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Abstract: The rapid transfer of massive data in the cloud environment is required to prepare for
unexpected situations like disaster recovery. With regard to this requirement, we propose a new
approach to transferring cloud virtual machine images rapidly in the cloud environment utilizing
dedicated Data Transfer Nodes (DTNs). The overall procedure is composed of local/remote copy
processes and a DTN-to-DTN transfer process. These processes are coordinated and executed based
on a fork system call in the proposed algorithm. In addition, we especially focus on the local copy
process between a cloud controller and DTNs and improve data transfer performance through the
well-tuned mount techniques in Network File System (NFS)-based connections. Several experiments
have been performed considering the combination of synchronous/asynchronous modes and the
network buffer size. We show the results of throughput in all the experiment cases and compare
them. Consequently, the best throughput in write operations has been obtained in the case of an NFS
server in a DTN and an NFS client in a cloud controller running entirely in the asynchronous mode.

Keywords: data transfer nodes (DTN); cloud controller; network file system (NFS); data
transfer; OpenStack

1. Introduction

As scientific research is performed on the basis of collaboration with other organizations, the
storing, transferring, and sharing of massive data are considered to be very important components of
efficient collaborative research [1,2]. The OptIPuter—which is the abbreviation for Optical networking,
Internet Protocol, and computer technologies for scientific visualization—is a challenging distributed
cyberinfrastructure that enables advanced data-intensive applications and collaboration with other
research groups based on lightpaths. The DYNES (DYnamic NEtwork Systems) project is also
aimed at providing novel cyberinfrastructure to support data-intensive science communities such
as high-energy physics and astronomy, utilizing dynamic circuit provisioning services. In these
challenges, because science big data should be transferred rapidly and reliably, advanced research
based on global collaboration requires high-bandwidth networks instead of normal internet for
business applications. In reality, many R&E (Research and Education) Network providers all over the
world such as Internet2, ESnet (Energy Sciences Network), GEANT (pan-European data network), and
KREONET (Korea Research Environment Open NETwork) have provided application scientists with
dedicated high-performance networks in order to satisfy their network requirements.

In addition, ESnet introduced the term Science DMZ (Demilitarized Zone) in 2010 which refers to
specialized network architecture to support high-end scientific applications [3,4]. It is a conceptual
network design that includes system optimization, dedicated transmission servers, and software
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optimization techniques for transmission, sharing, and storing of science big data. In particular,
it offers an optimized data transmission environment based on DTNs (Data Transfer Nodes), which are
high-performance Linux servers with an optimized system kernel and well-tuned TCP (Transmission
Control Protocol) stack for high-volume data transfer services. DTNs accelerate the transmission
throughput using well-tuned parallel data transfer protocols such as GridFTP and bbcp.

Similar to scientific application domains, cloud applications require the fast transfer of massive
data in unexpected situations [5,6]. For example, cloud virtual machine (VM) images should be
moved to the other cloud domains rapidly in the case of an emergency such as disaster recovery or
mitigation. We expect that the principal role of DTNs could be applied to enhance the VM migration
speed in the cloud environment. In this context, we present an approach to transfer cloud VM images
rapidly between cloud service providers with the help of dedicated DTNs. The overall procedure
is composed of local/remote copy processes and a DTN-to-DTN transfer process. It performs all
tasks together based on the fork system call automatically and without additional administrative
interruption. In particular, we focus on the local copy process between a cloud controller and DTN
and improve read /write operation performance with the well-tuned mount techniques in the Network
File System (NFS) protocol. As a result, our experiment evaluation demonstrates that we can get the
best write operation throughput with the combination of NFS server (async) and client (async) when a
cloud controller runs an NFS client process and a DTN executes a server process.

The rest of the paper is organized as follows. Section 2 provides an overview of related research.
In Section 3, we present our proposal designed for transferring VM images rapidly with DTNs in the
cloud environment. Section 4 shows the organization of the experiment testbed and scenarios. We also
analyze and discuss the results of experiments. Finally, we conclude the paper in Section 5.

2. Related Work

There have been several approaches to provide a more advanced research environment based on
Science DMZ. Pho, N. et al. [7] designed the USP (Univ. of Sao Paulo, Sao Paulo, Brazil) Science DMZ
environment in order to transfer Genome data securely and efficiently using GridFTP. In particular, they
estimated and compared average throughputs in various kinds of clouds and supercomputing sites
with and without an SDN (Software Defined Networking)-enabled setup. Similarly, the medical Science
DMZ [8] focuses on preserving the privacy of sensitive data as well as transferring high-volume data
rapidly between collaborative research institutes over R&E networks. In terms of the implementation
of that concept, SciPass [9] proposes a way to transfer data securely over a 100 Gbps SDN environment.
It offers two kinds of operation modes for normal traffic flows and scientific high-volume flows. As for
high-volume flows, SciPass enhances data transfer throughput by bypassing traditional firewalls with
the setting of bypass rules in the OpenFlow switches. The CoordiNetZ system [10] was proposed
to address the shortcomings of the security mechanism in the contemporary Science DMZ model.
The current mechanism depends on only coarse-grained flow access control which is provided in
router ACLs (Access Control Lists). CoordiNetZ is mainly composed of SciMon, SciFlow, Controller,
and Coordinator. It provides improved security mechanisms such as a security policy framework
and fine-grained flow control based on the contextual information collected from host DTNs. OFFN
(OneOklahoma Friction Free Network) [11] provides an advanced networking environment based on
a dedicated optical network that aggregates cyberinfrastructure resources including computing and
storage nodes across that state. As a result, it realizes the concept of the Science DMZ in that state
and enables all OFFN members to share virtualized resources efficiently. Nguyen, V. and Kim, Y. [12]
pointed out the complexity of the VLAN (Virtual Local Area Network) configuration in traditional
networks. In order to address that weakness, a new SDN application for efficient VLAN management
was designed and implemented through leveraging major features of SDN such as programmable
flow management and centralized controller architecture. It enables operators to configure VLAN
dynamically and troubleshoot misconfigurations easily. The approaches mentioned above are focused
on their ScienceDMZ experiences in the view of institutional reference architectures, secure transfer,
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and software-defined networking. Compared with their approaches, we concentrate instead on
utilizing DTN as a kind of performance accelerator to enhance data transfer performance when VM
migration is required in cloud environments.

Regarding VM migration and placement in the cloud environment, Kaur, P. et al. [13] surveyed
the difference between cold VM migration and live VM migration. In cold VM migration, VMs are
moved to target sites after being powered off. On the other hand, the process of live VM migration
transfers running virtual machines to the destination without shutting down. As a result, it enables
an almost seamless transfer service between cloud service providers. Voorsluys, W. et al. [14] paid
attention to the negative effect on performance during a live VM migration. In order to learn the cost
of that migration, some experiments are performed based on Xen VMs and Web 2.0 applications. They
also analyzed the results of that evaluation in terms of SLA (Service Level Agreements) violations.
As for SLA in Saa$S (Software as a Service) providers, a knowledge-based adaptable scheduler [15] was
proposed in order to satisfy customers’ requirements and maximize providers’ profit. That scheduler
consists of admission control, knowledge process, and a scheduler. The results of simulation using
CloudSim [16,17] were presented in view of total profit, average response time, and so on. Rathod, S.
and Reddy, V. [18] proposed a secure virtual migration framework based on decentralized architecture.
That framework also offers a dynamic VM selection function that returns proper VMs depending on
the user workload. A CIC (Composed Image Cloning) technique [19] was proposed in order to reduce
the consumption of network bandwidth when VMs are migrated in federated cloud environments.
That approach divides a VM image into two blocks, namely, a composable block with modular parts
and a user data block. When a composed VM is requested for migration, the cloud gets only the
required modular parts, not the entire image. As for VM migration, the several studies mentioned
above try to improve overall performance during live VM migration and consider trade-off issues in
complying with SLA. Unlike their approaches, we focus on improving transfer throughput based on
DTNs when multiple VM images are transferred in cold VM migration.

In order to transfer massive data efficiently in cold migration, we consider a store-and-forward
technique utilizing the dedicated DTNs. There have been similar studies on moving data efficiently
using the store-and-forward transmission method, such as Phoebus [20] and I-TCP (Indirect-TCP) [21].
Phoebus is a kind of WAN (Wide Area Network) accelerator which intercepts certain traffic, stores it in
intermediate nodes, and forwards it rapidly to the backbone networks utilizing high bandwidth.
It splits an end-to-end connection into several small connections based on intermediate nodes.
As a result, it overcomes the decrease in throughput in access networks by maximizing transmission
performance in backbone networks. I-TCP is designed to improve wireless network throughput
between mobile devices. It splits a TCP connection into two TCP connections—one connection from
a mobile device to the wireless AP (Access Point) in the edge network, and the other one from that
wireless AP to the other mobile device. This approach is also intended to overcome the overall reduced
performance caused by the wireless network used by a sender. However, those approaches have
drawbacks such as the significant system load caused by managing several additional TCP connections
in intermediate nodes and recovering those connections in case of error. Compared with previous
approaches, our approach focuses on enhancing data transfer performance only in application protocol
layers such as FTP and NFS protocol utilizing the dedicated DTNs. Therefore, we do not need to
manage TCP connections directly, monitor certain traffic, and intercept it.

3. Proposed Solution

Generally, a DTN provides a data transfer service with a large amount of internal storage using a
storage controller like a RAID (Redundant Array of Independent Disks) controller or with a connection
to external storage systems utilizing high-speed mounting of filesystems such as Lustre, GPFS (General
Parallel File System), or NFS (Network File System), as shown in Figure 1. As for the latter case, the
connections between a DTN and external file systems are usually set up with high-speed network
technology like Gigabit Ethernet, Fiber channel, InfiniBand, and so on. Because DTNs and external
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storage systems are distributed and loosely coupled, that use case increases the flexibility when the
actual services are designed. Based on these two use cases of the DTN, we propose a way in which
to deploy DTN in the cloud environment and enhance data transfer performance between a cloud
controller and DTN.

- /
DTN(with internal storage) DIN(Wlo internal storage) / @
- A

\

(a) (b)
Figure 1. (a) A Data Transfer Node (DTN) with internal storage; (b) A DTN with external storage.

The DTN has normally been used when massive data in science application domains should be
transferred rapidly over a high-performance network. Similar to the intention of this concept, it could
be applied to connect between cloud providers. In detail, when two cloud providers want to send
and receive their VM images, the connection between cloud controllers in their respective domains
could be established with DTNs as shown in Figure 2. Among the two normal use cases in DTN
deployments, we focus on the external storage use case and propose a way in which to establish the
connection between a DTN and a cloud controller based on NFS. When a DTN works together with an
external storage server, that storage system usually plays a role in the mount server of the file systems.

Controller
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Controller
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Figure 2. The connection between cloud service providers utilizing DTNs.

In the external storage use case, a cloud controller could be considered as a kind of external
storage system. In reality, the cloud controller provides a VM image store like the Glance service.
However, we suggest that an NFS server process is deployed in a DTN and an NFS client process is
run on a cloud controller. The advantage of this approach is as follows. First, we can reduce the load of
a cloud controller in the cloud environment. Even though it is possible to run cloud services composed
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of many microservices in several physical nodes, the cloud controller usually accommodates all of
them together. In addition, if we consider that there are additional controllers that want to join our
cloud environment, when an NFS server process is run on a DTN, multiple cloud controller nodes will
configure and run their NFS client functions, not server functions, relatively easier.

The general procedures of our proposal are illustrated in Figure 3. First, a cloud service provider
who wants to send VM images compresses them to a tar ball file. Second, an NFS service between
cloud controllers and DTN is established considering the role of NFS server and client. Additionally,
NFS performance tuning and optimization should be done to improve the overall performance. Next,
a local copy process is run to send the tarred VM images from a cloud controller to a DTN via the
network service provider. As soon as that local copy process is over, the large file between the DTN
is transferred via a long-distance network. Finally, a destination cloud service provider performs a
remote copy and restores the tar ball file to uncompressed VM files in reverse order.

N N |

H |

VM image Preprocessmg * Local o |
compression I NFS(Network File Py !
System) setup [

S 1

__________ _________;___r

VM image ‘ DTN-to-DTN
transfer

N J . J

Remote copy

uncompression

Figure 3. Proposed procedure for transferring virtual machine (VM) images with DTNs.

In order to improve the performance between NFS server and client, several NFS tuning
parameters could be considered [22]. In particular, because the connection between a cloud controller
and a DTN should be established in a friction-free network, we can concentrate on a few major
performance tuning parameters. As for the optimization of them, we focus on some of mount options
such as network buffer sizes and synchronous/asynchronous options in the NFS client and server. For
reading and writing to DTN, the overall performance of a cloud controller can be improved by tuning
read /write buffer size options (rsize, wsize) based on Linux kernels and hardware specifications.
Additionally, the read /write policies for a DTN should be determined understanding the trade-off
between reliability and throughput when selecting synchronous and asynchronous options.

In addition to a local copy between a cloud controller and DTNs, a DTN-to-DTN transfer process
including data transfer protocol like GridFTP and a remote copy are required in order to support
seamless end-to-end transmission between cloud controllers in different domains. This means that a
local copy process should be completed before a DTN-to-DTN transfer process starts. Additionally, it
means that a remote copy process should start after a DTN-to-DTN transfer service is finished.

Taking that requirement into consideration, we propose how to harmonize the three processes—a
local copy process, a DTN-to-DTN transfer process, and a remote copy process—based on a fork
system call. As shown in Figure 4, the proposed procedure includes the first child process that deals
with a local copy based on NFS protocol, the second child process that performs the DTN-to-DTN
transfer service utilizing data transfer protocol, and a parent process that finishes all tasks including a
remote copy. As a result, this proposed procedure ensures that all three processes do not get mixed up
while the tarred VM images files are transferred completely.



Symmetry 2018, 10, 110 6 of 10

algorithm transfervms
input: vm image dir, nfsclient dir, dtn list, compressed image file
output: none
{
first process id = fork();
if (first process id is less than 0) {
return (error);
}
else if (first process id is 0) {
copy compressed image file from vm image dir to nfsclient dir
}

else {
wait until first process ends
second process id = fork():;

if (second process id is less than 0) {
return(error);
}
else if (second process id is 0) {
transfer compressed image file with dtn list
}
else {
wait until second process ends
copy compressed image file from nfsclient dir to vm image dir

Figure 4. Algorithm for harmonizing local /remote copy and DTN-to-DTN transfer processes.

4. Experiments and Analysis

In this section, we show the results of the NFS mount and tuning experiments, where we sought
to enhance the performance of transferring a local copy to a DTN. Several experiments were performed
to seek the optimized read /write buffer size and combination of synchronous/asynchronous modes
in the NFS server and client.

With regard to building an experiment testbed, as shown in Figure 5, we used the OpenStack
Mitaka version which was released in April 2016 [23] and NFS version 4. The OpenStack controller
server has four Intel Xeon E5620 cores running at 2.40 GHz, 54 GB of main memory, and a 500 GB disk
drive. The DTN version with FIONA (Flash I/O Network Appliance) has eight Intel Xeon E5-2630
cores running at 2.40 GHz, 32 GB of main memory, and a 4TB SSD/32TB SATA disk drive. The network
speed between them is 1 Gbps.

In order to estimate the performance of read/write operations over an NFS connection, we
utilized the dd command, a kind of utility for Linux operating systems that copies a file, converting
according to the operands [24]. It can be used to create binary image files instantly with a given size.
For example, when we want to estimate the performance based on the variation of the write buffer
size, the operands “if = /dev/zero” and “of = /home/nfsClient/testfile” are chosen. In the case of
the read operation, the operands “if = /home/nfsClient/testfile” and “of = /dev/null” are chosen.
It also provides various configuration parameters like bs (read and write bytes at a time) and count
(the number of input blocks) so that we can create different experiment scenarios.

Generally, there is a trade-off between the reliability and the throughput when synchronous
and asynchronous modes are selected in an NFS server and client. In our experiment, the DTN and
the cloud controller node run the NFS server and client processes, respectively, in order to provide
a local copy function based on a high-performance NFS mount. We anticipated that would be a
performance difference according to the combination of operation modes in the NFS server and client
process. Therefore, we performed different experiments with three scenarios in order to look into
the performance influence based on the combination of synchronous/asynchronous modes in the
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NFS server/client and read /write buffer size. In these experiments, we considered three cases, as
shown in Table 1: NFS server (sync)/client (async), NFS server (async)/client (async), and NFS server
(sync)/client (sync). Instead of a real compressed VM image file, the file created by dd command
was used to be read and written to a destination node. The size of that file is about 256 MB. Each
experiment case was performed varying the read /write buffer size from 1 Kb to 1024 Kb and all stages
in each buffer size were repeated three times. After that, we calculated the average throughput for
each read /write buffer size.

n Controller

openstack DTN(Daejeon)
OpenStack OpenStack Mount
Horizon Nova point M/C (1G) - KREONET.S
Openstack Openstack e, T
Keystone Glance o ‘ﬁ
Local file
OpenStack system Local

Neutron Transfer

n Network

openstack
OpenStack
Neutron
n Compute

openstack

OpenStack

Neutron Nova

‘ OpenStack ‘

Figure 5. Experiment testbed topology.

Table 1. Experiment cases.

DTN (NFS Server) Controller (NFS Client)

Case I synchronous asynchronous
Case II asynchronous asynchronous
Case III synchronous synchronous

The average throughput of read operations was almost that same over all three cases and was
about 118 Mbps. This means that the combination of synchronous/asynchronous modes in the NFS
server/client and the variation in the read buffer size are almost insignificant in our environment. We
omit the graph of those results.

On the other hand, the average throughput of the write operation was quite different in all
cases, as shown in Figures 6 and 7. First, for the NFS server (sync) and client (async), the throughput
converged to about 87 MB/s from the write buffer with size 8 Kb. Second, for NFS server (async)
and client (async), the throughput converged to about 106 MB/s from the write buffer with size
8 Kb. Finally, in the case of the NFS server (sync) and client (sync), the throughput increased with
an S-shaped growth curve and converged to about 85 MB/s from the write buffer with size 64 Mb.
In Case III, the throughput in the write buffer with size 1024 Kb was about 48 MB/s and did not yet
arrive at a converged throughput. Therefore, additional experiments were performed varying the
write buffer size to about 64 Mb. Consequently, in our testbed environment, the best throughput was
estimated with the write buffer size of 8 Kb in the case of the NFS server (async) and client (async).
Compared with the case of the NFS server (sync) and client (async), the throughput of the write
operation was improved by about 22%.
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Figure 6. Throughput of the write operation in Cases I and II.

Y]
o

m Case lll

e}
o

~N
[=}

[S )]
o O

S
o

N W
o O

Average throughput (MB/s)

[ury
o

o
I

AR L SO I S S -
Blocksize (kB) > V™ @Y o7 A §f

Figure 7. Throughput of the write operation in Case III.

5. Conclusions

The paper presents our approach to transfer cloud VM images with high speed utilizing a
DTN between cloud service providers. The proposed procedure for transferring VM images to a
destination controller includes local/remote copy processes and a DTN-to-DTN transfer process.
Multiple processes are kept separate while VM images are transferred to a destination owing to the
proposed algorithm based on a fork system call. In particular, we have contributed to improving the
local copy performance between a cloud controller and DTNs by way of NFS mount and performance
tuning. In order to perform that experiment, we built an experiment testbed consisting of a cloud
controller implemented using OpenStack software and a DTN with FIONA (Flash 1/O Network
Appliance). When considering synchronous and asynchronous options in NFS server/client, there is
generally a trade-off issue between the reliability and the throughput. In order to explore that issue
in our cloud environment, we performed several experiments to select a proper operation mode and
network buffer size for read /write operations. As a result, in the case of NFS server (async) and client
(async), we gained the best throughput which converged to about 106 MB/s during write operations.
That throughput is improved by about 22% compared with the case of NFS server (sync) and client
(async). This means that our approach can be used to perform performance-critical data transfer based
on an NFS mount in cloud environments where the connection between a cloud service provider and a
network service provider is established stably. As future work, we plan to accommodate additional
experiment scenarios to reflect on various kinds of VM images used in a real-world cloud service.
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