i 6=j 6=r

(
ϑ

(
h

τi
k

))p1
(

ϑ

(
h

τj
k

))p2(
ϑ
(

h
τrk

))p3

n(n−1)(n−2)


1

p1+p2+p3


3.2. MHFLGGMSM Operator

Definition 15. Suppose hi(i = 1, 2, · · · , n) is a set of MHFLTESs on S. A MHFLGGMSM operator is a
mapping Ĥn → Ĥ defined as follows:

MHFLGGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn) =
1

p1 + p2 + · · ·+ pm

(
⊗1≤τi1

<···<τim<n

(
⊕m

j=1 pjhij

)) 1
Cm

n (35)

where m = 1, 2, · · · , n and Ĥ is the set including all MHFLTSs.
Based on the operations of MHFLTSs described in Section 2, we can get the following theorem.

Theorem 2. Suppose hi(i = 1, 2, · · · , n) is a set of MHFLTESs on S, the value aggregated by MHFLGGMSM
operator from (35) is still a MHFLTSs and

MHFLGGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn)

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

(
ϑ−1

(
1

p1+p2+···+pm

(
∏Cm

n
k=1

(
∑m

j=1 pjϑ

(
hτi

k
j

))) 1
Cm

n

))
(36)

where m = 1, 2, · · · , n and k = 1, 2, . . . , Cm
n . hτi

k
j

represents the ijth element in kth union of each permutation

which consists of one element from every hi(i = 1, 2, · · · , n). Because the form of MHFLGGMSM operator
involves selecting an element from every hi(i = 1, 2, · · · , n), each hi must mutual calculation, and obviously the
MHFLGGMSM operator will be used ∏(#hi, i = 1, 2, · · · , n) times, where #hi indicates the count of elements
in hi. The final aggregated result consists of ∏(#hi, i = 1, 2, · · · , n) elements because of each aggregated result
becomes an element which is based on the operation law of MHFLTSs.

Property 4. Suppose hi(i = 1, 2, · · · , n) is a group of the MHFLTESs on S. The value aggregated by
MHFLGGMSM operator has the following desirable properties:
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(1) Idempotency. If the hi = h, then

S
(

MHFLGGMSM(m,p1,p2,··· ,pn)(h, h, · · · , h)
)
= S(h)

(2) Monotonicity. If (h1, h2, · · · , hn) and
(
h′1, h′2, · · · , h′n

)
are two collections of MHFLTSs on S and

h+i < h′−i , then for i = 1, 2, · · · , n.

MHFLGGMSM(m,p1,p2,··· ,pn)(h1, h2, · · · , hn) < MHFLGGMSM(m,p1,p2,··· ,pn)
(
h′1, h′2, · · · , h′n

)
.

(3) Boundedness. If hmin
i is obtained by replacing the minimum of hi for each element of hi, hmax

i is obtained
by replacing the maximum of hi for each element of hi, then

MHFLGGMSM(m,p1,p2,··· ,pn)
(
hmin

1 , hmin
2 , · · · , hmin

n
)
≤ MHFLGGMSM(m,p1,p2,··· ,pn)(h1, h2, · · · , hn)

≤ MHFLGGMSM(m,p1,p2,··· ,pn)
(
hmax

1 , hmax
2 , · · · , hmax

n
)
.

(4) Commutativity. Let
(
h′1, h′2, · · · , h′n

)
be any permutation of (h1, h2, · · · , hn), then

MHFLGGMSM(m,p1,p2,··· ,pn)
(
h′1, h′2, · · · , h′n

)
= MHFLGGMSM(m,p1,p2,··· ,pn)(h1, h2, · · · , hn).

The proof of property 4 is similar to Property 3, therefore, it is omitted here.
Next, by taking into account diverse values of the parameter m, some particular cases of the

MHFLGGMSM operator can be discussed as below:

(1) When m = 1, then

MHFLGGMSM(1,p1)(h1, h2, · · · , hn) =
1
p1

(
⊗n

i=1(p1hi)
) 1

n

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

(
ϑ−1

(
1
p1

(
∏n

k=1

(
p1ϑ
(

hτk
i

))) 1
n
))

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

(
ϑ−1

(
∏n

k=1 ϑ
(

hτk
i

)) 1
n
) (37)

(2) When m = 2, then

MHFLGGMSM(2,p1,p2)(h1, h2, · · · , hn) =
1

p1+p2

(
⊗n

i=1,j=1,i 6=j
(

p1hi + p2hj
)) 1

n(n−1)

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

(
ϑ−1

(
1

p1+p2

(
∏n

i=1,j=1,i 6=j

(
p1ϑ(hτi ) + p2ϑ

(
hτj

))) 1
n(n−1)

)) (38)

(3) When m = 3, then

MHFLGGMSM(3,p1 ,p2 ,p3)(h1, h2, · · · , hn)

= 1
p1+p2+p3

(
⊗n

i=1,j=1,r=1,i 6=j 6=r
(

p1hi + p2hj + p3hr
)) 1

n(n−1)(n−2)

= ∪hτ1∈h1 ,hτ2∈h2 ,··· ,hτn∈hn

(
ϑ−1

(
1

p1+p2+p3

(
∏n

i=1,j=1,r=1,i 6=j 6=r

(
p1ϑ(hτi ) + p2ϑ

(
hτj

)
+ p3ϑ(hτr )

)) 1
n(n−1)(n−2)

)) (39)

3.3. WMHFLGMSM Operator

Under many practical situations, each attribute has different importance. In this section, taking
the weight of the attributes into account, we propose WMHFLGMSM operator which can be defined
as below:
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Definition 16. Suppose hi(i = 1, 2, · · · , n) is a set of MHFLTESs on S, and w = (w1, w2, · · · , wn)
T is the

weight vector, which satisfies ∑n
i=1 wi = 1 and wi > 0(i = 1, 2, · · · , n). Each wi denotes the importance degree

of hi. The WMHFLGMSM operator: Ĥn → Ĥ is:

WMHFLMGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn) =

⊕1≤τi1<···<τim<n

(
⊗m

j=1

(
nwij ⊗ hτij

)pj
)

Cm
n


1

p1+p2+···+pm

(40)

where m = 1, 2, · · · , n and Ĥ is the set containing all MHFLTSs.

By the calculation laws for MHFLTSs depicted earlier, we can get the following theorem.

Theorem 3. Suppose hi(i = 1, 2, · · · , n) is a set of MHFLTESs on S, and w = (w1, w2, · · · , wn)
T is the

weight vector, which satisfies ∑n
i=1 wi = 1 and wi > 0(i = 1, 2, · · · , n). Each wi denotes the importance degree

of hi. Then, the overall value aggregated by WMHFLGMSM operator from (40) is still a MHFLTSs and

WMHFLGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn)

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ−1

∑
Cm

n
k=1

(
∏m

j=1

(
nw

ikj

(
ϑ

(
h

τi
k
j

)))pj
)

Cm
n


1

p1+p2+···+pm
 (41)

where m = 1, 2, · · · , n and k = 1, 2, . . . , Cm
n . hτi

k
j

represents the ijth element in kth union of each permutation

which consist of one element from each hi(i = 1, 2, · · · , n).

Property 5. (Reducibility). Let w =
(

1
n , 1

n , · · · , 1
n

)T
. Then WMHFLGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn)

= MHFLGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn).

Proof
WMHFLGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn)

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ−1

∑
Cm

n
k=1

(
∏m

j=1

(
n· 1n

(
ϑ

(
h

τi
k
j

)))pj
)

Cm
n


1

p1+p2+···+pm


= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ−1

∑
Cm

n
k=1

(
∏m

j=1

(
ϑ

(
h

τi
k
j

))pj
)

Cm
n


1

p1+p2+···+pm


= MHFLGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn). �

3.4. WMHFLGGMSM Operator

In this section, taking the weight into account, we propose WMHFLGGMSM operator which can
be defined as follows:

Definition 17. Suppose hi(i = 1, 2, · · · , n) is a set of MHFLTESs on S, and w = (w1, w2, · · · , wn)
T is

the weight vector, which satisfies ∑n
i=1 wi = 1 and wi > 0(i = 1, 2, · · · , n). wi indicates the weight of hi.

The WMHFLGGMSM operator: Ĥn → Ĥ is:
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WMHFLGGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn)

= 1
p1+p2+···+pm

(
⊗1≤τi1

<···<τim<n

(
⊕m

j=1

(
pjhij

)nwij
)) 1

Cm
n

(42)

where m = 1, 2, · · · , n and Ĥ is the set including all MHFLTSs.

By the operations of MHFLTSs depicted in Section 2, we can get the theorem as follows.

Theorem 4. Suppose hi(i = 1, 2, · · · , n) is a set of MHFLTESs on S, and w = (w1, w2, · · · , wn)
T is the

weight vector, which satisfies ∑n
i=1 wi = 1 and wi > 0(i = 1, 2, · · · , n). wi indicates the weight of hi. Then,

the overall value aggregated by WMHFLGGMSM operator from (42) is still a MHFLTSs and

WMHFLGGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn)

= ∪hτ1∈h1,hτ2∈h2,··· ,hτn∈hn

ϑ−1

 1
p1+p2+···+pm

(
∏Cm

n
k=1

(
∑m

j=1

(
pjϑ

(
hτi

k
j

))nwij
)) 1

Cm
n

 (43)

where m = 1, 2, · · · , n and k = 1, 2, . . . , Cm
n . hτi

k
j

represents the ijth element in kth union of each permutation

which consist of one element from each hi(i = 1, 2, · · · , n).

Property 6. (Reducibility)

Let w =
(

1
n , 1

n , · · · , 1
n

)T
. Then

WMHFLGGMSM(m,p1,p2,··· ,pm)(h1, h2, · · · , hn).

The proof of property 6 is similar to Property 5, therefore, it is omitted here.

4. A MCDM Approach with MHFLTs

In this section, based on the defined aggregation operators, a MCDM approach is developed
to process the criteria information with the MHFLTs, which is also valid and feasible for the HFLTS
or HFLEs.

Considering a MCDM problem as follows. There are d alternatives, denoted by T = {t1, t2, · · · , td}
and n criteria, denoted by R = {r1, r2, · · · , rn}, which weight vector is w = (w1, w2, · · · , wn)

T

satisfying wi > 0, ∑n
i=1 wi = 1(i = 1, 2, · · · , n). The assessments are performed by l experts

E = {e1, e2, · · · , el} and the result of alternative ti given by ek under rj is denoted by ak
ij based on the

LTs S = {si|i = 0, 1, 2, · · · , 2g, g ∈ N}. bij is a MHFLTE that contains inconsecutive and repetitive LTs
by combing with the result ak

ij from l experts, then we obtain the decision matrix B =
(
bij
)

d×n, and the
goal is to rank the alternatives.

The presented method for this MCDM problem is shown as follows:

Step 1. Normalize the MHFLTE matrix B =
(
bij
)

d×n. Only for the cost criterion rj, bij is normalized
by using the negation operator.

Step 2. Integrate the assessment value of every alternative under n criteria and obtain the
comprehensive assessment results bi for ti(i = 1, 2, · · · , d).

Step 3. Calculate S(bi) and V(bi) for alternative ti.
Step 4. Ranking all alternatives based on S(bi) and V(bi).

5. An Illustrative Example

In this part, we cited an example (adapted from [10]) to display the flexibility of the proposed
methods. In order to get a fast development, the car manufacturer company will select a logistics
service provider to concentrate on core competencies. After thorough investigation, five possible
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logistic providers will take into account, denoted by T = {t1, t2, · · · , t5}. The criteria, denoted by
R = {r1, r2, r3, r4}, are shown as follows: r1: cost (such as the total cost of logistics operation); r2:
relationship (such as shared risks and cooperation rewards); r3: service (such as breadth, specialization,
variety); r4: quality (such as management and improvement). The weight vector of the criteria is
w = (0.40, 0.26, 0.17, 0.17)T . The evaluation is carry out by three experts, denoted by E = {e1, e2, e3}.
S = {s0 = Extremely Poor (EP), s1 = Very Poor (VP), s2 = Poor (P), s3 = Slightly Poor (SP), s4 = Fair
(F), s5 = Slightly Good (SG), s6 = Good (G), s7 = Very Good (VG), s8 = Extremely Good (EG)} be a LTs.
The evaluation value of each criteria bij from three experts are represented in the form of MHFLTEs as
demonstrated in Table 1.

Table 1. Linguistic evaluation result in the form of multi-hesitant linguistic term elements (MHFLTEs).

Item r1 r2 r3 r4

t1 {F, SG, VG} {SG, SG, EG} {G, G, EG} {VP, SP, F}

t2 {SG, G, G} {G, EG, EG} {VP, SP, SP } {SP, G, G}

t3 {P, SP, SP} {G, G, G} {P, SP, SG} {F, F, F}

t4 {VG, VG, VG} {SP, SG, SG} {G, EG, EG} {VP, P, SG}

t5 {G, EG, EG} {F, SG, SG} {SP, SG, EG} {VP, P, P}

The evaluation value in the form of MHFLTSs are transformed into numerical data using
Equation (6). If g = 4 and a = 1.4, then ϑ(s0) = 0, ϑ(s1) = 0.1931, ϑ(s2) = 0.3311, ϑ(s3) = 0.4296,
ϑ(s4) = 0.5, ϑ(s5) = 0.5704, ϑ(s6) = 0.6689, ϑ(s7) = 0.8069, ϑ(s8) = 1.

In order to obtain the best alternative, we adopt the approach described in Section 4 to solve the
MCDM problems.

5.1. Procedure of Decision Making Based on WMHFLGMSM Operator

Step 1. Get the normalized decision matrix B =
(
bij
)

n×m.

Because the four criteria R = {r1, r2, r3, r4} are all benefit type in this example, thus, this step can
be omitted. The decision matrix is shown below:

B =


{s4, s5, s7} {s5, s5, s8} {s6, s6, s8} {s1, s3, s4}
{s5, s6, s6} {s6, s8, s8} {s1, s3, s3} {s3, s6, s6}
{s2, s3, s3} {s6, s6, s6} {s2, s3, s5} {s4, s4, s4}
{s7, s7, s7} {s3, s5, s5} {s6, s8, s8} {s1, s2, s5}
{s6, s8, s8} {s4, s5, s5} {s3, s5, s8} {s1, s2, s2}


Step 2. Integrate the evaluation value of every alternative for four criteria and obtain the

comprehensive assessment results bi for ti(i = 1, 2, · · · , 5) by the WMHFGMSM operator
(suppose m = 2, p1 = p2 = 1).

Step 3. Calculate S(bi) for alternative ti(i = 1, 2, · · · , 5), and get

S(b1) = 0.5970, S(b2) = 0.5987, S(b3) = 0.4820, S(b4) = 0.6329, S(b5) = 0.5838.

Step 4. Rank alternatives based on S(bi), and get

t4 > t2 > t1 > t5 > t3
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5.2. Procedure of Decision Making Based on WMHFLGGMSM Operator

Step 1. Same as the above step 1.
Step 2. Integrate the evaluation value of every alternative for four criteria and obtain the

comprehensive assessment results bi for ti(i = 1, 2, · · · , 5) by the WMHFLGGMSM operator
(suppose m = 2, p1 = p2 = 1).

Step 3. Calculate S(bi) for alternative ti(i = 1, 2, · · · , 5).

S(b1) = 0.5919, S(b2) = 0.5921, S(b3) = 0.5109, S(b4) = 0.6312, S(b5) = 0.5895.

Step 4. Rank alternatives based on S(bi), and get

t4 > t2 > t1 > t5 > t3

From the above two cases, we can find that the methods based on WMHFLGMSM operator and
based on WMHFLGGMSM operator get the same ranking result, and the optimal alternative is all
t4. The WMHFLGMSM operator has the dominant advantage of stressing on the influence of the
entire and general data, which permits forceful supplementary among the attribute values, while
the WMHFLGGMSM operator has the dominant advantage of stressing on the counterpoise and the
coordination among the attribute values.

5.3. Analysis the Effect of the Parameters m, p1, p2, . . . , pm

In order to observe the effects of the parameters m, p1, p2, · · · , pm on this illustrate example, we
assign distinct parameter values m, p1, p2, · · · , pm to obtain the ranking results, and the results are
demonstrated in Tables 2–5.

Table 2. Ranking results when m = 2 by weighted generalized MSM operator for MHFLTSs
(WMHFLGMSM) operator.

p1 p2 Score Function S(bi) Ranking

1 0 S1 = 0.8507, S2 = 0.8497, S3 = 0.5996, S4 = 0.9710, S5 = 0.9769 t5 > t4 > t1 > t2 > t3

0 1 S1 = 0.4057, S2 = 0.4194, S3 = 0.3865, S4 = 0.3946, S5 = 0.3209 t2 > t1 > t4 > t3 > t5

1 2 S1 = 0.5978, S2 = 0.6047, S3 = 0.5436, S4 = 0.5866, S5 = 0.4691 t2 > t1 > t4 > t3 > t5

1 3 S1 = 0.5961, S2 = 0.6371, S3 = 0.4797, S4 = 0.5892, S5 = 0.5371 t2 > t1 > t4 > t3 > t5

1 4 S1 = 0.6102, S2 = 0.6720, S3 = 0.4980, S4 = 0.5881, S5 = 0.5394 t2 > t1 > t4 > t3 > t5

1 5 S1 = 0.6241, S2 = 0.7026, S3 = 0.5175, S4 = 0.5894, S5 = 0.5442 t2 > t1 > t4 > t3 > t5

2 1 S1 = 0.6952, S2 = 0.7033, S3 = 0.5277, S4 = 0.7809, S5 = 0.7526 t4 > t5 > t2 > t1 > t3

3 1 S1 = 0.7580, S2 = 0.7672, S3 = 0.5558, S4 = 0.8852, S5 = 0.8705 t4 > t5 > t2 > t1 > t3

4 1 S1 = 0.8024, S2 = 0.8102, S3 = 0.5751, S4 = 0.8915, S5 = 0.8758 t4 > t5 > t2 > t1 > t3

5 1 S = 0.8356, S2 = 0.8411, S3 = 0.5894, S4 = 0.9106, S5 = 0.9054 t4 > t5 > t2 > t1 > t3

0.5 0.5 S1 = 0.5232, S = 0.5295, S3 = 0.4702, S4 = 0.5542, S5 = 0.5010. t4 > t2 > t1 > t5 > t3

1 1 S1 = 0.5970, S2 = 0.5987, S3 = 0.4820, S4 = 0.6329, S5 = 0.5838 t4 > t2 > t1 > t5 > t3

2 2 S1 = 0.6619, S2 = 0.6827, S3 = 0.5054, S4 = 0.7118, S5 = 0.6732 t4 > t2 > t1 > t5 > t3

3 3 S1 = 0.7010, S2 = 0.7398, S3 = 0.5273, S4 = 0.7575, S5 = 0.7266 t4 > t2 > t1 > t5 > t3

4 4 S1 = 0.7285, S2 = 0.7811, S3 = 0.5464, S4 = 0.7879, S5 = 0.7621 t4 > t2 > t1 > t5 > t3

5 5 S1 = 0.7872, S2 = 0.8094, S3 = 0.5623, S4 = 0.8112, S5 = 0.7489 t4 > t2 > t1 > t5 > t3

Note: Si is abbreviation of score value S(bi).
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Table 3. Ranking results when m = 2 by WMHFLGGMSM operator.

p1 p2 Score Function S(bi) Ranking

1 0 S1 = 0.5990, S2 = 0.4033, S3 = 0.3773, S4 = 0.6969, S5 = 0.6990 t4 > t5 > t1 > t2 > t3

0 1 S1 = 0.4537, S2 = 0.4475, S3 = 0.6103, S4 = 0.4372, S5 = 0.3719 t3 > t1 > t2 > t4 > t5

1 2 S1 = 0.5191, S2 = 0.5386, S3 = 0.4945, S4 = 0.5286, S5 = 0.4816 t2 > t4 > t1 > t3 > t5

1 3 S1 = 0.4690, S2 = 0.4819, S3 = 0.4527, S4 = 0.4799, S5 = 0.4363 t2 > t4 > t1 > t3 > t5

1 4 S1 = 0.4327, S2 = 0.4470, S3 = 0.4288, S4 = 0.4389, S5 = 0.3965 t2 > t4 > t1 > t3 > t5

1 5 S1 = 0.4084, S2 = 0.4199, S3 = 0.4050, S4 = 0.4092, S5 = 0.3671 t2 > t4 > t1 > t3 > t5

2 1 S1 = 0.6741, S2 = 0.6650, S3 = 0.5121, S4 = 0.7551, S5 = 0.7264 t4 > t5 > t1 > t2 > t3

3 1 S1 = 0.7461, S3 = 0.7292, S3 = 0.5335, S4 = 0.8521, S5 = 0.8302 t4 > t5 > t1 > t2 > t3

4 1 S1 = 0.8075, S2 = 0.7835, S3 = 0.5587, S4 = 0.8604, S5 = 0.9429 t4 > t5 > t1 > t2 > t3

5 1 S1 = 0.8604, S2 = 0.8299, S3 = 0.5836, S4 = 0.8960, S5 = 0.8815 t4 > t5 > t1 > t2 > t3

0.5 0.5 S1 = 0.6010, S2 = 0.6056, S3 = 0.5523, S4 = 0.6298, S5 = 0.5787 t4 > t2 > t1 > t5 > t3

1 1 S1 = 0.5919, S2 = 0.5921, S3 = 0.5109, S4 = 0.6312, S5 = 0.5895 t4 > t2 > t1 > t5 > t3

2 2 S1 = 0.6063, S2 = 0.6240, S3 = 0.4903, S4 = 0.6580, S5 = 0.6016 t4 > t2 > t1 > t5 > t3

3 3 S1 = 0.6261, S2 = 0.6554, S3 = 0.4882, S4 = 0.6857, S5 = 0.6184 t4 > t2 > t1 > t5 > t3

4 4 S1 = 0.6454, S2 = 0.6827, S3 = 0.4911, S4 = 0.7108, S5 = 0.6354 t4 > t2 > t1 > t5 > t3

5 5 S1 = 0.6633, S2 = 0.7068, S3 = 0.4960, S4 = 0.7334, S5 = 0.6515 t4 > t2 > t1 > t5 > t3

Note: Si is abbreviation of score value S(bi).

Table 4. Ranking results when m = 3 by WMHFLGMSM operator.

p1 p2 p3 Score Function S(bi) Ranking

1 1 1 S1 = 0.4856, S2 = 0.4956, S3 = 0.4583, S4 = 0.5140, S5 = 0.4644 t4 > t2 > t1 > t5 > t3

1 0 0 S1 = 0.9580, S2 = 0.9464, S3 = 0.6501, S4 = 0.9609, S5 = 0.9804 t5 > t4 > t2 > t1 > t3

0 1 0 S1 = 0.6360, S2 = 0.5600, S3 = 0.4987, S4 = 0.5747, S5 = 0.5111 t1 > t4 > t2 > t5 > t3

0 0 1 S1 = 0.2905, S2 = 0.3492, S3 = 0.3304, S4 = 0.3054, S5 = 0.2259 t2 > t3 > t4 > t1 > t5

1 1 2 S1 = 0.5251, S2 = 0.4998, S3 = 0.4302, S4 = 0.5567, S5 = 0.4791 t4 > t1 > t2 > t5 > t3

1 1 3 S1 = 0.5119, S2 = 0.4736, S3 = 0.4088, S4 = 0.5513, S5 = 0.4618 t4 > t1 > t2 > t5 > t3

1 1 4 S1 = 0.5069, S2 = 0.4581, S3 = 0.3958, S4 = 0.5527, S5 = 0.4564 t4 > t1 > t2 > t5 > t3

1 1 5 S1 = 0.5056, S2 = 0.4480, S3 = 0.3872, S4 = 0.5561, S5 = 0.4514 t4 > t1 > t2 > t5 > t3

1 2 1 S1 = 0.5885, S2 = 0.6040, S3 = 0.4933, S4 = 0.5765, S5 = 0.5302 t2 > t1 > t4 > t5 > t3

1 3 1 S1 = 0.6106, S2 = 0.6506, S3 = 0.5181, S4 = 0.5739, S5 = 0.5356 t2 > t1 > t4 > t5 > t3

1 4 1 S1 = 0.6278, S2 = 0.6857, S3 = 0.5398, S4 = 0.5732, S5 = 0.5406 t2 > t1 > t4 > t5 > t3

1 5 1 S1 = 0.6415, S2 = 0.7165, S3 = 0.5579, S4 = 0.5734, S5 = 0.5450 t2 > t1 > t4 > t5 > t3

2 1 1 S1 = 0.6449, S2 = 0.6395, S3 = 0.5089, S4 = 0.7142, S5 = 0.6661 t4 > t5 > t1 > t2 > t3

3 1 1 S1 = 0.7052, S2 = 0.7004, S3 = 0.5341, S4 = 0.8110, S5 = 0.7721 t4 > t5 > t1 > t2 > t3

4 1 1 S1 = 0.7498, S2 = 0.7447, S3 = 0.5521, S4 = 0.8844, S5 = 0.8534 t4 > t5 > t1 > t2 > t3

5 1 1 S1 = 0.7841, S2 = 0.7783, S3 = 0.5658, S4 = 0.9416, S5 = 0.9173 t4 > t5 > t1 > t2 > t3

Note: Si is abbreviation of score value S(bi).
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Table 5. Ranking results when m = 3 by WMHFLGGMSM operator.

p1 p2 p3 Score Function S(bi) Ranking

1 1 1 S1 = 0.6215, S2 = 0.6304, S3 = 0.5656, S4 = 0.6505, S5 = 0.5933 t4 > t2 > t1 > t5 > t3

1 0 0 S1 = 0.5398, S2 = 0.5622, S3 = 0.2976, S4 = 0.7049, S5 = 0.7455 t5 > t4 > t2 > t1 > t3

0 1 0 S1 = 0.7604, S2 = 0.4687, S3 = 0.6121, S4 = 0.6823, S5 = 0.6272 t1 > t4 > t5 > t3 > t2

0 0 1 S = 0.4309, S = 0.4387, S3 = 0.6095, S4 = 0.4303, S5 = 0.3510 t3 > t2 > t1 > t4 > t5

1 1 2 S = 0.5274, S2 = 0.5573, S3 = 0.4807, S4 = 0.5451, S5 = 0.5126 t2 > t4 > t3 > t1 > t5

1 1 3 S1 = 0.4703, S2 = 0.4968, S3 = 0.4468, S4 = 0.4974, S5 = 0.4501 t2 > t4 > t3 > t1 > t5

1 1 4 S1 = 0.4276, S2 = 0.4589, S3 = 0.4188, S4 = 0.4483, S5 = 0.4046 t2 > t4 > t3 > t1 > t5

1 1 5 S1 = 0.3946, S2 = 0.4286, S3 = 0.3957, S4 = 0.4126, S5 = 0.3699 t2 > t4 > t3 > t1 > t5

1 2 1 S1 = 0.6105, S2 = 0.5878, S3 = 0.5184, S4 = 0.6209, S5 = 0.5792 t1 > t4 > t2 > t5 > t3

1 3 1 S1 = 0.6045, S2 = 0.5676, S3 = 0.5116, S4 = 0.5987, S = 0.5579 t1 > t4 > t2 > t5 > t3

1 4 1 S1 = 0.5962, S2 = 0.5489, S3 = 0.5032, S4 = 0.5802, S5 = 0.5402 t1 > t4 > t2 > t5 > t3

1 5 1 S1 = 0.5876, S2 = 0.5322, S3 = 0.4947, S4 = 0.5647, S5 = 0.5255 t1 > t4 > t2 > t5 > t3

2 1 1 S1 = 0.6931, S2 = 0.6984, S3 = 0.5173, S4 = 0.7903, S5 = 0.8062 t5 > t4 > t2 > t1 > t3

3 1 1 S1 = 0.7968, S2 = 0.8078, S3 = 0.5444, S4 = 0.8108, S5 = 0.8273 t5 > t4 > t2 > t1 > t3

4 1 1 S1 = 0.90422, S2 = 0.9215, S3 = 0.5935, S4 = 0.9266, S5 = 0.9329 t5 > t4 > t2 > t1 > t3

5 1 1 S1 = 0.9275, S2 = 0.9297, S3 = 0.6308, S4 = 0.9439, S5 = 0.9527 t5 > t4 > t2 > t1 > t3

Note: Si is abbreviation of score value S(bi).

As we can see from Tables 2–5, the ranking results may be different for the distinct
parameter values.

(1) If we keep the balance of parameter assignment (i.e., p1 = p2 = · · · = pm), the ranking results of
alternatives are identical in the condition of distinct parameter values. If the balance of parameter
assignment is broken, the ranking results of alternatives will start to be changed, but as the value
of parameter gap becomes lager and lager or the value of one parameter is much larger than
other parameters, the ranking results will not be changed. So, the risk preference of experts plays
an important role in real MCDM.

(2) In Tables 2 and 3, if p1 = 0 or p2 = 0, the WMHFLGMSM operator and WMHFLGGMSM
operator cannot consider the interrelation of the criteria. Moreover, the similar situation exists in
Tables 4 and 5.

(3) For the WMHFLGMSM operator, the greater value of m becomes, in other words, the more
interrelationships of criteria we take into account, the smaller value of score function will get.
Nevertheless, for the WMHFLGGMSM operator, the results are the opposite, the greater value of
m becomes, in other words, the more interrelationships of criteria we take into account, the greater
value of score function will get.

Therefore, experts should select the suitable parameter values in order to keep their risk preference
at real MCDM environment. If expert has risk preference, he/she should assign the parameter as
large as possible; if expert has risk aversion, he/she should assign the parameter as small as possible.
Generally, we propose that experts assign the values of the parameters as m = 2, p1 = p2 = 1 in practical
problems, which are not only simple for operations, but also take into account the interrelations for
two parameters.

5.4. Comparison with the Other Methods

To verify the validity of the proposed approaches, we use the existing generalized weighted
average operator for HFLSs (GHFLWA) [45], weighted BM operator for HFLSs (WHFLBM) [33]
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and multi-HFLS weighted generalized HM (MHFL-WGHM) operator [10] respectively to solve an
illustrative example from [40] which is listed as follows:

For the sake of further optimizing healthcare resource allocation, we need to select a general
hospital to improve the traditional healthcare system and build a new comprehensive healthcare
system. After thorough investigation, four general hospitals will take into account, denoted by
T = {t1, t2, t3, t4}, namely SU hospital (t1), FU hospital (t2), UMC hospital (t3), PLA hospital (t4).
Three main criteria, denoted by R = {r1, r2, r3}, are shown as follows: service environment (r1),
diagnosis and treatment (r2) and social resource allocation (r3); The weight vector of the criteria is
w = (0.3, 0.2, 0.5)T . The linguistic evaluation result is listed in Table 6 and the ranking results of
different methods are shown in Table 7.

Table 6. The Linguistic evaluation result for instance proposed by [40].

Item r1 r2 r3

t1 {s3, s4} {s5} {s5}
t2 {s4} {s2, s3} {s5}
t3 {s4} {s4, s5} {s5, s6}
t4 {s5} {s3, s4} {s4}

Table 7. The comparisons of different methods for example proposed by [40].

Aggregation Operator Parameter Value Ranking Results

GHFLWA [45] λ = 1 t3 > t2 > t4 > t1

WHFLBM
(p,q)

[33] p = q = 1 t3 > t4 > t2 > t1

MHFL-WGHM(p,q) [10] p = q = 1 t3 > t4 > t2 > t1

WMHFLGMSM(1,p) proposed in this paper m = 1, p = 1 t3 > t2 > t4 > t1

WMHFLGMSM(2,p1, p2) proposed in this paper m = 2, p1 =p2 = 1 t3 > t4 > t2 > t1

WMHFLGMSM(3,p1, p2,p3) proposed in this paper m = 3, p1 = p2 = p3 = 1 t3 > t4 > t2 > t1

From Table 7, we can find that the approach based on the WMHFLGMSM(1,p) operator in
this paper and the approach based on GHFLWA operator [45] have the same ranking result, i.e.,
t3 > t2 > t4 > t1, and the method based on WMHFLGMSM(2,p1, p2) operator proposed in this paper
and the method based on WHFLBM operator and MHFL-WGHM operator have also the same ranking
result, i.e., t3 > t4 > t2 > t1. Obviously, we can easily explain these results (1) because both of the
proposed approaches based on the WMHFLGMSM(1,p) operator in this paper and the approach based
on GHFLWA operator [45] don’t consider the interrelationship of criteria, they produce the same
ranking result; (2) while all of the proposed methods based on the WMHFLGMSM(2,p1, p2) operator
and the approach based on WHFLBM operator [33] and MHFL-WGHM operator [10] can consider
the interrelationship between two criteria, they get the same ranking result. So, these results can
demonstrate that the presented approaches are rational and valid in HFLS.

In order to show the advantage of the novel method based on WMHFLGMSM operator in this
paper, we continue to calculate the same example from [10] by comparing with some existing methods.
We can get the final result demonstrated in Table 8.

From Table 8, we can find that the final result by the approach based on the MHFL-WGHM
operator [10] is the same with using the WMHFLGMSM operator proposed in this paper, whereas
the methods using GHFLWA operator [45] and WHFLBM operator [33] and the method using the
WMHFLGMSM operator get different ranking results.
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Table 8. The comparisons of different methods.

Aggregation Operator Parameter Value Ranking Results

GHFLWA [45] λ = 1 t5 > t4 > t1 > t2 > t3

WHFLBM
(p,q)

[33] m = 2, p1 = p2 = 1 t1 > t4 > t5 > t2 > t3

MHFL-WGHM(p,q) [10] p = q = 1 t4 > t2 > t1 > t5 > t3

WMHFLGMSM(m,p1, p2,···pn) prposed in this paper m = 2, p1 = p2 = 1 t4 > t2 > t1 > t5 > t3

In the following, we analyze the reason of producing these results as follows.

(1) The final overall results from the GHFLWA operator [45] and the WHFLBM operator [33] are
achieved under the condition that the repeated assessment values in Table 1 are eliminated.
Obviously, this can lead to information loss, and make the ranking results unreasonable. From
Table 8, we can also get this conclusion because they produced the different ranking results.

(2) The approaches based on the MHFL-WGHM operator [10] and the WMHFLGMSM operator
proposed in this paper produced the same ranking results because they can fully express the
evaluation information, and all considered the interrelationship between two criteria. However,
the proposed method based on the WMHFLGMSM operator in this paper can consider the
interrelationship among any number of attributes by some parameters.

Obviously, the presented approach based on the WMHFLGMSM operator in this paper
can get over the weakness of the approaches based on the GHFLWA operator [45] and the
WHFLBM operator [33] because the HFLTSs cannot sufficiently convey the hesitance of experts,
and WMHFLGMSM operator in this paper can take into the interrelation among any number of the
criteria, which is more general than some existing methods. In summary, the presented approach
based on the WMHFLGMSM operator not only considers the significance of repeated assessment
values, but also takes into account the interrelationships among any criteria.

In the following, we give a detailed contrastive analysis for the different methods, and state these
clearly in Table 9.

Table 9. The comparisons of the features for different methods.

Operators
Describe Fuzzy

Information and
Easier Parameters

Consider the
Interrelationship

of Two Arguments

Consider the
Interrelationship of

Any Multi-Input
Arguments

Consider the
Importance of

Repeated
Linguistic Values

GHFLWA [45] Yes No No No

WHFLBM
(p,q)

[33] Yes Yes No No

MHFL-WGHM(p,q) [10] Yes Yes No Yes

The operators prposed in this paper Yes Yes Yes Yes

From Table 9, we obtain the conclusion as follows:

(1) Compared with the approach based on GHFLWA operator proposed by [45], we can note the
weakness of the GHFLWA operator is that the input assessment values are independent and
does not think about the interrelationships among input arguments. Under these circumstances,
the GHFLWA operator proposed by [45] is a particular example of WMHFLGMSM operator
when m = 1, p = 1. Our novel method takes into account the real decision environment in which
there are some relationships among some criteria. In above illustrative example, the level of
management and improvement will have an effect on the breadth, specialization, variety of
logistic company, that is to say we should consider the interrelationships between r3 and r4.
Therefore, our presented approach is more suitable for dealing with actual decision problems
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than the presented approach based on GHFLWA operator proposed by [45]. Another weakness
of the presented approach based on GHFLWA operator [45] is that it adopts HFLTSs which
cannot sufficiently convey the hesitance of experts. At the same time, our presented approach
can completely express the evaluation information.

(2) Compared with the approach based on the WHFLBM operator presented by [33], our new method
can preserve the repetition of linguistic evaluation information and considers the interrelationship
among more than two input arguments. However, the approach based on the WHFLBM operator
only considers the interrelationship between two input arguments and the frequencies of repeated
values are neglected. Therefore, as an extension of HFLSs and HFLTSs, the presented approach
based on the WMHFLGMSM operator is more reasonable to aggregate the repeated linguistic
information in practice. Moreover, we also noticed that the WMHFLGMSM operator with
parameters will degrade into the WHFLBM operator proposed by [33] if m = 2, p1 = 1, p2 = 1.
Therefore, the WMHFLGMSM operators have more generality and are more robust.

(3) Compared with the approach based on the MHFL-WGHM operator presented by [10], our
presented novel method can take into account the correlation among multi-inputs. However,
the MHFL-WGHM operator can only consider correlation between two inputs. In many
real decision-making problems, the interrelationships among multi-input arguments must be
considered. Thus, the presented approach is more general and wider, and it is more adequate to
deal with MCDM problems.

By the contrast analysis above, we can show that the WMHFLGMSM operator we prosed in
this paper is better than the WHFLBM operator proposed by [33], the MHFL-WGHM operator
proposed by [10], and the GHFLWA operator proposed by [45] for aggregating the multi-hesitant fuzzy
linguistic information.

6. Conclusions

A MHFLTS is an extension of HFLS and HFLTS, which can preserve the frequencies of repeated
LTs. In addition, the MSM operator can take into account the correlativity among multi-inputs. In this
paper, we investigate the MCDM problems with the information of the MHFLTSs. Firstly, we developed
the MHFLGMSM operator, MHFLGGMSM operator, WMHFLGMSM operator, and WMHFLGGMSM
operator, respectively. Then, their properties and particular cases of these operators are further studied.
Based on these operators, we proposed a method to solve the MCDM problem with MHFLTEs. Finally,
some examples are provided to contrast the presented approaches with the existing approaches, such
the methods based on the WHFLBM operator [33], the MHFL-WGHM operator [10], the GHFLWA
operator [45]. The comparison results demonstrate that the presented approaches outperform some
existing approaches [10,33,45].

Fortunately, we maybe use these novel operators to solve new MCDM problems in practice,
such as industrial site selection [46], intrusion detection [47], EEG signals analysis [48], consensus
model [49], temporary disaster debris Management [50], etc. The limitation of proposed operators
is that if we consider interrelationships among more than three criteria, more parameters will
be given, which may bewilder experts, such that they perhaps cannot decide how to choose
the values of parameters. In further research, it is necessary to apply these operators to real
decision-making problems, such as evaluations on population resources and environment [51–54] or
Chinese culture [55].
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