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Abstract: Intelligent cooperative multiagent systems are applied for solving a large range of real-life
problems, including in domains like biology and healthcare. There are very few metrics able to make
an effective measure of the machine intelligence quotient. The most important drawbacks of the
designed metrics presented in the scientific literature consist in the limitation in universality, accuracy,
and robustness. In this paper, we propose a novel universal metric called MetrIntSimil capable of
making an accurate and robust symmetric comparison of the similarity in intelligence of any number
of cooperative multiagent systems specialized in difficult problem solving. The universality is an
important necessary property based on the large variety of designed intelligent systems. MetrIntSimil
makes a comparison by taking into consideration the variability in intelligence in the problem solving
of the compared cooperative multiagent systems. It allows a classification of the cooperative multiagent
systems based on their similarity in intelligence. A cooperative multiagent system has variability
in the problem solving intelligence, and it can manifest lower or higher intelligence in different
problem solving tasks. More cooperative multiagent systems with similar intelligence can be included
in the same class. For the evaluation of the proposed metric, we conducted a case study for more
intelligent cooperative multiagent systems composed of simple computing agents applied for solving
the Symmetric Travelling Salesman Problem (STSP) that is a class of NP-hard problems. STSP is the
problem of finding the shortest Hamiltonian cycle/tour in a weighted undirected graph that does not
have loops or multiple edges. The distance between two cities is the same in each opposite direction.
Two classes of similar intelligence denoted IntClassA and IntClassB were identified. The experimental
results show that the agent belonging to IntClassA intelligence class is less intelligent than the agents
that belong to the IntClassB intelligence class.

Keywords: symmetric travelling salesman problem; diversity of intelligent systems; similarity
in intelligence; machine intelligence measure; cooperative problem solving; computational-hard
problem

1. Introduction

Intelligent cooperative multiagent systems (ICMASs) are applied for a large diversity of difficult
real-life problem solving tasks [1–6]. In cooperative multiagent systems (CMASs), the intelligence
could be considered at the system’s level. Much research has [3,7] proved that, even in cooperative

Symmetry 2018, 2, 48; doi:10.3390/sym10020048 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-6254-9291
http://dx.doi.org/10.3390/sym10020048
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 2, 48 2 of 22

multiagent systems composed of simple agents, an increased intelligence at the systems level could
emerge if the member agents cooperate efficiently and flexibly.

In scientific literature, the intelligence estimation is many times based on some intuitive
biologically inspired intelligence considerations. There are very few studies related to intelligence
measurement, from which few are able also to be applied for accurate and robust symmetric
comparison of the intelligence of two or even more multiagent systems. We consider that, similarly to
biological systems, there is a variability even in the case of ICMASs. In some situations, a CMAS could
behave more intelligently, in others less intelligently. Another aspect consists in treating what we call
low and high outlier intelligence values. Sometimes taking into consideration such values could result
in an erroneous evaluation and/or comparison result. Another aspect that we consider important
consists in the number of compared multiagent systems. If the intelligence of more than two multiagent
systems should be compared, an erroneous decision consists in comparing them pairwise. We will
further elaborate on this subject in the discussions section.

We have not found in the scientific literature an effective metric that includes all of the
considerations previously mentioned, able to simultaneously compare the similarity in intelligence
of any number (even more than two) cooperative multiagent systems. With this purpose, we
propose a novel metric called MetrIntSimil that is capable of making an accurate and also robust
symmetric comparison of the similarity in intelligence of two or more than two cooperative multiagent
systems, taking into consideration the variability in the intelligence of the multiagent systems.
The Travelling Salesman Problem (TSP) [8–10] is a well known NP-hard problem (non-deterministic
polynomial-time hardness). NP-hardness, is the defining property of a class of problems that are,
“at least as hard as the hardest problems in NP”. Both variants of the TSP the Symmetric TSP (STSP) and
the Asymmetric TSP (ATSP) are frequently studied. In order to assess the effectiveness of the proposed
metric, we conducted a case study. Three multiagent systems composed of cooperative reactive agents
specialized in solving a class of NP-hard problems, the STSP [11], were considered. The cooperative
multiagent systems operated as a Best-Worst Ant System [12,13], a Min-Max Ant System [14,15] and an
Ant Colony System [16,17].

The upcoming part of the paper is organized as follows: Section 2 analyzes the intelligence of
cooperative multiagent systems; representative metrics described in the scientific literature proposed
for measuring artificial systems intelligence are also presented. In Section 3, our proposed MetrIntSimil
metric for intelligence comparison of more cooperative multiagent systems is presented. For validation
purposes, in Section 4, a case study was performed. In Section 5, we discussed on the designed
MetrIntSimil metric and compared it with a recent metric presented in the literature. Section 6 presents
our next research direction. In Section 7, the main conclusions of the research described in this paper
are presented.

2. Measuring the Machine Intelligence Quotient

2.1. Intelligent Cooperative Multiagent Systems

Theories and principles of systems science can explain many complicated matters of the world
and offer a new vision on many unsettled problems [18,19]. As a particular scientific domain, it has its
own particular methodology for qualitative and quantitative analyses. The motivation for the domain
of systems science is the necessity of understanding the systems research with operable mathematical
methods as an organic whole. Systems science among others establishes systemic formulas based on a
unified systems approach.

Langley, Laird, and Rogers [20] examine the motivations for research on cognitive architectures.
In the paper, the architecture of cognitive systems described in scientific literature was reviewed.
The authors discuss some open issues that should drive research related to the architecture of
cognitive systems. They consider the following capabilities that a cognitive architecture should
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support: organization, performance, learning and some theoretical criteria for making an evaluation at
the system level.

In Ref. [21], a prototype agent-based geographical information system (GIS) abbreviated as GXGIS
is proposed. In the proposal, a developed interface agent interactively assists the users in the query
formation processes. It has the capability to offer domain knowledge associated with a given query.
Another capability of the agent consists in the recording of a user’s troubleshooting experience and
show it to the same user or other users as hints.

We call intelligent agent-based systems the intelligent agents and the intelligent cooperative
multiagent systems. The motivation for using this generic name consists in the fact that a cooperative
multiagent system from the external point of view could be seen as an individual. Whomever (human
or an artificial agent) submits a problem for solving does not know that the problem is solved by an
agent or cooperatively by more agents. He/she/it submits the problem to an agent and the problem
could be subsequently solved, if necessary, cooperatively by more agents. There is various research
worldwide focused on the development of intelligent agent-based systems [2,3,22,23].

The agents’ intelligence could not be unanimously defined based on the large diversity of
agents [2]. The intelligence estimation is many times realized based on different considerations
like [3]: autonomous learning, self-adaptation and evolution. These considerations are inspired by
biological systems able to learn during their life cycle, to adapt to the environment and to evolve
during more generations.

Mobile agents versus static agents are able to move in the environment during the problem solving.
Mobile agents could be classified as software mobile agents and robotic mobile agents. The software
mobile agents operate in a software environment (a computer, or a computer network); the mobile
robotic agents operate in a physical environment (a swarm of mobile robots distributed in a physical
environment specialized in collecting objects, for example).

To illustrate the impossibility of the definition of the agents’ intelligence, let us consider
the differences in intelligence between static software agents vs. mobile software agents [2].
Many developed mobile agents are more limited in intelligence than their static counterparts.
Limitations in the mobile agents’ endowment with intelligence are based on some practical reasons.
The endowment of a mobile agent with intelligence may increase the agent’s body size. The execution
of an intelligent mobile agent (more complex software code, more computations) in a software
environment requires more computational resources. The transmission of a large number of intelligent
mobile agents in a network might overload the network with data transmission. A large number
of intelligent mobile agents, which execute complex computations to a host, may overload that
host. The mobile agents migrate during their operation in the network, and, based on this fact, it
is difficult to estimate where a mobile agent is at a specific moment of time. This limitation makes
the endowment of mobile agents with communication capacity difficult. The communication is
indispensable for cooperation.

There is no unanimously accepted definition of the cooperative multiagent systems intelligence.
This fact is based on the large diversity of cooperative multiagent systems. Many times, in scientific
literature, a cooperative multiagent system is considered intelligent, based on the simple consideration
that the efficient and flexible cooperation between the agents emerge in intelligence at the systems
level. Based on this aspect, in a cooperative multiagent system, the intelligence could be considered at
the system’s level [2,3]. The intelligence in such a system is higher than the individual member
agents’ intelligence. Even in a very simple cooperative multiagent system, intelligence at the
system’s level could emerge. Efficient and flexible cooperating simple agents could intelligently
solve difficult problems.

There is a lot of research [24,25] focused on the study of decision-making in the frame of
cooperative coalitions. Decisions made in the frame of coalitions outperform many times the decisions
of individuals that operate in isolation.
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Yang, Galis, Guo, and Liu [7] present an intelligent mobile multiagent system composed of
simple reactive agents. The mobile agents are specialized in a computer network administration.
They are endowed with knowledge retained as a set of rules that describe network administration
tasks. The multiagent system could be considered intelligent based on the fact that it simulates the
behavior of a human network administrator.

In our approach, we will refer to agent-based systems, cooperative multiagent systems composed
of two or more agents that cooperatively solve difficult problems. The agent members of such a system
are not necessarily intelligent, but, at the level of the system, there is emerging increased intelligence
that can be quantitatively measured. The study of aspects related to cooperative multiagent system
intelligence is important in order to develop highly efficient problem solving methods.

2.2. Metrics for Measuring the Machine Intelligence

The existence of some properties of the cooperative multiagent systems that could be associated
with intelligence does not allow a quantitative evaluation, such properties just prove its existence.
In Ref. [26], it is considered that the evaluation of a system’s intelligence must be based on some
effective metrics that allow the measuring of the quantity of intelligence and comparison of a system’s
intelligence with the intelligence of another system. In many papers, some evaluation or analysis of
the system’s intelligence are presented. There are very few designed metrics able to make an effective
comparison of two or more multiagent systems’ intelligence.

Besold, Hernandez-Orallo, and Schmid [27] study the difficult problems for the humans that could
be used as benchmark problems for intelligent systems. The authors consider that an intelligent system
that can successfully solve difficult problems for humans has some kind of human-level intelligence.
The paper analyses and discusses this assumption.

There are some metrics developed for making different kinds of measurements in systems that are
considered intelligent. Such metrics are not always developed for measuring the systems’ intelligence
as a whole. They are used only for measuring some aspects that represent interest. A fault-tolerant
system should be able to diagnose and recover from some faults. The fault-tolerance has a direct
impact on the performance of a system. Sometimes, this property of the systems is associated with the
intelligence. Kannan and Parker [28] analyze the intelligent fault-tolerant systems. They study the
effectiveness of some metrics for the evaluation of fault-tolerance in the context of system performance.
A main focus of the presented approach is to capture the effect of intelligence (reasoning and learning)
on the effective fault-tolerance of a system. The fault-tolerance of different heterogeneous multi-robot
teams there were analyzed and compared. The proposed metric is able to make some evaluation of the
quality of learning towards system level fault-tolerance.

Park, Kim, and Lim [29] analyzed the measuring of machine intelligence of human–machine
cooperative systems. They proposed a so-called intelligence task graph as a modeling and analysis
tool. The authors consider that a human–machine cooperative system can be modelled as equations.

Schreiner [30] presents a study realized by the US National Institute of Standards and Technology
(NIST). It accentuates the necessity of developing intelligent systems in the US in different fields such
as the industry and military, including public and private sectors. The study is related to creating
standard measures for systems that can be considered intelligent. Schreiner accentuates the main
studied questions related to how precisely intelligent systems are defined and how to measure and
compare the capabilities that intelligent systems should provide. NIST’s initial approach to establishing
metrics attempts to address different pragmatic and theoretical aspects.

The paper [31] proposes a method called OutIntSys for the detection of the systems, which has a
statistically extremely low or extremely high intelligence, from a set of intelligent systems that solves
the same type(s) of problems. The proposed method can be applied in choosing the most intelligent
systems from a set of intelligent systems able to solve difficult problems.

The Minimum Message Length (MML) principle supports a specific compression as a method
to perform inductive inference resulting in intelligence [32–34]. Dowe and Hajek [35,36] proposed
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an adapted Turing test with some specific compression exercises, having the purpose to measure the
ability of inductive inference in the context of MML [37]. Sterret [38] analyzed how IBM developed a
question-answering computer (Watson) competes against humans on the Jeopardy game. Watson [39]
was developed in the frame of the DeepQA project by a research team led by David Ferrucci at
“Thomas J. Watson Research Center” located in Yorktown Heights, New York, U.S.

Legg and Hutter defined a formal measure [40], presuming that the performance in easy
environments counts more toward an agent’s intelligence than does performance in difficult
environments. Hibbard [41] proposed an alternative measure, which is based on a hierarchy of sets of
increasingly difficult environments, considering a reinforcement learning framework. Hibbard considers
an agent’s intelligence as the ordinal of the most difficult set of environments that it can pass. The applied
measure is defined in Turing machine and finite state machine models of computing. In the finite state
machine model, the measure is calculated as the number of time steps necessary to pass the test.

Anthon and Jannett [42] define the agent-based systems intelligence based on the ability to
compare alternatives with different complexity. In the presented approach, a measure of machine
intelligence allows the comparing of alternatives with different complexity. A method for measuring
the Machine Intelligence Quotient (MIQ) of the human-cooperative system is adapted and applied to
measure the MIQ of an agent-based system. The method is proposed to be applied for agent-based
distributed sensor network systems. The proposal was tested by comparing the MIQ in different
agent-based scenarios for a distributed sensor network application.

Hernandez-Orallo and Dowe [43] proposed the idea of a general test called a universal anytime
intelligence test. The authors of the study consider that such a test should be able to measure the
intelligence level, which could be in different situations very low (called inept systems) or very high
(called brilliant systems), of any biological or artificial system. Such a test should be able to evaluate
slowly and quickly operating systems. Another property of such a test consists in the fact that it could
be interrupted at any time, this way obtaining an approximation of the intelligence score. Based on
this property, if more time is left for a test, then a more accurate result will be obtained. The proposed
test is based on some previous works on the measurement of machine intelligence. The considered
works were based on Kolmogorov complexity and universal distributions. In the 1990s, the C-tests
and compression-enhanced Turing tests were developed. The proposal presented in the paper is also
based on the idea of measuring intelligence through dynamic tests. The authors of the research discuss
different developed tests by highlighting their limitations. They introduce some novel ideas that they
consider necessary for the development of a “universal intelligence test”.

A novel metric called MetrIntMeas for measuring the machine intelligence of a swarm system is
presented in the paper [44]. MetrIntMeas is able to measure the machine intelligence of an evaluated
swarm system and compare it with a considered reference machine intelligence value. The metric also
makes a classification of the studied swarm system, by verifying if it belongs to the class of swarm
systems with the considered reference machine intelligence value. The paper gives a definition to
the swarm systems’ evolution in intelligence. It defines the evolution of the swarm systems in the
intelligence, as a measurable increase in intelligence by using the MetrIntMeas metric.

Many researchers are focused on the study of collective intelligence of the swarm systems.
Many difficult problem solving tasks are based on swarm systems. Winklerova [45] assessed
the collective intelligence of a particle swarm system according to a proposed Maturity Model.
The proposed model is based on the Maturity Model of C2 (Command and Control) operational
space and the model of Collaborating Software. The main aim of the study [45] was to obtain a more
thorough explanation of how the intelligent behavior of the particle swarm emerges. A conclusion
of the research is that a swarm system’s effectiveness can be improved by adaptation of the rules
that specifies the particle’s behaviour. Each particle should adjust its velocity using some control
parameters. The parameters value would be derived from inside of the swarm system.

Ref. [46] proposes a novel metric called MetrIntPair for measuring the machine intelligence of
cooperative multiagent systems. The MetrIntPair metric is able to exactly analyze the intelligence of
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two cooperative multiagent systems. It makes an accurate comparison of the intelligence of the two
studied cooperative intelligent systems at an application, and at the same time it verifies if they can be
included in the same class of intelligence (solve problems with the same intelligence). The intelligence
comparison of two cooperative systems is based on some kind of pairwise problem solving intelligence
evaluations. This approach has as principal advantage versus the non-pairwise intelligence evaluations
the decrease of the number of necessary problem solving experimental intelligence evaluations versus
the case when non-pairwise intelligence evaluations are made.

Liu, Shi, and Liu [47] present a study related to the analysis of the intelligence quotient and the
grade of artificial intelligence. A so-called “standard intelligence model” was proposed. It unifies
artificial intelligence and “human characteristics” that include aspects of knowledge like: input, output,
mastery, and creation.

Douglas Detterman [48] announced a challenge related to the Artificial Intelligence artefact
measuring by classical IQ tests. Sanghi and Dowe [49] in 2003 presented a computer program tested
on some standard human IQ tests. The program was smaller than the chess-playing Deep Blue [50],
having just about 960 lines of code written in the Perl programming language. It surpassed the average
human intelligence score by 100 on some tests [49].

In this subsection, we presented some relevant metrics for measuring machine intelligence.
Each of the proposed metrics is based on a specific method of measuring the intelligence,
appreciating the intelligence measure based on some specific principles/definition of the intelligence.
Different definitions of the intelligence and different associated measuring approaches do not allow a
punctual comparison of the metrics (many of them do not allow even any considerable comparison).
There is no standardization or even a relatively generally acceptable view on what an intelligence
metric should measure. Based on this consideration, the design of novel universal metrics that could
standardize the intelligence measuring is an open and important research direction.

In our opinion, the most feasible consideration of measuring the machine intelligence consists
in the principle of difficult problem solving ability. The purpose of the design of intelligent systems
consists in the efficient solving of difficult problems. We consider that the main purpose of an
intelligence metric consists in the differentiation of the computing systems based on the problem
solving intelligence. The universal MetrIntComp metric [51] presented in the literature is able to
make a robust comparison of two cooperative multiagent system’s intelligence, and classify them
in intelligence classes. MetrIntComp is effective even in the case of small differences in intelligence
between the compared intelligent systems. For proving the effectiveness of the metric, a case study for
two cooperative multiagent systems was presented [51]. MetrIntComp has as disadvantages related to
the reduced accuracy and the limitation in the application for intelligence comparison to more than two
intelligent systems at the same time. We will discuss this subject with more details in the Discussion
section. Based on these limitations, the design of a novel metric that eliminates these limitations is
important and actual.

3. Description of the MetrIntSimil Metric

In this section, we present a novel universal metric proposed for the accurate and robust symmetric
comparison of the similarity in intelligence of two or more than two CMASs specialized in difficult
problem solving. The MetrIntSimil metric is described as an algorithm called from now on Multiagent
Systems Intelligence Comparison. Henceforth, we consider a set of cooperative multiagent systems
denoted as MasSet= {MA1, MA2, . . . , MAk}. |MasSet| = k represents the number of compared
multiagent systems. The obtained intelligence indicators as a result of problem solving intelligence
measuring are denoted as Set1 = {A1t1, A1t2, . . . , A1tn1}, Set2 = {A2t1, A2t2, . . . , A2tn2}, . . . , Setk =
{Akt1, Akt2, . . . , Aktnk}. |Set1| = n1, |Set2| = n2, . . . , |Setk| = nk represents the cardinality/sample
size of Set1, Set2, . . . , Setk. Table 1 presents the obtained intelligence indicator results for
MasSet. A1t1, A1t2, . . . , A1tn1—represents the measured intelligence of the MA1; A2t1, A2t2, . . . ,
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A2tn2—represents the measured intelligence of the MA2; . . . ; Akt1, Akt2, . . . , Aktnk—represents the
measured intelligences of the MAk.

Table 1. Symmetric experimental evaluation of MA1(Set1), MA2(Set2) and MAk(Setk) intelligence.

Set1 Set2 . . . Setk

A1t1 A2t1 . . . Akt1
A1t2 A2t2 . . . Akt2
. . . . . . . . . . . .
A1tn1 A2tn2 . . . Aktnk
CentrInt1 of Set1 CentrInt2 of Set2 . . . CentrIntk of Setk

An intelligence indicator should make a quantitative indication of a system’s intelligence. In the
case of a particular set of cooperative multiagent systems, the researcher who wishes to compare the
intelligence of more multiagent systems should decide on the most appropriate intelligence indicator.
Our metric, presented in the form of the MetrIntSimil algorithm, is appropriate for multiagent systems,
where the problem solving intelligence indicator of each system can be expressed as a single value.
If necessary, in the case of a multiagent system, this value can be calculated as the weighted sum of
some other values that measure different aspects of the system intelligence Equation (1):

IntInd = wg1 ×ms1 + wg2 ×ms2 + · · ·+ wgr ×msr; wg1 + wg2 + · · ·+ wgr = 1. (1)

Equation (1) indicates the general case when the intelligence indicator is calculated as the
weighted sum of r intelligence components measure, where: ms1, ms2, . . . , msr denote the intelligence
components measure, which are obtained as a result of a problem solving intelligence evaluation; and
wg1, wg2, . . . , wgr denote the intelligence components weights. For illustrative purposes, we present
the scenario of an intelligent cooperative multiagent system composed of flying drones (drones
with agent properties) denoted CoopIntDrones. The drones should cooperatively perform different
missions established by a human specialist(s) denoted HE. Based on the efficient cooperative solving
of difficult problems, the intelligence can be considered at the system’s level. The intelligence of
such a system cannot be unanimously defined. The human specialist(s) who would like to measure
the CoopIntDrones intelligence must clarify what he/she understands by intelligence, establish the
corresponding problem solving intelligence indicator, and the intelligence components based on that
should generate the intelligence indicator. HE could consider, for example, the machine intelligence
based on the intelligence of fulfilling the mission and the ability to learn. CoopIntDrones can learn
new data/information/knowledge that could increase the efficiency of cooperation and improve
the fulfilling of future missions. As intelligence components, the following could be considered:
the necessary time for the fulfilling of the mission; the mission fulfilling accuracy; quantity of new
data/information/knowledge learnt at the system’s level; quantity of measurable improvement in
cooperation efficiency by learning; degree of autonomy in the fulfilling of the mission (counting
the number of times for which the remote intervention of human specialists was necessary) and
some others.

CentrInt1, CentrInt2, . . . , CentrIntk represent the central intelligence indicators of the MA1,
MA2, . . . , MAk. We considered the central intelligence indicators of MA1, MA2, . . . , MAk as the
means or the medians of the Set1, Set2, . . . , Setk. The decision for opting as central intelligence
indicator for the mean is in the parametric case (all the intelligence indicator data sampled from
Gaussian population with equal Variance and Standard Deviation(SD); Variance=SD2) or the median in
the nonparametric case (not all the intelligence indicator data sampled from Gaussian population or all
the intelligence indicator data sampled from Gaussian population, but not all the intelligence indicator
data variances are equal).
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Figure 1 presents the flowchart of the main processing steps performed by the MetrIntSimil
metric. The MetrIntSimil algorithm described in detail in Figure 2 compares the intelligence of MA1,
MA2, . . . , MAk on some testing problems sets. It checks if the results (more concretely, the central
intelligence indicators) are similar or different from a statistical point of view. We call in the following,
Null Hypothesis denoted as H0, the statement that MA1, MA2, . . . , MAk intelligence are similar from
the statistical point of view. We denote by H1 the Alternative Hypothesis, which indicates that the
intelligence of MA1, MA2, . . . , MAk is different from the statistical point of view.

Set ; Set  Set

Figure 1. The flowchart of the processing performed by the MetrIntSimil metric.

The MetrIntSimil metric uses as input Set1={A1t1, A1t2, . . . , A1tn1}; Set2 =

{A2t1, A2t2, . . . , A2tn2}; . . . ; Setk = {Akt1, Akt2, . . . , Aktnk} that represents the MA1, MA2, . . . ,
MAk intelligence indicators obtained during the MasSet intelligence evaluation in solving some sets of
test problems.

For the normality verification, we propose the One-Sample Kolmogorov–Smirnov Goodness-of-Fit
test [52–54] and the Lilliefors test [53–55] that is based on the Kolmogorov–Smirnov test. For the verification
of equality of variances of two samples, the F test [56] can be used. For the verification of equality of
variances of more than two samples, we propose the use of the Bartlett test [57,58].

We propose in some cases the use of a method for the elimination of outlier intelligence indicator
values. We call outlier intelligence indicator value, a very high or very low intelligence value, different
from those other intelligence indicator values. The difference of an intelligence indicator value
from others should be considered from the statistical point of view. Based on this fact, we consider
appropriate the application of statistical tests for outlier intelligence values detection. There are many
tests for statistical outliers’ detection described in scientific literature, like: Chauvenet’s criterion [59,60],
Peirce’s criterion [61], Dixon’s Q test [62] and Grubbs test [63].

We chose the Grubbs test for outliers’ detection and decided to apply the significance level
α_grubbs = 0.05. At first application, the Grubbs test is able to detect a single outlier (if there is at
least one outlier). If a value is identified as an outlier, then it can be concluded that this is the most
statistically different value from those other measured intelligence indicator values. If an outlier is
identified, then a decision of whether the outliers’ detection test should be applied again may be
considered. This is a recursive process, and the detection method could be applied consecutively more
times until there are no other outliers identified.

If sample intelligence data does not follow a Gaussian distribution, then one can opt for the
application of a transformation. Some of the most common normalizing transformations are indicated
in Table 2 [64].
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Table 2. Examples of transformation that can be applied in order to obtain normally distributed data.

Type of Data and Distribution Normalizing Transformation

Set comes from Poisson distribution Square root of Set
Set comes from Binomial distribution Arcsine of square root of Set

Set comes from Lognormal distribution Log (Set)

MetrIntSimil: Multiagent Systems Intelligence Comparison Algorithm 

Set1: A1t A1t A1t Set2: A2t A2t A2t Setk: Akt Akt Akt

//The calculated Central Intelligence Indicators  MA , MA ,…, MA

CentrInt1, CentrInt2,…, CentrIntk;

DecisionIntelligence; MA , MA ,…, MA

Set1, Set2,…, Setk;

Coefficient of Variation CV Set1, Set2,…., Setk;

Set1, Set2,…, Setk CV

Set1, Set2,…, Setk 

Set1, Set2,…, Setk;

If then

Set1, Set2,…, Setk 

EndIf

Normality Set1, Set2,…, Setk;

If Set1  Set2 …..  Setk then Normality: YES;

Normality: NO;

EndIf

If Normality YES) then 

// variances Set1, Set2,…, Setk  Bartlett test.

H0Var; H0Var -  Null Hypothesis 

H1Var; H1Var - Alternative Hypothesis

@  H0Var Bartlett test

EndIf

@  H0  H1;//Related to the similarity in intelligence 

If Normality=YES  “H0Var is true” then

Set1, Set2,…, Setk;

CentrInt1, CentrInt2,…, CentrIntk Set1, Set2,…, Setk;

Single-Factor ANOVA _int

P-Value

EndIf

If Normality Normality H1Var is true” then

Set1, Set2,…, Setk.

CentrInt1, CentrInt2,…, CentrIntk Set1, Set2,…, Setk;

Kruskal-Wallis _int

P-Value

EndIf

@  CentrInt1, CentrInt2, CentrIntk

 

If  P-Value then 

H0

DecisionIntelligence=”MA , MA , ….MA  intelligences are similar”  

Else

H1 H0

DecisionIntelligence=”MA , MA ,…, MA  intelligences are different” 

If Kruskal-Wallis then

 Dunn test

Else

Tukey test

EndIf 

EndIF 

EndMultiagentSystemsIntelligenceComparison 

Figure 2. The proposed MetrIntSimil metric.
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For the effective comparison of intelligence of the multiagent systems, the parametric Single-Factor
ANOVA test [65] or the nonparametric Kruskal–Wallis test [66] should be applied. In case of choosing
each of them, the α_int (the significance levels at which the statistical test is applied) value should be
established. We suggest as the value of α_int, α_int = 0.05, which we consider as the most appropriate.
α_int denotes the probability to make a Type I error, to reject H0 (Null Hypothesis) when it is true.
A Type I error means detecting an effect that is not present.

In the proposed metric algorithm, if p-value > α_int (p-value obtained by applying the
Single-Factor ANOVA test or the Kruskal–Wallis test), then it can be decided that H0 could be accepted.
The conclusion states that even if there is a numerical difference between the calculated central
intelligence indicators CentrInt1, CentrInt2, . . . , CentrIntk, there is no statistical difference between
the intelligence of the studied k multiagent systems. The numerical difference is the result of the
variability in the intelligence of the multiagent systems. In this situation, from the classification point of
view, all of the multiagent systems MA1, MA2, . . . , MAk can be classified in the same class composed
of systems with similar intelligence.

If H1 is accepted (as result of H0 rejection), then the intelligence level of MA1, MA2, . . . , MAk is
different. The numerical difference between the central intelligence indicators CentrInt1, CentrInt2, . . . ,
CentrIntk is statistically significant and is not the consequence of the variability. From the classification
point of view MA1, MA2, . . . , and MAk cannot be classified in the same class composed of systems
with similar intelligence. If H1 is accepted, then the Dunn test [67] or Tukey test [68,69] should be
applied, which allow the classification in intelligence classes of all the studied CMASs. More concretely,
these tests make a statistical comparison between the central intelligence indicators, the mean in
parametric case or the median in the nonparametric case.

Tukey test [68,69] is a single-step parametric multiple pairwise comparison method. Tukey test can
be used as a post hoc analysis following the rejection of Single-Factor ANOVA test null hypothesis.

Dunn’s test [67] is a non-parametric multiple pairwise comparisons method. Dunn’s test is based on
rank sums. It is used as a post hoc method following rejection of a Kruskal–Wallis test null hypothesis.
In the case study presented in a further section based on the non-parametric data, the Dunn test
is applied.

4. Measuring the Intelligence of More CMASs—A Case Study on Solving the Symmetric TSP

4.1. Symmetric Travelling Salesman Problem Solving

The TSP has many applications, such as logistics, planning, and the manufacture of microchips.
A sub-problem in DNA sequencing is represented as a slightly modified version of the TSP [70].
The concept city represents DNA fragments, and the concept distance represents a similarity measure
between DNA fragments. Ref. [71] analyses the computational recognition of RNA Splice Sites described
as a modified TSP a Quadratic Traveling Salesman Problem by some exact algorithms. Ref. [72] presents an
evolution based biosensor receptor DNA Sequence generation algorithm. The TSP approach is applied
in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences.

The Travelling Purchaser Problem (TPP) and the Vehicle Routing Problem (VRP) are both NP-hard
problems that represent generalizations of TSP. Since TSP is NP-hard, TPP and VRP are also NP-hard.
The TPP can be enounced as follows “Given a list of marketplaces, the cost of travelling between
different marketplaces, and a list of available goods together with the price of each such good at each
marketplace, the task is to find, for a given list of articles, the route with the minimum combined cost
of purchases and traveling” [73]. The VRP can be enounced as follows “What is the optimal set of
routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?” [74].

Both variants of the TSP, the Asymmetric TSP (ATSP) and the Symmetric TSP (STSP) are frequently
studied. The ATSP characterizes the situation when edges may not exist in both directions or the
distances might be different; a directed graph is formed. Traffic collisions, one-way streets, are examples
of situations when the symmetry property is not satisfied. Dantzig et al. [75] formulated the asymmetric
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traveling salesman problem as a 0–1 linear program on a graph (V,E). Their formulation for the
symmetric case gives rise to the standard subtour elimination polytope SEP(n).

The STSP [11] is the problem of finding the shortest Hamiltonian cycle/tour in a weighted
undirected graph (the distance between two cities is the same in each opposite direction) that does
not have loops or multiple edges. Many practical combinatorial optimization problems in production
management and scheduling can be formulated as equivalent to the STSP. The symmetry property
is useful based on the fact that it halves the number of possible solutions. There are many studies
and research performed on the STSP [76–78]. Ref. [79] proposes a transforming of asymmetric into
symmetric TSP.

Ref. [80] proposes an alternate formulation of the symmetric traveling salesman problem and
presents its properties. The polytope defined by this formulation, U(n), is compared with the standard
subtour elimination polytope SEP(n). It is proved that U(n) ⊆ SEP(n).

Ref. [81] proposes a novel lower bounding and reduction procedures for the STSP. In the
proposal, the lower bounds are obtained through the solution of the linear program corresponding
to the 2-matching relaxation, being improved through a restricted Lagrangean 2-matching approach.
It presents a comparison of the new bounds with bounds obtained with the well-known Lagrangean
1-tree relaxation.

4.2. CMASs That Operate by Mimicking Biological Ants

The ability of biological ants to determine shortest paths to food was studied in many research
papers [82–84]. An individual ant possesses few capabilities, but, when operating in swarms/colonies,
the ants are capable of having a complex surviving behavior. Biological ants communicate by
pheromones, which allow the finding of the shortest path between food sources and their nests.
All ants deposit pheromones on the trail while walking. Each ant follows the pheromone trail that it
meets with some probability, and which is proportional to the density of the pheromone. The more
ants walk on a trail, the more pheromone is deposited on it, and the more and more ants follow that
trail. Based on this collaboration mechanism, there is a very high probability for the ants to find a very
short path (shortest path or close to it).

For proving the effectiveness of the designed MetrIntSimil metric, we conducted a case study.
The Symmetric Travelling Salesman Problem solved by three CMASs formed by autonomous mobile
agents that mimic biological ants was considered. We understand by mobile agents simple computing
embedded agents able to move in the environment during the problem solving. The communication
between the agents is carried out by signs and it is similar to the communication of the biological
ants by using pheromones. This type of communication allows an efficient, flexible and robust
cooperative problem solving even in CMASs composed of a large number of individuals. There are
many studies conducted on systems composed of artificial ants and their applications for different
problem solving [85,86].

Marco Dorigo in his Ph.D. thesis [16,17] proposed first the problem solving based on simple
computing agents that mimic the operation of biological ants. Artificial ants (operating as reactive
agents known in the intelligent agent literature) imitate the behavior of biological ants on how they
search for food. As a general idea, in an Ant System, initially, each agent is placed on a randomly chosen
city (node of the graph). An agent k currently at node i chooses to move to node j by applying the
following probabilistic transition rule Equation (2). After each agent completes its tour, the pheromone
amount on each path will be adjusted according to Equations (3)–(5):

pk
ij(t) =


[τij(t)]

α×[ηij ]
β

∑l∈Jk(i)
[τil(t)]

α×[ηil ]
β , if j ∈ Jk(i),

0, otherwise.
(2)
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τij(t + 1) = (1− ρ)τij(t) + ∆τij(t), (3)

∆τij(t) =
m

∑
k=1

∆τk
ij(t), (4)

∆τk
ij(t) =

{
Q
Lk

, If (i, j) ε tour down by agent k,

0, otherwise.
(5)

In Formulas (2)–(5), the following notations are used: α and β are adjustable parameters.
α and β control the relative weights of the heuristic visibility and the pheromone trail. In the
parameters establishment, a trade-off between edge length and pheromone intensity appears to
be necessary. Q denotes an arbitrary constant. dk,h represents the distance between the nodes (k and h);
ηkh, ηkh = 1/dk,h the heuristic visibility of edge (k, h). 1-ρ is the pheromone decay parameter, 0 < ρ < 1,
and it represents the trail evaporation when the agent chooses a node where it decides to move.
m denotes the number of agents, and Lk denotes the length of the tour performed by agent k.

4.3. The Experimental Setup

For the validation of the proposed metric, we carried out experimental evaluations for different
sets of cooperative multiagent systems. We experimented: Ant System, Elitist Ant System, Ranked Ant
System, Best-Worst Ant System, Min-Max Ant System and Ant Colony System. Finally, we decided to
present the validation for three cooperative multiagent systems between which the central intelligence
indicator value does not have a high difference. In the experiment that we present in the following, we
considered three cooperative multiagent systems denoted as MA1, MA2 and MA3, which operated
as a Best-Worst Ant System [12,13] the MA1; a Min-Max Ant System [14,15] the MA2 and Ant Colony
System [16,17] the MA3. All of them were applied for the Symmetric Travelling Salesman Problem solving.
STSP is a well known NP-hard problem [8]. In each multiagent system, the agents cooperated in order
to efficiently solve the undertaken problems by the multiagent system. MasSet={MA1, MA2, MA3}.
|MasSet| = k = 3.

In the experimental setup, for all the analyzed multiagent systems, we considered maps with
nr = 35 randomly placed cities on the map. All the studied multiagent systems were composed
of m = 10 cooperative reactive agents. As parameters, all the cooperative multiagent systems were
considered: Number Of Tests = 1000; α (power of the pheromone); β (power of the distance/edge weight);
evaporation (the evaporation factor). We choose as parameter values (experimentally established): α =
1; β = 1 and evaporation = 0.1. Table 3 presents the obtained simulation results. In the simulations, the
obtained best to date travel value from the end of the problem solving was considered for the case of
all multiagent systems as the intelligence indicator.

Table 3. The obtained Intelligence Indicators for MA1, MA2 and MA3.

Set1/MA1 Set2/MA2 Set3/MA3

7.172; 6.864; 7.691; 6.12; 5.657;5.706; 5.409; 5.442; 5.342; 4.868; 6.134; 5.251;
6.572; 6.612; 7.413; 5.786; 5.826; 5.123; 4.81; 5.579; 4.85; 5.307; 5.605; 5.624;
6.262; 6.626; 6.135; 6.217; 5.853; 5.121; 5.459; 4.492; 6.053; 4.788; 5.055; 5.153;
6.586; 6.467; 8.084; 7.313; 4.944; 5.466; 4.978; 5.095; 5.779; 4.87; 5.339; 4.992;
7.295; 6.473; 6.516; 6.657; 5.917; 5.76; 5.315; 5.558; 5.322; 5.363; 5.493; 5.004;
7.009; 8.297; 7.714; 6.729; 5.661; 5.546; 5.809; 5.729; 5.261; 5.476; 5.469; 7.278*;
7.177; 6.887; 6.612; 5.99; 5.519; 5.288; 5.293; 5.365; 5.53; 5.084; 5.337; 5.595;
7.007; 7.333; 5.78; 6.585; 5.806; 4.465; 5.427; 5.217; 5.352; 4.631; 5.068; 4.911;
7.257; 7.225; 8.005; 6.592; 5.244; 5.741; 5.724; 5.579; 4.831; 5.431; 4.933; 4.987;
6.741; 6.37; 5.944; 6.573; 5.599; 5.506; 5.907; 5.421; 5.092; 5.377; 5.589; 5.623;
6.911; 6.513; 7.447; 7.066; 5.312; 5.632; 5.101; 5.476; 5.563; 5.195; 5.926; 5.136;
7.277; 6.924; 7.343; 6.204 4.405; 5.932; 5.454; 5.065; 5.325;

5.111; 5.345
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Table 4 presents the obtained results by analyzing Set1, Set2, and Set3. In the table, the following
notations were used: SEM denotes the standard error of the mean; [LCI95%, UCI95%] denotes the
95% confidence interval of the mean; Lowest denotes the smallest; Highest denotes the utmost; K-S Stat
denotes the Kolmogorov–Smirnov test statistic; Lill Stat denotes the Lillefors test statistic. The normality
was verified by using the One-Sample Kolmogorov–Smirnov Goodness-of-Fit test and Lilliefors test, applied
at α_normal = 0.05 significance level. It can be noticed that the Set3 does not pass the normality test.
In order to obtain normally distributed data on Set3, we applied the Grubbs test with α_grubbs = 0.05.
The Grubbs test identified the value 7.278 as a single outlier. It was identified at the first application of
the test. When applying the test again, no outlier was detected. We calculated Set3∗ = Set3− {7.278}.

The last column of Table 4 presents the analysis results for Set3*. Now, the Set3* passed the
normality test. For the verification of the equality of standard deviations of Set1, Set2, and Set3*,
we applied the Bartlett test at the α_bart = 0.05 significance level. The obtained p-value (p-value of
Bartlett’s test) was p-value = 0.0002 (p-value < α_bart), which suggested that the difference between
the standard deviations of Set1, Set2, and Set3* is very significant. Another calculation detail was the
obtained Bartlett statistics value 17.225.

Table 4. Results of the intelligence indicator sample data analysis.

Type of Analysis MA1/Set1 MA2/Set2 MA3/Set3 MA3/Set3 *

Mean 6.841104 5.40378 5.3376 5.2935
SD/Variance 0.5861/0.3435 0.3647/0.133 0.4471/0.1999 0.3392/0.1151
Sample size 48 50 45 44
SEM 0.08460 0.05158 0.06666 0.05113
[LCI95%, UCI95%] [6.671, 7.011] [5.3, 5.508] [5.203, 5.472] [5.19, 5.397]
Lowest/Highest 5.780/8.297 4.405/5.932 4.631/7.278 4.631/6.134
Median 6.735 5.454 5.325 5.324
CV ≈8.5673 ≈6.7499 ≈8.3764 ≈6.4079
K-S Stat/p-value 0.1024/>0.1 0.1057/>0.1 0.1498/0.0128 0.07404/>0.1
Lill Stat/p-value 0.102/0.2 0.106/0.2 0.15/0.013 0.074/0.2
Normality passed YES YES NO YES

Figure 3 contains the graphical representation of intelligence indicators, Set1, Set2, and Set3,
with all the intelligence indicator data included. As an observation, we mention that the data was
not paired. We understand by pairing the fact that the experimental intelligence evaluation number 1
for MA1, MA2 and MA3 was not carried out for the same problems. The experimental intelligence
evaluation number 2 for MA1, MA2 and MA3 was not carried out for the same problem. The lines
represented in Figure 3 illustrate the intelligence variation in problem solving. The MetrIntSimil metric
algorithm does not restrict the number of intelligence evaluations for all of the multiagent systems to
be the same. In our experimental setup, there were |Set1| = 48, |Set2| = 50 and |Set3| = 45 considered
experimental evaluations of the intelligence. Figure 4 is similar to content of Figure 3, but it contains
the graphical representation of the obtained intelligence indicators data with the outlier intelligence
values excluded.
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Figure 3. Graphical representation of the intelligence indicators of MA1(Set1), MA2(Set2), and
MA3(Set3).
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Figure 4. Graphical representation of the intelligence indicators of MA1(Set1), MA2(Set2), and
MA3(Set3∗) with the outliers excluded.

The Coefficient of Variation (CV) of a sample intelligence indicator data should be calculated using
formula 6. In formula 6, the SD/Mean is multiplied by 100 for obtaining the result in percentages.
For example, SD/Mean = 0.3 multiplied by 100 gives 30. We used the CV value for analyzing the
homogeneity–heterogeneity of the intelligence indicator data [87,88]. We consider the data classification
based on the variability as follows. A classification of the homogeneity–heterogeneity of the data can
be carried out based on the CV. CV ∈ [0, 10) indicates homogeneous data; CV, CV ∈ [10, 30) indicates
relatively homogeneous data; CV, CV ≥ 30 indicates heterogeneous data:

CV = 100× (SD/Mean). (6)

Based on the obtained results, all the samples Set1, Set2 and Set3* were normally distributed, but
having different variances; the MetrIntSimil algorithm indicated the application of the nonparametric
Kruskal–Wallis test with α_int = 0.05. p-value ≈ 0.0001, obtained as a result of the Kruskal–Wallis
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test, p-value < α_int. Based on this result, it should be concluded that H0 cannot be accepted.
The intelligence level of all the studied multiagent systems MA1, MA2, MA3 cannot be considered to
be the same. From the classification point of view, the multiagent systems cannot be classified in the
same intelligence class.

According to the MetrIntSimil algorithm, as a next step, we applied the Dunn test [67] for all
the pairs of Set1, Set2, Set3*, with significance level α_dunn = 0.05. The obtained results, presented
in Table 5, prove that MA2 and MA3 can be included in the same class of systems with similar
intelligence denoted in the following IntClassB. MA1 should be included in a separate class of systems
with similar intelligence denoted IntClassA. The multiagent systems that belongs to IntClassB has a
higher intelligence than the multiagent system that belongs to the IntClassA intelligence class. As an
intelligence indicator in our study, we have considered the global-best, this having the significance that
a lower value indicates higher intelligence. For example, the global-best by 4.868 is better than 8.084.

Table 5. Results of the Dunn test for paired intelligence comparison.

Compared CMASs p-Value Mean Rank Difference Interpretation of the Result

MA1 vs. MA2 <0.001 64.909 MA1 and MA2 *
MA1 vs. MA3 <0.001 76.241 MA1 and MA3 *
MA2 vs. MA3 >0.05 11.331 MA2 and MA3 **

* CANNOT be considered to belong to the same similarity intelligence class; ** CAN be considered to belong
to the same similarity intelligence class.

The obtained results prove (Table 5, the comparison result of MA2 vs. MA3) that MA2 and MA3

can be included in the same similarity class of intelligence, denoted in the following by IntClassB.
As another proof of this fact, the metric algorithm can be applied again just for the MA2 characterized
by the Set2 of intelligence indicators and MA3 characterized by the Set3* of intelligence indicators.
Table 4 presents the fact that the normality test for Set2 and Set3* was passed. For the verification
of the equality of variances of Set2 and Set3*, we applied the F-test at significance level α_ f = 0.05.
The result of the F-test is p-value = 0.63. p-value > α_ f , which indicates that the difference between the
variances of Set2 and Set3* is not statistically significant. Based on these considerations, the application
of the Single-Factor ANOVA test at significance level α_int = 0.05 can be considered. The obtained result
was p-value = 0.1341. p-value> α_int, sustaining the conclusion that the two multiagent MA2 and
MA3 can be included in the same similarity intelligence class.

5. Discussion and Comparison of the MetrIntSimil Metric

In our research, we considered the difficult problem solving intelligence measuring at the level of
the whole cooperative multiagent system, not at the individual/agent level. Our metric, presented in
the form of the algorithm MetrIntSimil, is appropriate for multiagent systems, where the intelligence
indicator of a problem solving by a multiagent system can be expressed as a single value. If necessary,
this value can be calculated as the weighted sum of some values of more intelligent components that
measure different aspects of the system intelligence.

An intelligence indicator should make a quantitative indication of a system intelligence in solving
a difficult problem. The researcher who wishes to make a comparison of the intelligence of two or
more multiagent systems should decide on the type of intelligence indicator. For all the compared
multiagent systems, the type of intelligence indicator should be the same. We consider that an effective
metric must be able to measure the same type of intelligence. As an example, in the case of biological
systems, it makes no sense to compare the intelligence of a fish with the intelligence of a bird.

The elaborated metric takes into consideration the variability in the intelligence of the compared
multiagent systems. A multiagent system could have different intelligent reactions in different
situations. In a specific situation, the reaction could be more or less intelligent. In our research,
we considered the presence of high and low outlier intelligence values, which are statistically very
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different from all other intelligence values. If such outlier values are taken into consideration, this
could influence the comparison result of more multiagent systems’ intelligence.

In our research, we considered the necessity of the establishment of a central intelligence indicator
of a CMAS, which illustrates the central intelligence tendency of the multiagent system. We considered
as possible central intelligence indicators, and the calculation as the means of intelligence indicators
sample data in the parametric case (all Set1, Set2, . . . , Setk are sampled from a Gaussian population
and their variance is equal from statistical point of view) and as the medians in the nonparametric case
(not all the intelligence indicators data are sampled from Gaussian population or all the intelligence
indicator data sampled from Gaussian population, but they have different variances). The median is
more robust than the mean, a higher or lower value influences more the mean than the median.

We did not find in the scientific literature an effective metric based on difficult problem solving
intelligence measuring that has all the properties of MetrIntSimil metric, such as: allowing the
simultaneous intelligence comparison of two or more than two multiagent systems; and accuracy and
robustness in comparison and universality at the same time.

MetrIntComp metric [51] presented in the scientific literature is able to make a comparison of two
cooperative multiagent systems’ intelligence. The MetrIntComp metric is based on a similar principle
of difficult problem solving intelligence measuring as the MetrIntSimil metric. The MetrIntComp
metric uses difficult problem solving intelligence evaluation data, based on which it makes a
mathematically grounded comparison of exactly two cooperative multiagent systems intelligence.
This allows the classification of the compared systems in intelligence classes (classification in the
same class or in different classes). The main advantage of the MetrIntComp metric is the robustness.
The robustness is assured by the fact that in the metric algorithm for the obtained intelligence
indicator data comparison, the two unpaired samples Mann–Whitney test is used that is known
as a nonparametric robust test [89,90]. It does not require data normality (that the samples belong to a
Gaussian distribution).

MetrIntSimil based on the obtained intelligence indicators makes a mathematically grounded
analysis. At a specific step of the MetrIntSimil metric algorithm based on some analysis, it chooses
between the application of the parametric Single-Factor ANOVA test [65] and nonparametric
Kruskal–Wallis test [66]. Based on this fact, the MetrIntSimil metric is accurate and robust at the
same time. MetrIntSimil conserves and extends the properties and advantages of the MetrIntComp
metric. In the case of normally distributed intelligence indicator data with same variances, MetrIntSimil
is able to apply a parametric test that is the most appropriate. Another advantage consists in the
necessary sample size of intelligence indicators. If a parametric test could be applied, then the required
sample size should be smaller than in the nonparametric case.

The Mann–Whitney test for two unpaired samples is the non-parametric analog to the two-sample
unpaired t-test. It uses a different test statistic comparatively with the Kruskal–Wallis test (U instead of
the H of the Kruskal–Wallis test), but the p-value is mathematically identical to that of a Kruskal–Wallis
test [91,92].

Comparatively with the MetrIntComp metric, the MetrIntSimil metric is able to make a
simultaneous comparison of more than two multiagent systems, with the established significance level
α_int (the probability of making a Type I error is α_int). MetrIntComp could be used for the comparison
of more that two cooperative multiagent systems, pair-by-pair, but this approach is not appropriate.
The probability of making a Type I error increases as the number of tests increase. If the significance
level is set at α, the probability of a Type I error can be obtained, regardless of the number of groups
being compared. For example, if the probability of a Type I error for the analysis is set at α = 0.05 and
six two-sample tests (t-test for example) are performed, the overall probability of a Type I error for the
set of tests α_overall = 1–0.956 = 0.265.

In the scientific literature, there is no universal view on what intelligence metrics should measure.
Each of the designed metrics consider the machine intelligence based on different principles. Based on
this fact, most of them cannot be effectively compared directly with each other. For comparison reasons,
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we chose a recent intelligence metric called MetrIntComp [51], which made possible the comparison
and this opens a research direction to standardization of the intelligence metrics. Table 6 summarises
the comparison results.

Table 6. Comparison of the MetrIntSimil metric with the MetrIntComp metric.

Comparison criterion MetrIntComp MetrIntSimil

Principle * *
Applicability @ @

Computations + +
Number of compared CMASs 2 Any number

Properties Universality, Robustness Universality, Robustness, Accuracy
Variability in intelligence Treated Treated

* Intelligence in solving difficult problems; @ Choosing of the system able to solve most intelligently difficult
problems. + (1) Calculus of a machine intelligence measure; (2) Verification of the similarity in intelligence; (3)
Classification in similarity intelligence classes.

A case study was realized for the experimental evaluation of the MetrIntComp metric proposed in
the paper [51]. It measured and compared the intelligence of two cooperative multiagent systems in
solving an NP-hard problem, the Symmetric TSP more concretely. We used the intelligence indicators
reported in the paper [51] and applied on them the MetrIntSimil metric. The same result was obtained
for MetrIntSimil as was obtained by applying the MetrIntComp metric. Both of the metrics made
a differentiation in intelligence between the two studied cooperative multiagent systems, even if
the numerical difference between the measured intelligence was small. Based on this fact, the two
multiagent systems could not be considered to belong to the same class of intelligence and should be
classified in different classes of intelligence.

6. Theory of Multiple Intelligences in Machines: The Next Research Works

Humans can solve more or less intelligent problems that require different types of
thinking [93]: musical-rhythmic, visual-spatial, verbal-linguistic, logical-mathematical, bodily-kinesthetic,
interpersonal, intrapersonal and naturalistic. The theory of multiple intelligences proposed by Howard
Gardner differentiates intelligence into specific modalities [94,95]. According to the theory of multiple
intelligences, the intelligence is not dominated by a single general ability.

In the next research work, we will focus on the development of a theory of multiple intelligences
in machines. Our preliminary conclusion is that such a theory should not be designed based on
similarity with the theory of multiple intelligences in humans. The human intelligence and the artificial
intelligence are not similar. They are of a completely different type. Life on earth is the result of an
evolution by 0.5 billion years [96]. We consider that different types of problem solving by intelligent
systems require different types of machine intelligence. In this framework, we consider an important
particular research direction: the automatic detection of different types of intelligence that an intelligent
artificial system possesses.

With illustrative purpose, we mention the scenario of next-generation flying agent-based drones
(flying drones with properties of intelligent agents) able to transport passengers. Such developments
certainly will be built in the future. Such an intelligent drone must detain different types of intelligence
specific to different types of problems and sub-problems. We consider that, in such a scenario, the clear
definition of similarity between drones is necessary. Drones could be specialized: in transporting very
few passengers, and in transporting a large number of passengers. As examples of types of intelligence
that a drone can possess, it can be noticed: intelligence in communication with the passengers;
intelligence in communication and cooperation with other similar flying drones; intelligence in
communication and cooperation with other non-similar flying drones; intelligence to fly in difficult
weather conditions; and intelligence in avoiding different objects during the flight and some others.
The intelligence measure has the sense to be compared to similar drones. Based on a specific type of
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intelligence, a flying drone could be more intelligent than another similar flying drone. For another
type of problem, the situation could be the vice versa. For example, the flying drone SimFDA could
be more intelligent in the communication with the passengers than the flying drone SimFDB. In the
avoiding of the objects during the flight, SimFDB could be more intelligent than SimFDA.

7. Conclusions

Intelligent cooperative multiagent systems (CMASs) by a large diversity are used for many real
life problem solving tasks. There are very few metrics designed for the quantitative evaluation of
CMASs intelligence. There are even fewer metrics that allow also an effective quantitative comparison
of the intelligence level of more multiagent systems. In this paper, we proposed a novel metric called
MetrIntSimil that allows an accurate and robust symmetric comparison of the similarity in intelligence
of two or more than two CMASs. The proposed metric efficiently takes into account the variability in
the intelligence of the compared CMASs.

For validation purposes of the MetrIntSimil metric, we conducted a case study for three cooperative
multiagent systems, MA1 that operated by mimicking a Best-Worst Ant System [12,13], MA2 that
operated by mimicking an Min-Max Ant System [14,15] and MA3 that operated by mimicking an
Ant Colony System [16,17]. The evaluation was carried out for solving a NP-hard problem, the
Symmetric Traveling Salesman Problem [11]. The proposed metric identified that two of the multiagent
systems MA2 and MA3 have similar intelligence level, and, based on that, they can be classified in the
same similarity class of intelligence denoted IntClassB. The multiagent MA1 intelligence is different
from the other two multiagent systems intelligence, and, based on that, it should be considered that it
belongs to another intelligence class that we denoted by IntClassA. Another conclusion consists in the
fact that the multiagent systems belonging to IntClassB have a higher intelligence level than those
that belong to IntClassA.

The universal MetrIntSimil metric is not dependent on aspects/details like the studied/compared
cooperative multiagent systems’ architecture. It could be applied even to comparison of similarity
in intelligence of systems that operate individually without cooperating. Based on a comprehensive
study of the scientific literature, we consider that our proposed metric is original and will represent
the basis for intelligence measuring and comparison of systems intelligence in many future research
works worldwide.
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