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Abstract: The automatic detection, segmentation, localization, and evaluation of the optic disc, macula,
exudates, and hemorrhages are very important for diagnosing retinal diseases. One of the difficulties
in detecting such regions of interest (RoIs) with computer vision is their symmetries, e.g., between
the optic disc and exudates and also between exudates and hemorrhages. This paper proposes an
original, intelligent, and high-performing image processing system for the simultaneous detection and
segmentation of retinal RoIs. The basic principles of the method are image decomposition in small
boxes and local texture analysis. The processing flow contains three phases: preprocessing, learning,
and operating. As a first novelty, we propose proper feature selection based on statistical analysis in
confusion matrices for different feature types (extracted from a co-occurrence matrix, fractal type, and
local binary patterns). Mainly, the selected features are chosen to differentiate between similar RoIs.
The second novelty consists of local classifier fusion. To this end, the local classifiers associated with
features are grouped in global classifiers corresponding to the RoIs. The local classifiers are based on
minimum distances to the representatives of classes and the global classifiers are based on confidence
intervals, weights, and a voting scheme. A deep convolutional neural network, based on supervised
learning, for blood vessel segmentation is proposed in order to improve the RoI detection performance.
Finally, the experimental results on real images from different databases demonstrate the rightness of
our methodologies and algorithms.

Keywords: biomedical image processing; retinal image segmentation; feature selection; texture
analysis; convolutional neural network; optic disc; macula; exudates; hemorrhages

1. Introduction

Eye disorders can lead partial or even total loss of vision, significantly affecting life quality [1].
In order to ensure timely medical intervention and treatment, their early detection relies on the analysis
of retinal components such as optic disc (OD), macula (MA), blood vessels (BVs), exudates (EXs),
and hemorrhages (HEs). Only intelligent processing of a retinal image can provide real measures
of these specific ophthalmological zones. Adding complex image processing to dedicated neural
networks and efficient descriptors and classifiers, the system for determining the RoIs in retinal images
can be considered as an effective support for decision-making in early disease diagnosis. The system’s
input is the retinal image and the output is the degree of retinal RoI damage. Automatic detection based
on specific imaging devices and real-time image processing can be used for the early-stage decision
of an ophthalmologist. Computer-aided diagnosis in an intelligent system also has the advantages
of computational power, speed, and continuous development. Many different approaches for retinal
RoI identification and evaluation are found in the literature. However, accurate and simultaneous
detection, localization, and evaluation of OD, MA, BV, EX, and HE is a difficult task for such a
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system. The general difficulty for simultaneous detection of retinal RoIs is the symmetries between
them, like between OD and EX (color and, sometimes, segmented shapes) and between EX and HE
(segmented shapes). It must have intelligent algorithms for image processing and interpretation and
sufficient computational power. Usually, it must exclude the similarities (symmetries) and point out
the differences.

The first RoI, the OD, is the easiest to detect, due to its shape, colors, size, and structure. Therefore,
many papers are related to its detection and localization [2–14]. For example, the maximum number
of decisions from a set of detectors can be used to detect the center of the OD [7]. By selecting
some textural features and image decomposition in overlapping boxes, OD detection becomes more
simple and efficient [4]. Taking into account the density of large blood vessels in the OD region,
the authors in [6,8] proposed fast and accurate methods for OD detection. Considering that the
OD has the highest radial symmetry, a methodology based on the radial symmetry detector and
separation of vascular information is used in [14] for OD localization. Sometimes, the OD and EX
are similar in color, intensity, and shape. In pathological images, a large EX can be similar to the
OD. To overcome this inconvenience, an automatic OD detection is proposed in [13], based on the
symmetry axis of blood vessel distribution in this region. Some authors remove the OD before
the detection and localization of EXs. To this end, the authors in [15] proposed a methodology to
differentiate EXs from ODs by considering the features on different color components. The optic disc
is identified as a region where the majority of pixels have a great difference on R and G channels.
Next, a thresholding method is applied in order to extract the exudates from the obtained binary
image. Some features like mean intensity, entropy, uniformity, standard deviation, and smoothness are
computed for obtaining an improved accuracy. The mentioned characteristics have different values for
EXs and ODs; so, EXs can be identified by removing the areas that do not have matching values of the
previous characteristics. For the optic disc detection, in [16], an algorithm based on the 2D Gaussian
filter and blood vessel segmentation was implemented. Also for OD detection Pereira et al. [17]
applied a modern algorithm based on ant colony optimization and anisotropic diffusion. More recently,
the authors in [18] proposed a supervised model for OD abnormality detection for different datasets,
taking into account a deep learning approach from global retinal images. The results show a good
accuracy and indicate potential applications. Automatic image analysis methods aiming to detect and
segment MA and fovea are currently based on support vector machine classification [19], hierarchical
image decomposition [20,21], statistical segmentation methods [22], deep learning [23], and pixel
intensity characteristics [24]. The authors in [7] presented a method which combines different OD
and MA classifiers to benefit from their strong points (high accuracy and low computation time).
With the purpose of detection of macular degeneration, Veras et al. [25] proposed some algorithms to
localize and segment the MA. Sekhar et al. [26] addresses blood vessels localization, segmentation,
and their spatial relations in order to detect the optic disc and macula. Based on pixel intensity (low),
the authors in [27] also proposed the MA detection technique. They also proposed an algorithm for
the OD diameter estimation. Akram et al. [28] presented a system based on artificial intelligence
for evaluation of macular edema to support the ophthalmologists in early detection of the disease.
They used a comprehensive characteristics group and a Gaussian-mixture-model-based classifier for
accurate detection of MA. Chaudhry et al. [29] detect macula from an autofluorescence imaging device
in connection with OD position. This automatic positioning is based on a top-down approach using
vascular tree segmentation and skeletonization. In [30] the authors proposed a method to detect
and localize the macula center using two steps: first, the context - based information is aggregated
with a statistical type model in order to obtain the approximate localization of the macula; second,
the aggregation of seeded mode tracking is used for final localization of the macula center.

Over time, many methods and approaches have been used for the detection of EXs
(e.g., thresholding methods considering the green channel [31–33]). As a consequence that the
illumination conditions are different, image preprocessing algorithms for correction are necessary.
Kaur and Mittal [34] proposed an algorithm for EX detection which first identifies and rejects the
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healthy areas based on their characteristics and second segments the EXs from the remaining regions
using a region growing method. Bu et al. [35] presented a hierarchical procedure for EX detection
in eye fundus images to solve some difficulties such as the recognition of similar-colored objects
(e.g. cotton wool spots, optic disc, and the normal macular reflection). Using an artificial intelligence
method, an automated identification of EXs is obtained in [36]. After an initial primary processing
phase, an image segmentation based on fuzzy clustering is used and a dataset of regions of interest is
obtained. For each area, characteristics such as size, color, edge, and texture are extracted. The authors
proposed a deep neural network, based on the extracted characteristics for the detection of areas
containing EXs. The images are firstly filtered by applying a fuzzy clustering technique. Furthermore,
the method in [37] localizes and evaluates the exudates, taking into account different image processing
techniques, morphological filters, and image features.

The approaches for HE identification commonly used can also be grouped into different categories
such as thresholding, segmentation, mathematical morphology, classification, clustering, neural
network, etc. For example, Seoud et al. [38] described and validated a method for the identification of
micro-aneurysms and HEs in retinal images, which can be used in the diagnosis and grading of diabetic
retinopathy. Their contribution is a set of dynamic shape features which show the evolution of shapes
under a processed image and allow differentiation between lesions and blood vessels. The method
was tested against six image datasets, both public and private. A splat-based feature classification
algorithm with applications to large, irregular HE detection in retinal images was proposed in [39].

For detection and segmentation of retinal RoIs, different classifiers were used: model-based
(template matching), minimum distance between vector features, voting scheme, and, recently, neural
network (NN). Garcia et al. [40] proposed an algorithm for computer - based identification of the
lesions due to the diabetic retinopathy. The algorithm is integrated into a system in order to support
the ophthalmologist decision in the detection and monitoring of the disease. The authors analyze the
performance of three different NN classifiers in automated detection of lesions or exudates: support
vector machine, radial basis function, and multilayer perceptron. By applying different criteria and
testing on 67 images, they conclude that the multilayer NN classifier based on image criterion has
the best results. This research was extended in [41], where new criteria and classifiers (e.g., logistic
regression) were tested against those in the previous paper. Now, the relationship between the
extracted set of characteristics and the class of objects is highlighted. Again, the multilayer perceptron
performed the best out of the selected methods, but only by a small margin in comparison with logistic
regression. Moreover, in [42] a new neural network supervised approach for blood vessel detection
was proposed. The proposed algorithm uses an NN arhitecture for pixel classification and creates a
vector of moment-invariants-based and gray-level features for pixel representation. The performance
of the algorithm was tested on STARE [43] and DRIVE [44] datasets, with better performance than
other existing solutions. The authors in [45] used CNNs (Convolutional NNs) to detect hemorrhages.
They tried to simplify and speed it up by heuristically classifying samples of the training phase.

The authors in [46] presented a methodology and their implementation which is based on a voting
procedure with the aim of raising the decision accuracy. They proposed the technique of majority
voting and probability approach to evaluate the correctness of decision. The important goal of the work
consisted in solving detection problems in image processing algorithms which are geometrically
constrained. For example, the algorithm performance was tested with good accuracy for OD
identification on the MESSIDOR dataset [47]. In order to increase the performances of classifications,
the voting scheme and NN approaches were combined in [48]. In this case, two connected NNs were
considered: one for feature selection and the other for classification, based on local detectors. Finally,
a voting scheme with different weights for local classifiers was used, taking into account the results
from associated confusion matrices.

In order to increase the efficiency of the classifiers, primary processing of retinal images is necessary.
Therefore, Nayak et al. [49,50] presented algorithms for identification and monitoring glaucoma and
diabetic retinopathy, using primary processing l (histogram equalization, filtering, and morphological
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operations). For a particular disease, specific characteristics are established. Based on these features, an
artificial NN classifier identifies the presence of a particular disease and its evolution. The authors in [51]
introduce an algorithm based on morphological operations for the identification of micro-aneurysms
and HEs in retinal images. The image is firstly primary processed and then, important regions of interest
such as OD, blood vessels, and fovea are successively removed from the retinal image. Only the HEs
and micro-aneurysms remain. The obtained results are similar to those of other papers as sensitivity
and specificity. The method for computer aided detection of the diabetic retinopathy, developed in [52],
consists of the following phases: image enhancement by local histogram equalization, Gabor filters,
SVM (support vector machine) classifier, HE detection, fovea localization, and diabetic retinopathy
identification. The algorithms were implemented and tested on free database HRF [53] with acceptable
sensitivity and specificity. The authors in [54] presented a method and algorithms for successive
detection of important RoIs in retinal images using an artificial neural network (ANN) and k-means
clustering. The ANN was simulated on a common PC and it created time-consuming difficulties for
real implementation. The application was developed only for the MESSIDOR database.

As a technical novelty, this paper proposes an Intelligent System for diagnosis and evaluation
of regions of interest from Retinal Images (ISRI), with multiple functions: F1, OD detection;
F2, MA detection; F3, EX detection and size evaluation; and F4, HE detection and size evaluation.
All of these four functions are addressed. Two main contributions of the authors can be mentioned:
(a) proper feature selection based on statistical analysis in confusion matrices for different feature type,
and (b) the weight-based fusion of the local classifiers (associated with features) into global classifiers
(corresponding to the RoIs). The paper is organized as follows: In Section 2, the methodology and
algorithms for primary processing of retinal images with the goal of RoI detection, segmentation,
and size estimation are described and implemented. In Section 3 the experimental results obtained
using images from two databases (STARE and MESSIDOR) are reported and analyzed. Finally,
the discussions and conclusions are presented in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. ISRI Architecture

We propose an algorithm and software implementation for the identification and evaluation of
four RoIs from retinal images: OD, MA, EX, and HE. It can be considered as an intelligent image
processing system and diagnosis support for eye diseases. The basic methodology for determination of
the mentioned RoIs is texture analysis in small patches (boxes). ISRI has three inputs (retinal image, I;
box dimension setting, BDS; and manual box selection, MBS—the last two only for the learning phase)
and three outputs (RoI type, RoI; RoI localization, L(i,j); and size estimation of RoI, S [%]). The ISRI
concept is shown in Figure 1. As can be seen, it has two phases: a Learning Phase (LP), considered as a
calibration one, and an Operating Phase (OP), considered as a measuring one. Also, ISRI has an Input
Module (IM) for image preprocessing which is active in both phases.

The IM contains five blocks configured in a pipeline structure: Image Buffer (IB), Decomposition
on Color Components (DCC), Primary Processing (PP), Box Division (BD), and Blood Vessel
Segmentation (BVS). The retinal image may come from an Image Acquisition Device (IAD) or from an
Image Database (DB) and it is stored in the IB to then be processed. First, it is decomposed in color
components of RGB and HSV (Hue—Saturation—Value) spaces by DCC. This image is processed by
the PP block to improve the representation using the CLAHE algorithm (Contrast-Limited Adaptive
Histogram Equalization [38]). Images to be analyzed are further decomposed in boxes by the BD
block with the aid of two algorithms: the sliding box algorithm (Figure 2a) and the nonoverlapping
box algorithm (Figure 2b). The box dimension is manually selected (Box Dimension Selection, BDS)
depending of the image resolution, the algorithm for division, and the type of RoI. The last operation
in this initial image processing phase is the blood vessel segmentation by the BVS block.
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The LP contains two successive steps: Step 1, calculating the values of a set of features for the
regions of interest (Feature Calculation module, FC); and Step 2, selecting effective features for class
representation (Feature Selection module, FS). For the LP, manually selected boxes are used (Manual
Box Selection, MBS). There are also two successive steps in the OP: Step 1, calculating the values of
the selected features corresponding to different RoIs for the boxes extracted from the input image
(Computing Selected Features module, CSF); and Step 2, assigning the class label to the RoI (Classifier
module, C). RoI_C selects the box type (OD, MA, EX, HE) as a consequence of the RoI classifiers’
decisions. The size evaluation of the detected RoI is done by segmentation and “1”s counting in the
RoI_E block. RoI localization is done by the RoI_L block as the position of the upper corner (i,j) of the
investigated box.

In order to calibrate and test the system, two well-known public databases were used: STARE [43]
and MESSIDOR [47]. They contain both healthy subjects and pathological cases with abnormalities.
The STARE database consists of 400 retinal images captured by a TopCon TRV-50 fundus camera.
It also contains two sets of manual segmentations obtained by two ophthalmologists used as references.
The MESSIDOR database contains three sets of eye fundus images (1200 color images extracted with a
color video 3CCD camera on a TopCon TRC NW6 nonmydriatic retinograph with a 45 degree field of
view) with 8 bits per color plane at 1440 × 960, 2240 × 1488, or 2304 × 1536 pixels. Each image is in
TIFF format and has an associated medical annotation.

2.2. Input Module

The input module has four main functions: image decomposition on color channels, primary
processing of each component, box division on each color channel, and blood vessel segmentation
in each box. Because the retinal images have zones with different brightness and also contain noises
with different small patterns in the background, primary processing for image enhancement is needed.
Therefore, the first operation in primary processing is noise rejection. Due to efficiency and edge
preserving, for noise reduction, a median filter (3 × 3 kernel) and morphological filter (erosion
and dilation) were used in the PP for each component of interest of the color spaces (R, G, B, and H).
Because the eye fundus images have usually low local contrast the histogram equalization is performed.
Another primary processing operation, binarization, is used in the blood vessel segmentation (IM)
and also in the final RoI segmentation (OP). The above operations are commonly used and will not be
detailed in this work. Due to primary processing methods (noise elimination), EXs or HEs of less than
3 × 3 pixels cannot be detected.

As we mentioned above, two types of box division algorithms are used. For OD and MA
localization we used a sliding box algorithm as it is necessary that a box contains the entire RoI
to be analyzed. We have chosen the sliding window approach for OD and MA localization because
it is more possible to get a fine matching of these regions of interest in a sliding window rather than
in a traditional approach (nonoverlapping—fixed—windows). For EX and HE, a nonoverlapping
algorithm is used because it is simpler in terms of computing effort and it is necessary for the global
evaluation of diseases (the spread on the entire image).
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Figure 1. Intelligent System for diagnosis and evaluation of regions of interest from Retinal Images
concept (RoI – Region of Interest).

The algorithm for creating the sliding boxes starts with the box from the upper left corner of the
image and a specified step sliding (Figure 2a). The analyzed box slides until it touches the right margin
of the image. Then, the sliding box returns to the beginning and performs a vertical down slide, moving
on to the next row. The algorithm runs until the lower right corner is touched. The nonoverlapping
box algorithm for EX and HE is presented in Figure 2b. In this case, the box division has a smaller
range than OD or MA ( 1

4 of the sliding box dimension).
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(b) nonoverlapping box algorithm.

For high-precision localization, an optimum box size must be chosen depending on the database
and a good framing of the RoI (the minimum dimension framing the RoI). This dimension is
experimentally chosen (input BDS). At each step of the sliding box algorithm, a new box is considered.
Thus, a matrix of boxes (grid of boxes) is created. The box has a unique ID consisting of the row
number and column number in the grid of boxes. The size of the sliding step depends of the resolution
of the input images (like the patch dimension); for example, in the case of the STARE database it was
experimentally chosen to be 10 pixels, while in the case of the MESSIDOR database it was 15 pixels.

Blood vessel detection is necessary only for F1 and F4 functions (OD and HE detection). The blood
vessel segmentation (BVS block) is necessary in two situations: for more accurate detection of the OD
in function F1 (in this case blood vessels need to be highlighted) and for more accurate detection of
the HEs in function F4 (in this case blood vessels need to be removed). In other cases, blood vessel
detection is not considered. The input to BVS is a box obtained from box division algorithms on the
green channel (for better contrast of blood vessels). This box is divided into smaller boxes of dimension
27× 27 pixels using a sliding box algorithm with a sliding step size of 1 pixel. The new boxes represent
the input in the main module of BVS, namely the CNN. The CNN has three convolutional layers (one
of which is fully connected), two pooling layers (average pooling layers), one dropout layer, and a
Softmax layer. The CNN-based architecture of BVS is presented in Figure 3 [55]. The input data for the
proposed neural network (the input layer) are boxes of 27 × 27 pixels on the green channel (STARE DB
case). For images with higher resolution like those from MESSIDOR, larger boxes (55 × 55 pixels) can
be considered but in this case an adjustment of the CNN is necessary. (Note that the learning phase
of the blood vessel segmentation does not have to be repeated for different resolutions of the input
images. However, it is possible, on demand, with consideration of the training time.) These boxes are
passed through the entire network to get their classification into two classes: vessel (V) and nonvessel
(NV). The second layer with 20 neurons (local 3 × 3 filter functions) is a convolutional type with both
stride and padding equal to 1. The third layer is an average pooling one, which performs the image
subsample, based on the mean in a 3 × 3 sliding box.

The new image (box) has a resolution of 9 × 9 (stride equal 3). The next layer with 50 neurons
(filters) is also a convolutional type, with both stride and padding equal to 1 and, consequently,
with output 9 × 9 pixels. The fifth layer is a new pooling layer with stride equal to 3 (padding 0) which
reduces the box dimension to 3 × 3. It follows a dropout layer for the regularization of the network
(the rate is equal to 0.5). The penultimate layer is a convolutional one of the fully connected type with
2 neurons (for classification), stride 1, and padding 0. The final layer of the CNN is called Softmax,
is based on a loss function measure, and has two outputs: V and NV. The blood vessel segmentation
was made by pixelwise classification. The training of the CNN used 50 epochs and 4000 small boxes of
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27 × 27 pixels (2000 with vessels and 2000 without vessels) on the green channel. The CNN for blood
vessel segmentation was implemented using MatConvNet.Symmetry 2018, 10, x FOR PEER REVIEW  8 of 26 
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2.3. Learning Phase

The learning phase is necessary because this system can be used for different DBs and different
fundus cameras. It can be mentioned that the set parameters in the LP can be stored and are not
required for each use of the system. LP is usually necessary when the imaging device for the retina
is changed, another retinal database is used, or other parameters are required. Therefore, in the LP,
the system calibration is practically done. We used a supervised method for system training because,
in this case, it performs better and requires less computational effort than an unsupervised one. To this
end, a set of candidate features (CF, Table 1) for each box from a learning set (LS) was calculated.
Five classes are considered: OD, MA, EX, HE (as RoIs), and the class of the rest, NR (Non-RoI). The LP
block diagram is presented in Figure 4. In order to select the features used in the segmentation process,
the LP is divided into two tasks: (1) the establishment of the representative value of the features for
each class, and (2) feature selection and establishment of classifiers for the segmentation process of
each class. Correspondingly, LS is also divided into two disjoint sets: LS1 (learning set for Task 1) and
LS2 (learning set for Task 2).

LS = LS1∪ LS2, LS1∩ LS2 = Φ (1)

Each class has 10 representative boxes in LS1 and 10 representative boxes in LS2 (experimentally
and arbitrarily chosen). Thus, the number of boxes is 50 for LS1 (5 × 10 = 50 boxes) and also for LS2 (2).

Card{LS1} = Card{LS2} = 50 (2)

Task 1. For each feature F from (CF), the representative of each class is established by averaging
the corresponding feature values on the representative class boxes LS1: FOD, FMA, FEX, FHE, FNR.
The exemplification of the representative feature calculation for the OD class is done in the next
section (Table 2).

Task 2. This task consists of feature selection and weight assignation for classifiers. Because the
classification process takes into account heterogeneous features, it is convenient to consider the image
classification based on weighted local classifiers. To this end, another set (LS2) of 50 boxes (10 for each
class) is used. Taking into account the representatives of classes established in Task 1, each box from
the learning set LS2 is classified based on minimum distance to the representatives of the classes for
each feature. The considered distances are the absolute differences in the case of scalar features and
the Minkowski distance of order 1 in the case of the Local Binary Pattern (LBP) histogram (Table 1).
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2.3.1. Feature Evaluation for Class Representatives

In order to calibrate the system for different features and color channels (corresponding to RoIs)
the following set of texture features are investigated [56,57]: statistical features of order 1 (Im, mean
intensity), features extracted from co-occurrence matrices (Con, contrast; En, energy; Ent, entropy;
Hom, homogeneity; Cor, correlation; Var, variance), fractal type features (Dm, mass fractal dimension;
L, lacunarity) and LBP type features (LBP, histogram of Local Binary Pattern) (Table 1). The mean
intensity Im is a statistical characteristic, calculated as the average of the pixel intensity I(i,j) on different
color channels for each box. M ×M represents the box dimension. The co-occurrence matrix Cd is
computed as the average of eight co-occurrence matrices of dimension K × K, where K represents the
number of levels in the monochrome image, with a displacement d and directions at 0, 45◦, 90◦, 135◦,
180◦, 225◦, 270◦, and 315◦. For Con, Ent, En, Hom, Cor, and Var, the parameter d (distance in pixels) is
considered as a subscript.
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For DFD calculation, a 3D configuration is created in order to be covered with boxes of dimension
r × r× s, where r is the division factor and s is the box height s = rImax/M [58]. Here Imax represents
the maximum value of the intensity level and M ×M is the image dimension. Each pixel (i,j) from
the square Sr(u,v) of dimension r × r has an intensity value I(i,j) which belongs to a box from the stick
of boxes with height s. The maximum value of I(i,j), for (i, j) ∈ Sr(u, v), is noted by p(u,v)and the
minimum value is noted by q(u,v) (Table 1). It can be considered that nr(u,v), which is the difference
between p(u,v) and q(u,v), covers the 3D relief of the monochrome image created by Sr(u,v) and I(i,j),
for (i, j) ∈ Sr(u, v). Therefore, ∑

u
∑
v

nr(u, v) covers the entire configuration created on the monochrome

image I. Next, the DFD algorithm is similarly with the standard box counting algorithm. The lacunarity,
which characterizes the homogeneity and gaps, is a powerful tool in medical image classification and it
is also a fractal type feature [59]. The lacunarity can be considered as a complementary feature because
it can differentiate between two textures of the same fractal dimension. A high value of lacunarity
shows that the texture has many holes and great heterogeneity.
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Table 1. Feature set (candidate features, CF) for learning phase.

Mean Intensity Im = 1
M×M

M
∑

i=1

M
∑

j=1
I(i, j) Contrast Cond =

K
∑

i=1

K
∑

j=1
(i− j)2Cd(i, j)

Entropy Entd = −
K
∑

i=1

K
∑

j−1
Cd(i, j) · log2[Cd(i, j)] Energy End =

K
∑

i=1

K
∑

j=1
Cd(i, j)2

Homogeneity Homd =
K
∑

i=1

K
∑

j=1

Cd(i,j)
1+|i−j| Correlation Cord =

K
∑

i=1

K
∑

j=1

i·j·Cd(i,j)−µx−µy
σxσy

Variance Vard =
K
∑

i=1

K
∑

j=1
(i− µ)2 · Cd(i, j) Local Binary

Pattern Histogram H = [H0, H1, . . . , Hn−1]

Differential
Fractal Dimension

DFD =
log
(

∑
u

∑
v

nr(u,v)
)

log r
nr(u, v) = p(u, v)− q(u, v) + 1

Lacunarity L(r) =
∑
N

N2·P(N,r)[
∑
N

N·P(N,r)
]2 , N = ∑

u
∑
v

nr(u, v)

Another feature successfully used in texture classification is the LBP histogram. For each pixel,
a neighborhood of dimension (2h + 1) × (2h + 1) is considered. The contour of the neighborhood is of
8h = n pixels and the texture defined in the neighborhood of the central pixel is described as a vector
of elements

VT = [vC, v1, v2, . . . , vn] (3)

where vC represents the value of the central pixel pC and v1, v2, . . . , vn are the values of its neighbors
p1, p2, . . . , pn (p1 is the pixel from upper left corner of the neighborhood). The neighborhood pixels are
tested clockwise. Based on the type of difference obtained (negative or positive) between the central
pixel vC and each neighbor (3), defined in VT, the LBP code [59] can be computed as a sequence of
binary numbers (by concatenating the result of each difference), as described in Equation (4).

d(vC, vk) =

{
0, if vC − vk ≥ 0
2k−1, if vC − vk < 0

(4)

After computing the binary format, the LBP code is converted to decimal format (Equation (5)).

LBP =
n

∑
k=1

d(vC, vk) (5)

The LBP histogram vector H = [H0, H1, . . . , Hn − 1] is calculated as a histogram of values of LBP
codes of all box pixels.

At the end of this task, the representatives of the classes are the averages of the feature values for
the boxes considered in LS1 (Tables 2–4).

2.3.2. Feature Selection and Establishment of Classifiers

1. Feature Selection

Feature selection is the most difficult problem due to the similarities or symmetries between the
retinal RoIs—OD and EX (color and segmented shapes) or EX and HE (segmented shapes). It is done
in the learning phase by the means of confusion matrices (CMs), calculated for each feature from
the previous set and for each color component. CMs (Figure 5) are computed by considering sets of
10 manually selected images (boxes) for each class—OD, MA, EX, HE, and NR. In CM, ODa represents
the total number of actual boxes which contain OD, MAa represents the total number of actual boxes
which contain MA, and so on. Similarly, ODp represents the total number of predicted boxes which
contain OD, MAp represents the total number of predicted boxes which contain MA, and so on. OD/OD
represents the total number of boxes which contain the OD and were correctly predicted. Similarly,
MA/MA represents the total number of boxes which contain the MA and were correctly predicted,
OD/MA represents the number of boxes containing OD classified as MA, and so on. tr is the total
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number of boxes correctly classified, meaning the trace of CM. In order to select a feature as efficient
for the classification process, the trace of CM is computed (Equation (6)).

tr(CM) = OD/OD + MA/MA + EX/EX + HE/HE + NR/NR (6)

Using the concept of the confusion matrix (Figure 5), three selection criteria are used:

• If tr(CM) ≥ 0.75 · Total, where Total (Equation (7)) represents the number of boxes considered,
then the tested feature is a relevant one and it is kept; generally, this feature can be used for
more RoIs.

Total = ODa + MAa + EXa + HEa + NRa (7)

In our case, Total = 50.
• To include a feature into the set of selected features for the class Ci, the corresponding value Ci/Ci

from its CM must be higher than 0.75Cia, where Cia represents the total boxes containing Ci used
in the learning phase, Task 2 (LS2)—in our case, Cia = 10. These criteria act as the performance
evaluation, in order to select the most efficient features from a given set of features.

• If the distance (Minkowski of order 1 [60]) between two CMs (corresponding to two features) is
low, then one of the features can be rejected as redundant.

For simplicity, we considered the following notation:

C1 = OD, C2 = MA, C3 = EX, C4 = HE, C5 = NR (8)
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2. Calculation of Feature Weights and Establishment of Classifiers

In the Feature Selection task, a set of efficient features was selected for each class Ci, i = 1, 2, 3,
4 (e.g., excluding NR). Then, for each class Ci and selected feature Fj, from the corresponding CM a
weight wij is calculated using Equation (9) and a local classifier Dij (11) is considered and associated
with wij.

wij =
Ci/Ci

Cia
(9)

A local classifier Dij for the class Ci and the feature Fj is implemented in the following way.

First, a confidence interval CI j
i is created (Equation (10)), where Fj

i min and Fj
i max represent,

respectively, the minimum and the maximum of the values Fj for the class Ci obtained from the
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LS1 set. If Fj = LBPH, then a confidence band for the histogram is considered. The classifier Dij is given
in Equation (11), where B is the box to be classified.

CI j
i =

[
Fj

i min; Fj
i max

]
(10)

Based on local classifiers Dij for each class Ci, a global classifier Di is developed (Equation (12)).
Thus, by considering the local classifier Dij, an intelligent processing network for classification predicts
that the patch B belongs to class Ci, i = 1, 2, 3, 4, if the associated weighting vote Di(B) (Equation (12))

is maximum and higher than 0.7×
s
∑

j=1
wij, where s is the number of features associated with the class

Ci. If not, then B belongs to the class C5 = NR. The threshold 0.7 was experimentally chosen. This can
be considered as classification process based on a voting scheme with a threshold.

Dij(B) =

{
wij, if B ∈ CI j

i
0, else

(11)

Di(B) =
s
∑

j=1
Dij(B)

Di(B) = max{Dk/k = 1, 2, 3, 4}
(12)

Taking into account the selection criteria, in the learning phase, Step 2, for each RoI a dedicated
classifier is built: D1 for the OD class, D2 for the MA class, D3 for the EX class, and D4 for the HE class.
These classifiers are visible in the operating phase (Figure 6). So, each classifier has specific features
(Table 5): D1—ImG, ConG, FDG, and LBPH; D2—ConG, EnG, LG, and LB; D3—ImG, ConG, EnG, HomG,
and FDG; D4—ImR, FDR, LB, and LR.

2.4. Operating Phase

The OP (Figure 6) classifies the boxes obtained by division of the retinal image under investigation
and also determines some parameters of the detected RoIs like position and size. The block diagram
from Figure 6 shows a multilevel structure of this phase. The first level does the calculation of features
established in the learning phase. All features are computed in a parallel manner: contrast on green
(ConG), energy on green (EnG), homogeneity on green (HomG), mean intensity on green (ImG), mean
intensity on red (ImR), differential fractal dimension on green (FDG) differential fractal dimension on
red (FDR), lacunarity on blue (LB), lacunarity on green (LG), lacunarity on red (LR), and local binary
pattern on H (LBPH). The second layer is the classifiers’ layer for OD, MA, EX, and HE. For each
feature involved, the corresponding weight (from the learning phase) is assigned. The classifiers,
based on a voting scheme, use the representatives of the classes also established in the learning phase.
The classifier outputs are equal to 1 if the box contains the corresponding RoI and 0 if not. The last
layer of the structure represents the output layer (module) of ISRI and establishes the type of RoI—OD,
MA, EX, HE, or NR (by RoI detection module)—RoI position, and the evaluation of the size of RoI
(as percent from box area). To this end, a binarization procedure is needed. Below, the algorithms for
RoI detection and evaluation are presented (Algorithms 1–4).
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(b) MA Detection and Localization

Algorithm 2: Operational Phase—MA
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(d) HE Detection, Localization, and Evaluation

Algorithm 4: Operational Phase—HE
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the MESSIDOR case. Examples of feature calculations for OD class representations are presented in
Table 2 (36 features) and Table 3 (LBP feature). The last column contains the average values of the row.
The results concerning the representatives for the classes OD, MA, EX, and HE are presented in Table 4.
The features from CF (Table 1) were tested on R, G, B, and H color components and, in concordance
with the selection criterion, the selected features and the corresponding color channels are marked
with green in Table 4.

The confusion matrices are calculated using the set LS2 for all features and all classes. Some
examples of CMs are presented in Figure 9. As can be observed, the values greater than 8 (greater than
0.75Cia—see feature selection from the Section 2.3.2) are highlighted with green. For example, according
to Figure 9a, ImG is a feature selected for OD and EX detection. Similarly, Figure 9b determines the
classifiers which use ConG, Figure 9c determines the classifiers which use EnG, Figure 9d determines the
classifiers which use HomG, Figure 9f determines the classifiers which use LBPH, Figure 9g determines
the classifiers which use FDG, and Figure 9h determines the classifiers which use LR. It can be observed
in Figure 9e that EntG is not a proper feature for any class.
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Table 2. Exemplification of feature calculation for the OD class (marked with orange are the features
selected for OD).

Boxes/Features LB1_1 LB2_1 LB3_1 LB4_1 LB5_1 LB6_1 LB7_1 LB8_1 LB9_1 LB10_1 Repr.
Notation

Repr.
Value

ImR 0.974 0.985 0.997 0.853 0.910 0.956 0.987 0.801 0.966 0.836 ImROD 0.926
ImG 0.543 0.528 0.567 0.564 0.521 0.542 0.515 0.555 0.594 0.585 ImGOD 0.551
ImB 0.107 0.119 0.053 0.094 0.115 0.051 0.129 0.015 0.094 0.101 ImBOD 0.088
ImH 0.085 0.085 0.084 0.088 0.084 0.063 0.064 0.076 0.083 0.084 ImHOD 0.080
ConR 0.706 0.209 0.252 0.005 0.000 0.000 0.099 0.277 0.280 0.112 ConROD 0.194
ConG 0.456 0.426 0.488 0.470 0.471 0.392 0.428 0.417 0.408 0.476 ConGOD 0.443
ConB 0.128 0.036 0.275 0.131 0.151 0.419 0.097 0.269 0.142 0.040 ConBOD 0.169
ConH 0.024 0.034 0.012 0.050 0.031 0.120 0.701 0.305 0.023 0.023 ConHOD 0.132
EntR 0.764 0.811 0.853 0.870 0.438 0.998 0.928 0.132 0.379 0.120 EntROD 0.619
EntG 0.804 0.725 0.734 0.691 0.999 0.763 0.646 0.709 0.733 0.664 EntGOD 0.746
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Table 2. Cont.

Boxes/Features LB1_1 LB2_1 LB3_1 LB4_1 LB5_1 LB6_1 LB7_1 LB8_1 LB9_1 LB10_1 Repr.
Notation

Repr.
Value

EntB 0.001 0.006 0.004 0.123 0.538 0.054 0.003 0.195 0.089 0.999 EntBOD 0.201
EntH 0.221 0.323 0.119 0.588 0.423 0.253 0.352 0.145 0.283 0.208 EntHOD 0.291
EnR 0.228 0.307 0.428 0.431 0.998 0.998 0.261 0.452 1.000 1.000 EnROD 0.610
EnG 0.086 0.107 0.245 0.283 0.121 0.157 0.223 0.397 0.213 0.239 EnGOD 0.207
EnB 0.393 0.475 0.260 0.294 0.309 0.737 0.909 0.345 0.462 0.246 EnBOD 0.443
EnH 0.917 0.868 0.961 0.708 0.805 0.991 0.987 0.989 0.885 0.923 EnHOD 0.903

HomR 0.946 0.888 0.873 0.973 0.897 0.999 0.999 0.950 1.000 0.878 HomROD 0.940
HomG 0.946 0.738 0.753 0.818 0.845 0.870 0.999 0.999 0.805 0.878 HomGOD 0.865
HomB 0.982 0.984 0.895 0.922 0.868 0.852 0.951 0.997 0.993 0.885 HomBOD 0.933
HomH 0.988 0.983 0.994 0.975 0.985 0.992 0.995 0.994 0.988 0.989 HomHOD 0.988
CorR 0.845 0.832 0.451 0.445 0.017 0.701 0.873 0.890 0.459 0.388 CorROD 0.590
CorG 0.831 0.815 0.539 0.787 0.774 0.769 0.744 0.516 0.339 0.658 CorGOD 0.677
CorB 0.379 0.339 0.691 0.664 0.668 0.732 0.526 0.643 0.682 0.433 CorBOD 0.576
CorH 0.607 0.657 0.577 0.798 0.816 0.534 0.625 0.426 0.751 0.577 CorHOD 0.637
VarR 0.837 0.824 0.820 0.775 0.967 0.633 0.724 0.995 0.977 0.998 VarROD 0.855
VarG 0.999 0.954 1.025 0.576 1.293 0.726 0.761 0.845 0.780 0.897 VarGOD 0.886
VarB 0.296 0.297 0.297 0.307 0.393 0.300 0.296 0.316 0.303 0.998 VarBOD 0.380
VarH 0.816 0.865 0.778 0.987 0.953 0.745 0.745 0.745 0.856 0.809 VarHOD 0.830
FDR 2.514 2.520 2.575 2.554 2.508 2.556 2.519 2.506 2.527 2.555 FDROD 2.533
FDG 2.575 2.580 2.592 2.583 2.581 2.613 2.597 2.558 2.581 2.583 FDGOD 2.584
FDB 2.629 2.656 2.643 2.562 2.605 2.570 2.560 2.685 2.575 2.590 FDBOD 2.608
FDH 1.306 1.287 1.287 1.263 1.232 1.353 1.323 1.300 1.269 1.331 FDHOD 1.295
LR 0.481 0.558 0.682 0.247 0.610 0.262 0.883 1.181 0.486 0.763 LROD 0.615
LG 0.299 0.485 0.359 0.245 0.579 0.245 0.293 0.362 0.306 0.683 LGOD 0.386
LB 0.295 0.423 0.456 0.301 0.356 0.858 0.295 0.423 0.516 0.303 LBOD 0.423
LH 0.227 0.216 0.227 0.203 0.318 0.151 0.150 0.140 0.293 0.200 LHOD 0.212

Table 3. LBP on H for the set of 10 boxes for the establishment of the OD class.

LBPH Vector P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 OD Class

LBPH_1 11381 12510 12215 12596 12844 11721 13249 12894 13000 12518 12493
LBPH_2 5389 5679 5813 5560 5372 5095 5096 5400 5281 5528 5421
LBPH_3 5512 5309 5496 5306 5141 5503 5163 5307 5294 5484 5351
LBPH_4 1395 1779 1732 1730 1922 1400 1941 1777 1756 1740 1717
LBPH_5 6197 6201 6320 6297 5609 6198 5635 6208 6317 6332 6131
LBPH_6 7123 6412 6421 6121 5842 7119 5864 6413 6126 6435 6388
LBPH_7 1926 2231 2094 2140 2171 1937 2191 2203 2134 2089 2112
LBPH_8 5819 5225 5461 5235 5529 5836 5548 5237 5253 5479 5462
LBPH_9 6010 5441 5657 5365 5845 5995 5862 5463 5361 5655 5665
LBPH_10 14784 14749 14327 15186 15261 14732 14987 14634 15014 14276 14795

Table 4. Results for class representatives. Marked with green are the features selected for different RoIs.

Feature
Color/RoI OD MA EX HE NR Feature

Color/RoI OD MA EX HE NR

ImR 0.926 0.902 0.950 0.699 0.890 LBPH_1 12493 2167 1092 724 611
ImG 0.551 0.399 0.459 0.342 0.365 LBPH_2 5421 581 848 437 312

ConG 0.443 0.057 0.609 0.148 0.254 LBPH_3 5351 664 1775 1636 1222
EnG 0.207 0.739 0.811 0.579 0.585 LBPH_4 1717 231 69 22 45

HomG 0.865 0.971 0.876 0.927 0.937 LBPH_5 6131 707 928 234 367
FDR 2.533 2.620 2.778 2.514 2.591 LBPH_6 6388 1483 640 886 889
FDG 2.584 2.603 2.510 2.539 2.617 LBPH_7 2112 256 125 102 93
LR 0.615 0.148 0.234 0.151 0.170 LBPH_8 5462 754 251 336 273
LG 0.386 0.093 0.415 0.165 0.224 LBPH_9 5665 523 302 263 244
LB 0.423 0.061 0.349 0.112 0.155 LBPH_10 14795 2634 3970 5360 5944
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accept the corresponding feature for the classifier.

Table 5 presents the traces of all confusion matrices associated with features (the rows represent
such CM traces). The fulfillment of the selection criterion for the feature-class pair (from the confusion
matrices) and also the associated weights for classifiers are highlighted in gray. The last column
indicates the class which uses the corresponding feature in their classifier. The features and associated
weights for each RoI can be extracted from Table 5. The classifiers from Equation (12)—D1, D2, D3,
and D4—were implemented taking into account the confidence intervals and band associated with
the weights and the corresponding RoIs (OD, MA, EX, and HE) (Table 6). For the operational phase
testing, both MESSIDOR and STARE databases were used (Figure 10). Some results concerning the box
classification are given in Figure 11. The boxes classified as EX or HE have undergone a segmentation
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process (Figure 11, boxes labeled with SB). The results of size evaluation of EXs and HEs are presented
in Tables 7 and 8, respectively. Then, by summing the partial areas of EXs (HEs) from boxes belonging
to the same image, a global evaluation in pixels and percent can be obtained (Table 9).

Table 5. Results of test for feature selection and their weight establishment. Marked with gray are the
classes which accept the corresponding feature for the classifier and the associated weights.

Feature/RoI OD/WOD MA/WMA EX/WEX HE/WHE NR Tr Observations
RoI for W ≥ 0.8

ImR 5 5 4 8/0.8 5 27 HE
ImG 8/0.8 5 8/0.8 4 5 30 OD, EX
ImB 6 4 5 4 5 24 -
ImH 4 4 5 5 4 22 -
ConR 4 5 5 4 5 23 -
ConG 9/0.9 8/0.8 9/0.9 5 4 35 OD, MA, EX
ConB 3 4 5 4 4 20 -
ConH 4 5 4 5 6 24 -
EntR 4 4 4 3 4 19 -
EntG 3 3 4 4 5 19 -
EntB 4 5 4 4 3 20 -
EntH 4 4 4 3 3 18 -
EnR 4 5 4 5 5 23 -
EnG 6 8/0.8 8/0.8 4 6 32 MA, EX
EnB 4 5 4 5 6 24 -
EnH 4 3 4 3 6 20 -

HomR 4 3 3 4 5 19 -
HomG 4 3 8/0.8 5 5 25 EX
HomB 5 3 4 4 4 20 -
HomH 3 4 4 3 4 18 -
CorR 5 4 3 3 6 21 -
CorG 3 3 4 4 5 19 -
CorB 5 4 5 5 3 22 -
CorH 3 4 3 4 4 18 -
VarR 4 3 4 4 5 20 -
VarG 4 5 3 4 7 23 -
VarB 3 4 4 3 5 19 -
VarH 3 3 4 4 6 20 -
LBPR 5 5 3 4 5 22 -
LBPG 6 5 5 3 5 24 -
LBPB 4 3 4 4 4 19 -
LBPH 9/0.9 5 5 4 6 29 OD
FDR 4 5 4 8/0.8 5 26 HE
FDG 8/0.8 6 8/0.8 5 5 32 OD, EX
FDB 4 5 3 5 5 22 -
FDH 4 4 5 5 5 23 -
LR 4 5 4 8/0.8 6 27 HE
LG 4 8/0.8 6 5 5 28 MA
LB 4 8/0.8 6 8/0.8 5 31 MA, HE
LH 4 5 5 5 4 23 -
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Table 6. Results for class representatives.

Class Selected
Features Weight Values of the Class Representative. Confidence Intervals and Band

(LBPH Case)

OD

ImG 0.8 [0.515; 0.594]
ConG 0.9 [0.392; 0.476]
FDG 0.8 [2.575; 2.613]

LBPH 0.9 [11381; 13000], [5095; 5813], [5141; 5512], [1395; 1941], [5609; 6320], [5842;
7123], [1926; 2231], [5225; 5836], [5361; 6010], [14276; 15261]

MA

ConG 0.8 [0.038; 0.063]
EnG 0.8 [0.701; 0.742]
LG 0.8 [0.081; 0.113]
LB 0.8 [0.049; 0.064]

EX

ImG 0.8 [0.431; 0.478]
ConG 0.9 [0.575; 0.627]
EnG 0.8 [0.789; 0.824]

MomG 0.8 [0.852; 0.901]
FDG 0.8 [2.491, 2.527]

HE

ImR 0.8 [0.679; 0.717]
FDR 0.8 [2.487; 2.525]
LR 0.8 [0.141; 0.163]
LB 0.8 [0.103; 0.126]
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operating phase.

Table 7. Area and percentage of EXs for different segmented boxes.

Box SB1_3 SB2_3 SB3_3 SB4_3 SB5_3 SB6_3 SB7_3 SB8_3 SB9_3 SB10_3

Pixels 1819 713 776 957 608 366 420 543 389 129
Percent (%) 44.38 17.39 18.94 23.36 14.85 8.95 10.25 13.26 9.50 3.15

Table 8. Area and percentage of HEs for different segmented boxes.

Box SB1_4 SB2_4 SB3_4 SB4_4 SB5_4 SB6_4 SB7_4 SB8_4 SB9_4 SB10_4

Pixels 406 249 307 355 453 353 416 242 350 264
Percent (%) 9.91 6.08 7.49 8.66 11.05 8.62 10.15 5.91 8.54 6.44
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Table 9. Segmented boxes with EX from the image Im0001 (STARE DB). Partial and total size and
corresponding percentage.

Segmented
Boxes/Entire Image
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Table 9. Segmented boxes with EX from the image Im0001 (STARE DB). Partial and total size and 

corresponding percentage. 

Segmented 

Boxes/ 

Entire Image 
      

Area (pixels) 1757 1127 983 622 961 8683 

Percentage 
(%) 

42.9 27.5 24 15.18 23.46 3 

  

Area (pixels) 1757 1127 983 622 961 8683
Percentage (%) 42.9 27.5 24 15.18 23.46 3

4. Discussion

For testing and evaluation of the proposed system we used a set of 200 images from STARE and
MESSIDOR databases (S1: 50 normal, without EX or HE; S2: 50 only with EX; S3: 50 only with HE;
S4: 50 with both EX and HE). From S1, S2, S3, and S4, OD and MA were detected; from S2 and S4,
EX was evaluated; and from S3 and S4, HE was evaluated. The flexibility of the system allows the
use of different box dimensions for different databases. For box classification, the performances are
presented in Table 10, where TP is true positive, TN is true negative, FP is false positive, and FN is false
negative. The obtained performances in terms of accuracy are presented and compared with other
methods in Table 11. It can be observed that only our system performs the detection of all RoIs and the
results are similar to or better than those of other methods.

In this particular experiment the blood vessel analysis was not considered for OD detection as
it has been detailed in a previous work by the authors [6]. By considering the pixel density of the
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blood vessels in the candidate boxes to contain OD, it was experimentally shown that the accuracy
detection increased. Contrarily, by eliminating the blood vessels from the retinal image, HE detection
and segmentation gave better results. As a direction for feature research, we propose to extend the
system functions to other parameters like OD diameter, cup/OD diameter ratio, and blood vessel
segmentation of an entire image.

Table 10. The confusion matrices and the performances for box classification.

RoI Performances OD MA EX HE
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Precision (%)
PPV = TP

TP+FP
99.5 98 97.5 97

Accuracy (%)
ACC = TP+TN

TP+TN+FP+FN
99 98 98 96

Table 11. Performance comparison (accuracy (%)).

Method RoI [8] [16] [17] [18] [29] [30] [40] [41] [53] [45] Our Method

OD 91.36 98.77 95.77 99.2 - - - - - - 99
MA - - - - 94 97.5 - - - - 98
EX - - - - - - 97.01 93.8 85.6 - 98
HE - - - - - - - - - 97.2 96

5. Conclusions

The proposed method for the detection and evaluation of retinal RoIs takes into consideration
information about pixel distribution (second-order statistics), color, and fractal textures. An intelligent
system is thus implemented which contains three main modules: preprocessing, learning, and operating.
The retinal images are decomposed into boxes (of variable size) for different RoIs, with the aid of a
sliding box algorithm or a nonoverlapping box algorithm. Furthermore, a CNN structure is proposed
for blood vessel segmentation. In the learning phase, effective feature selection is made based on
the primary statistic information provided by confusion matrices and minimum distance classifiers.
Two important cues are considered for the operational mode: weights given to the selected features
and confidence intervals associated with the selected features for each class (representatives of classes).
Conclusively, statistical analysis and comparison with similar works validated the implemented system.
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