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Abstract: This article addresses three classes of fractional oscillators named Class I, II and III. It is
known that the solutions to fractional oscillators of Class I type are represented by the Mittag-Leffler
functions. However, closed form solutions to fractional oscillators in Classes II and III are unknown.
In this article, we present a theory of equivalent systems with respect to three classes of fractional
oscillators. In methodology, we first transform fractional oscillators with constant coefficients to
be linear 2-order oscillators with variable coefficients (variable mass and damping). Then, we
derive the closed form solutions to three classes of fractional oscillators using elementary functions.
The present theory of equivalent oscillators consists of the main highlights as follows. (1) Proposing
three equivalent 2-order oscillation equations corresponding to three classes of fractional oscillators;
(2) Presenting the closed form expressions of equivalent mass, equivalent damping, equivalent natural
frequencies, equivalent damping ratio for each class of fractional oscillators; (3) Putting forward the
closed form formulas of responses (free, impulse, unit step, frequency, sinusoidal) to each class of
fractional oscillators; (4) Revealing the power laws of equivalent mass and equivalent damping for
each class of fractional oscillators in terms of oscillation frequency; (5) Giving analytic expressions
of the logarithmic decrements of three classes of fractional oscillators; (6) Representing the closed
form representations of some of the generalized Mittag-Leffler functions with elementary functions.
The present results suggest a novel theory of fractional oscillators. This may facilitate the application
of the theory of fractional oscillators to practice.

Keywords: fractional differential equations; fractional oscillations (vibrations); fractional dynamical
systems; nonlinear dynamical systems

1. Introduction

Any systems that consist of three elements, namely, inertia, restoration, and damping, may
oscillate. Therefore, oscillations are common phenomena encountered in various fields, ranging from
physics to mechanical engineering, see, e.g., [1–17].

Fractional oscillators and their processes attract the interests of researchers, see, e.g., [18–53].
There are problems worth studying with respect to fractional oscillators. On the one hand, the
analytical expressions in the closed forms of responses to certain fractional oscillators, e.g., those
described by (42) and (43) in Section 2, remain unknown. In addition, closed form representations of
some physical quantities in fractional oscillators, such as mass, damping, natural frequencies, in the
intrinsic sense, are lacking. On the other hand, technology and analysis methods, based on 2-order
linear oscillations, almost dominate the preference of engineers although nonlinear oscillations have
been paid attention to. Therefore, from a view of engineering, it is meaningful to establish a theory
to deal with fractional oscillators with equivalent linear oscillation systems of order 2. This article
contributes my results in this aspect.

This research studies three classes of fractional oscillators.
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Class I: The first class contains oscillators with fractional inertia force m dαx(t)
dtα (1 < α ≤ 2)

only. Its oscillation equation is in the form of (31), see, e.g., Duan ([24], Equation (3)),
Mainardi ([25], Equation (27)), Zurigat ([26], Equation (16)), Blaszczyk and Ciesielski ([27], Equation (1)),
Blaszczyk et al. ([28], Equation (10)), Al-rabtah et al. ([29], Equation (3.1)), Drozdov ([30], Equation (9)),
Stanislavsky [31], Achar et al. ([32], Equation (1), [33], Equation (9), [34], Equation (2)), Tofighi ([35],
Equation (2)), Ryabov and Puzenko ([36], Equation (1)), Ahmad and Elwakil ([37], Equation (1)),
Uchaikin ([38], Chapter 7), Duan et al. ([39], Equation (4.2)).

Class II: The second consists of oscillators only with fractional damping term c dβx(t)
dtβ (0 < β ≤ 1),

see, e.g., Lin et al. ([40], Equation (2)), Duan ([41], Equation (31)), Alkhaldi et al. ([42], Equation (1a)),
Dai et al. ([43], Equation (1)], Ren et al. ([44], Equation (1)), Xu et al. ([45], Equation (1)), He et al. ([46],
Equation (4)), Leung et al. ([47], Equation (2)), Chen et al. ([48], Equation (1)), Deü and Matignon ([49],
Equation (1)), Drăgănescu et al. ([50], Equation (4)), Rossikhin and Shitikova ([51], Equation (3)),
Xie and Lin ([52], Equation (1)), Chung and Jung [53]. That takes the form of (42) in the next Section.

Class III: The third includes the oscillators with both fractional inertia force m dαx(t)
dtα (1 < α ≤ 2)

and fractional friction c dβx(t)
dtβ (0 < β ≤ 1), see, e.g., Liu et al. ([54], Equation (1)), Gomez-Aguilar ([53],

Equation (10)), Leung et al. ([50], Equation (3)). This class of oscillators is expressed by (43).
By fractional oscillating in this research, we mean that either the inertia term (31) or the damping

(42) or both (43) are described by fractional derivative. Thus, this article studies all described
above from Class I to III except those fractional nonlinear ones, such as fractional van der Pol
oscillators (Leung et al. [47,55], Xie and Lin [52], Kavyanpoor and Shokrollahi [56], Xiao et al. [57]),
fractional Duffing ones (Xu et al. [45], Liu et al. [54], Chen et al. [58], Wen et al. [59], Liao [60]).
Besides, the meaning of fractional oscillation in this research neither implies those with fractional
displacement such as Abu-Gurra et al. [61] discussed nor those in the sense of subharmonic oscillations
as stated by Den Hartog ([3], Sections 8–10, Chapter 4), Ikeda [62], Fudan Univ. ([63], pp. 96–97),
Andronov et al. ([64], Section 5.1).

Fractional differential equations represented by (31), (42), and (43) are designated as fractional
oscillators in Class I, II, and III, respectively, in what follows. Note that closed form analytic expressions
for the responses (free, impulse, step, frequency, and sinusoidal) to fractional oscillators in Class II and
III are rarely reported. For oscillators in Class I, analytic expressions for the responses (free, impulse,
step) are only represented by a type of special functions called the Mittag-Leffler functions but lack
in representing the intrinsic properties, such as damping. This article aims at presenting a unified
approach to deal with three classes of fractional oscillators.

The present highlights are as follows.

• Establishing three equivalent 2-order differential equations respectively corresponding to three
classes of fractional oscillators.

• Presenting the analytical representations, in the closed form, of equivalent masses, equivalent
dampings, equivalent damping ratios, equivalent natural frequencies, and equivalent frequency
ratios, for each class of fractional oscillators.

• Proposing the analytic expressions, in the closed form by using elementary functions, of the free,
impulse, step, frequency, and sinusoidal responses to three classes of fractional oscillators.

• Revealing the power laws of equivalent mass and equivalent damping for each class of
fractional oscillators.

• Representing some of the generalized Mittag-Leffler functions by using elementary functions.

Note that this article studies fractional oscillators by the way of dealing with fractional inertia
force and or fractional friction equivalently using inertia force and or fractional friction of integer order.
In doing so, methodologically speaking, the key point is about three equivalent oscillation models,
which transform fractional inertia force and or fractional friction equivalently into inertia force and
or fractional friction of integer order, which we establish with Theorems 1–7. Though they may yet
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imply a novel way to study fractional derivatives from the point of view of mathematics, my focus in
this research is on treating fractional oscillators from a view of physical or engineering oscillations
(vibrations).

The rest of the article is organized as follows. Section 2 is about preliminaries. The problem
statement and research thoughts are described in Section 3. We establish three equivalent 2-order
oscillation equations respectively corresponding to three classes of fractional oscillators in Section 4.
The analytical representations of equivalent masses, equivalent dampings, equivalent damping ratios,
equivalent natural frequencies for three classes of fractional oscillators are proposed in Section 5.
We present the analytic expressions of the free responses to three classes of fractional oscillators in
Section 6, the impulse responses to three classes of fractional oscillators in Section 7, the step responses
in Section 8, the frequency responses in Section 9, and the sinusoidal ones in Section 10. Discussions
are in Section 11, which is followed by conclusions.

2. Preliminaries

This Section consists of two parts. One is to describe the basic of linear oscillations and fractional
ones related to the next sections. The other the solutions to fractional oscillators in Class I based on the
generalized Mittag-Leffler functions.

2.1. Brief of Linear Oscillations of Order 2

2.1.1. Simple Oscillation Model

The simplest model of an oscillator of order 2 is with single degree of freedom (SDOF). It consists
of a constant mass m and a massless damper with a linear viscous damping constant c. The stiffness of
spring is denoted by spring constant k. That SDOF mass-spring system is described by m d2q(t)

dt2 + c dq(t)
dt + kq(t) = e(t)

q(0) = q0, q′(0) = v0,
(1)

where e(t) is the forcing function. The solution q(t) may be the displacement in mechanical
engineering [1–7] or current in electronics engineering [8].

In physics and engineering, for facilitating the analysis, one usually rewrites (1) by
d2q(t)

dt2 + c
m

dq(t)
dt + k

m q(t) = e(t)
m

q(0) = q0, q′(0) = v0,
(2)

and further rewrites it by 
d2q(t)

dt2 + 2ςωn
dq(t)

dt + ω2
nq(t) = e(t)

m

q(0) = q0, q′(0) = v0,
(3)

where ωn is called the natural angular frequency (natural frequency for short) with damping free given by

ωn =

√
k
m

, (4)

and the parameter ς is the damping ratio expressed by

ς =
c

2
√

mk
. (5)
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The characteristic equation of (3) is in the form

p2 + 2ςωn p + ω2
n = 0, (6)

which is usually called the frequency equation in engineering [1–7]. The solution to the above is given by

p1,2 = −ςωn ± iωn

√
1− ς2, (7)

where i =
√
−1. Taking into account damping, one uses the term damped natural frequency denoted

by ωd. It is given by

ωd = ωn

√
1− ς2. (8)

Note 2.1: All parameters above, namely, m, c, k, ζ, ωn, and ωd, are constants.

2.1.2. Responses

The free response, meaning that the response with e(t) = 0, is driven by initial conditions only.
It is given by

q(t) = e−ςωnt
(

q0 cos ωdt +
v0 + ςωnq0

ωd
sin ωdt

)
, t ≥ 0. (9)

If e(t) = δ(t), where δ(t) is the Dirac-delta function, the response with zero initial conditions is
called the impulse response. In the theory of linear systems (Gabel and Roberts [65], Zheng et al. [66]),
the symbol h(t) is used for the impulse response. Thus, consider the equation

d2h(t)
dt2 + 2ςωn

dh(t)
dt

+ ω2
nh(t) =

δ(t)
m

. (10)

One has

h(t) =
e−ςωnt

mωd
sin ωdt, t ≥ 0. (11)

Let u(t) be the Heaviside unit step (unit step for short) function. Then, the response to (3) with
zero initial conditions is called the unit step response. As usual, it is denoted by g(t) in practice.
Thus, consider

d2g(t)
dt2 + 2ςωn

dg(t)
dt

+ ω2
ng(t) =

u(t)
m

. (12)

One has

g(t) =
t∫

0

h(τ)dτ =
1
k

[
1− e−ςωnt√

1− ς2
cos(ωdt− φ)

]
, (13)

where
φ = tan−1 ς√

1− ς2
. (14)

Denote by H(ω) the Fourier transform of h(t). Then, H(ω) is usually called the frequency response
to the oscillator described by (3). It is in the form

H(ω) =
1

m(ω2
n −ω2 + i2ςωnω)

=
1

mω2
n

(
1− ω2

ω2
n
+ i2ς ω

ωn

) . (15)

With the parameter γ defined by

γ =
ω

ωn
, (16)
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which is called frequency ratio, H(ω) may be rewritten by

H(ω) =
1

mω2
n(1− γ2 + i2ςγ)

. (17)

The amplitude of H(ω) is called the amplitude frequency response. It is in the form

|H(ω)| = 1

mω2
n

√
(1− γ2)

2 + (2ςγ)2
. (18)

Its phase is termed the phase frequency response given by

ϕ(ω) = tan−1 2ςγ

1− γ2 . (19)

When the oscillator is excited by a sinusoidal function, the solution to (3) is termed the sinusoidal
or simple harmonic response. Suppose the sinusoidal excitation function is Acosωt, where A is a
constant. Then, the solution to{

d2q(t)
dt2 + 2ςωn

dq(t)
dt + ω2

nq(t) = A cos ωt
m

q(0) = q0, q′(0) = v0,
(20)

is the sinusoidal response in the form

q(t) =
A

mωd

(ω2
n−ω2)

2
+(2ςωnω)2


(
ω2

n −ω2) cos ωt + 2ςωnω sin ωt

+e−ςωnt
[(

ω2
n −ω2) cos ωdt− ς√

1−ς2

(
ω2

n + ω2) sin ωdt
]
. (21)

The responses mentioned above are essential to linear oscillators. We shall give our results for
three classes of fractional oscillators with respect to those responses in this research.

2.1.3. Spectra of Three Excitations

The spectrum of δ(t) below means that δ(t) contains the equal frequency components for ω ∈ (0, ∞).

∞w

−∞

δ(t)e−iωtdt = 1. (22)

The spectrum of u(t) is in the form

∞w

−∞

u(t)e−iωtdt = πδ(ω) +
1

iω
. (23)

The Fourier transform of cos ω1t is given by

∞w

−∞

cos ω1te−iωtdt = π[δ(ω + ω1) + δ(ω−ω1)]. (24)

Three functions or signals above, namely, δ(t), u(t), and sinusoidal functions, are essential to the
excitation forms in oscillations. However, their spectra do not exist in the domain of ordinary functions
but they exist in the domain of generalized functions. Due to the importance of generalized functions
in oscillations, for example, δ(t) and u(t), either theory or technology of oscillations nowadays is in the
domain of generalized functions. In the domain of generalized functions, any function is differentiable
of any times. The Fourier transform of any function exists (Gelfand and Vilenkin [67], Griffel [68]).
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2.1.4. Generalization of Linear Oscillators

Let us be beyond the scope of the conventionally physical quantities, such as displacement,
velocity, acceleration in mechanics, or current, voltage in electronics. Then, we consider the
response of the quantity q(n)(t), where n is a positive integer. Precisely, we consider the following
oscillation equation 

d2

dt2

[
dnq(t)

dtn

]
+ 2ςωn

d
dt

[
dnq(t)

dtn

]
+ ω2

n
dnq(t)

dtn = e(t)
m

q(n)(0) = q0, q(n+1)(0) = v0.
(25)

The above may be taken as a generalization of the conventional oscillator described by (3). Another
expression of the above may be given by dn

dtn

[
d2q(t)

dt2

]
+ 2ςωn

dn

dtn

[
dq(t)

dt

]
+ ω2

n
dnq(t)

dtn = e(t)
m

q(n)(0) = q0, q(n+1)(0) = v0.
(26)

Alternatively, we have a linear oscillation system described by
dn+2q(t)

dtn+2 + 2ςωn
dn+1q(t)

dtn+1 + ω2
n

dnq(t)
dtn = e(t)

m

q(n)(0) = q0, q(n+1)(0) = v0.
(27)

Physically, the above item with q(n+2)(t) corresponds to inertia, the one with q(n)(t) to restoration,
and the one with q(n+1)(t) damping.

Note that (27) remains a linear oscillator after all. Nevertheless, when generalizing n to be
fractions, for instance, considering −1 < ε1 ≤ 0 and −1 < ε2 ≤ 0, we may generalize (27) to be m dε1+2q(t)

dtε1+2 + c dε2+1q(t)
dtε2+1 + kq(t) = e(t)

q(0) = q0, q′(0) = v0.
(28)

Then, we go into the scope of fractional oscillations.

2.2. Three Classes of Fractional Oscillators

Denote by dν

dtν = −∞Dν
t the Weyl fractional derivative of order ν > 0. Then (Uchaikin [38],

Miller and Ross [69], Klafter et al. [70]),

−∞Dν
t f (t) =

1
Γ(−ν)

tw

−∞

f (u)du

(t− u)1+ν
, (29)

where Γ(ν) is the Gamma function. The Weyl fractional derivative is used in this research because it is
suitable for the Fourier transform in the domain of fractional calculus (Lavoie et al. ([71], p. 247)).

The Fourier transform of dν f (t)
dtν , following Uchaikin ([72], Section 4.5.3), is given by

∞w

−∞

dν f (t)
dtν

e−iωtdt = (iω)νF(ω), (30)

where F(ω) is the Fourier transform of f (t).
This article relates to three classes of fractional oscillators as follow. We denote the following

oscillation equation as a fractional oscillator in Class I.{
m dαy1(t)

dtα + ky1(t) = e(t)

y1(0) = y10, y′1(0) = y′10
, 1 < α ≤ 2. (31)
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The free response to (31) is in the form (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7))

y1(t) = y10Eα,1
[
−(ωnt)α]+ y′10tEα,2

[
−(ωnt)α], 1 < α ≤ 2, t ≥ 0, (32)

where Ea,b(z) is the generalized Mittag-Leffler function given by

Ea,b(z) =
∞

∑
k=0

zk

Γ(ak + b)
, a, b ∈ C, Re(a) > 0, Re(b) > 0. (33)

The Mittag-Leffler function denoted by Ea(t) is in the form

Ea(z) =
∞

∑
k=0

zk

Γ(ak + 1)
, a ∈ C, Re(a) > 0, (34)

referring Mathai and Haubold [73], or Gorenflo et al. [74], or Erdelyi et al. [75] for the Mittag-
Leffler functions.

Denote by hy1(t) the impulse response to a fractional oscillator in Class I. Then (Uchaikin ([38],
Chapter 7)),

hy1(t) = tα−1Eα,α
[
−(ωnt)α], 1 < α ≤ 2, t ≥ 0. (35)

Let gy1(t) be the step response to a fractional oscillator of Class I type. Then,

gy1(t) = tαEα,α+1
[
−(ωnt)α], 1 < α ≤ 2, t ≥ 0. (36)

For a fractional oscillator in Class I, its sinusoidal response driven by sinωt is expressed by

y1(t) = A1 sin(ωt− θ1) + A2e−βt cos
[
ωnt sin

π

α
− θ2

]
+

∞w

0

e−stKα(s)ds, (37)

where
A1 = 1√

ω2α
n +ω2α+2ωα

nωα cos απ
2

,

A2 = 2ω

αωα−1
n

√
ω4

n+ω4+2ω2
nω2 cos 2π

α

,
(38)

β = −ωn cos
π

α
, (39)

θ1 = tan−1 ωα sin απ
2

ωα
n+ωα cos απ

2
,

θ2 = tan−1
[

ω2
n sin (1+α)π

α −ω2 sin (1−α)π
α

ω2
n cos (1+α)π

α +ω2 cos (1−α)π
α

]
,

(40)

Kα(s) =
ω sin(πα)

π(s2 + ω2)(s2α + 2sαω2
n cos(πα) + ω2α

n )
. (41)

An oscillator that follows the oscillation equation below is called a fractional oscillator in Class II.

m
d2y2(t)

dt2 + c
dβy2(t)

dtβ
+ ky2(t) = 0, 0 < β ≤ 1. (42)

The equation below is called an oscillation equation of a fractional oscillator in Class III.

m
dαy3(t)

dtα
+ c

dβy3(t)
dtβ

+ ky3(t) = 0, 1 < α ≤ 2, 0 < β ≤ 1. (43)
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2.3. Equivalence of Functions in the Sense of Fourier Transform

Denote by F1(ω) and F2(ω) the Fourier transforms of f1(t) and f2(t), respectively. Then, if

F1(ω) = F2(ω), (44)

one says that
f1(t) = f2(t), (45)

in the sense of Fourier transform (Gelfand and Vilenkin [67], Papoulis [76]), implying

∞w

−∞

[ f1(t)− f2(t)]e−iωtdt = 0. (46)

The above implies that a null function as a difference between f1(t) and f2(t) is allowed for (45).
An example relating to oscillation theory is the unit step function.

Denote by u1(t) in the form

u1(t) =

{
1, t ≥ 0
0, t < 0

. (47)

Let u2(t) be

u2(t) =

{
1, t > 0
0, t ≤ 0

. (48)

Clearly, either u1(t) or u2(t) is a unit step function. The difference between two is a null function
given by

u1(t)− u2(t) =

{
1, t = 1
0, elsewhere

. (49)

Thus, u1(t) = u2(t). In fact, the Fourier transform of either u1(t) or u2(t) equals to the right side on (23).
Similarly, if f1(t) = f2(t), we say that (44) holds in the sense of

∞w

−∞

[F1(ω)− F2(ω)]eiωtdω = 0. (50)

3. Problem Statement and Research Thoughts

We have mentioned three classes of fractional oscillators in Section 2. This section contains two
parts. One is the problem statement and the other research thoughts.

3.1. Problem Statement

We first take fractional oscillators in Class I as a case to state the problems this research
concerns with.

The analytical expressions with respect to the responses of free, impulse, step, to the oscillators
of Class I are mathematically obtained (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7)),
also see Section 2.2 in this article. All noticed that a fractional oscillator of Class I is damping free in
form but it is damped in nature due to fractional if 1 < α < 2. However, there are problems unsolved in
this regard.

Problem 1. How to analytically represent the damping of Class I oscillators?

In this article, we call the damping of fractional oscillators in Class I equivalent damping denoted
by ceq1.
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It is known that damping relates to mass. Therefore, if we find ceq1 in a fractional oscillator in
Class I, its intrinsic mass must be different from the primary one m unless α = 2. We call it equivalent
mass and denote it by meq1.

Problem 2. How to analytically represent meq1?

Because a fractional oscillator in Class I is damped in nature for α 6= 2, there must exist a damped
natural frequency. We call it equivalent damped natural frequency, denoted by ωeqd,1. Then, comes the
problem below.

Problem 3. What is the representation of ωeqd,1?

As there exists meq1 that differs from m if α 6= 2, the equivalent damping free natural frequency,

we denote it by ωeqn,1, is different from the primary damping free natural frequency ωn =
√

k
m .

Consequently, the following problem appears.

Problem 4. What is the expression of ωeqn,1?

If we find the solutions to the above four, a consequent problem is as follows.

Problem 5. How to represent response (free, or impulse, or step, or sinusoidal) with meq1, ceq1, ωeqn,1, and
ωeqd,1 to a fractional oscillator in Class I?

If we solve the above problems, the solution to the following problem is ready.

Problem 6. What is the physical mechanism of a fractional oscillator in Class I?

Note that the intrinsic damping for a Class II fractional oscillator must differ from its primary

damping c owing to the fractional friction c dβy2(t)
dtβ for β 6= 1. We call it the equivalent damping

denoted by ceq2. Because ceq2 6= c if β 6= 1, the equivalent mass of a fractional oscillator in Class II,
denoted by meq2, is not equal to the primary m for β 6= 1. Thus, the six stated above are also unsolved
problems for fractional oscillators in Class II. They are, consequently, the problems unsolved for Class
III fractional oscillators.

Note that there are other problems regarding with three classes of fractional oscillators. For example,
the explicit expression of the sinusoidal response (37) in closed form needs investigation because of

the difficulty in finding the solution to
∞r

0
e−stKα(s)ds. We shall deal with them in separate sections.

The solutions to the problems described above constitute main highlights of this research.
We note that the damping nature of a fractional oscillator in Class I was also observed by

other researchers, not explicitly stated though, as can be seen from, e.g., Zurigat ([26], Figure 1),
Blaszczyk et al. ([28], Figure 2), Al-rabtah et al. ([29], Figure 2), Ryabov and Puzenko ([36],
Equation (5)), Uchaikin ([38], Chapter 7), Duan et al. ([39], Equation (4.3), Figure 2), Gomez-Aguilar
et al. ([53], Equation (15), Figures 2 and 3), Chung and Jung ([77], Figure 1). One thing remarkable is
by Tofighi, who explored the intrinsic damping of an oscillator in Class I, see ([35], pp. 32–33). That
was an advance regarding with the damping implied in (31) but it may be unsatisfactory if one desires
its closed form of analytic expression.

3.2. Research Thoughts

Let us qualitatively consider possible performances of equivalent mass and damping. In engineering,
people may purposely connect an auxiliary mass ma to the primary mass m so that the equivalent mass
of the total system is related to the oscillation frequency ω (Harris ([4], p. 6.4)). In the field of ship hull
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vibrations, added mass has to be taken into account in the equivalent mass (i.e., total mass) of a ship hull
(Korotkin [78]) so that the equivalent mass isω-varying. In fact, the three dimensional fluid coefficient
with respect to the added mass to a ship hull relates to the oscillation frequency, see, e.g., Jin and Xia ([79],
pp. 135–136), Nakagawa et al. [80].

In addition, damping may be alsoω-varying. A well-known case ofω-varying damping is the
Coulomb damping (Timoshenko ([2], Chapter 1), Harris ([4], Equation (30.4))). Frequency varying
damping is a technique used in damping treatments, see, e.g., Harris ([4], Equation (37.8)). Besides,
commonly used damping assumptions in ship hull vibrations, such as the Copoknh’s, the Voigt’s, the
Rayleigh’s, are allω-varying (Jin and Xia ([79], pp. 157–158)). Therefore, with the concept ofω-varying
mass and damping, I purposely generalize the simple oscillation model expressed by (1) in the form{

meq(ω) d2q(t)
dt2 + ceq(ω) dq(t)

dt + kq(t) = e(t)

q(0) = q0, q′(0) = v0.
(51)

The above second-order equation may not be equivalent to a fractional oscillator unless meq and
or ceq are appropriately expressed and properly related to the fractional order α for Class I oscillators,
or β for Class II oscillators, or (α, β) for oscillators in Class III. For those reasons, we further generalize
(51) by {

meq1(ω, α) d2x1(t)
dt2 + ceq1(ω, α) dx1(t)

dt + kx1(t) = e(t)

x1(0) = x10,
.
x1(0) = v10,

(52)

for Class I oscillators. As for Class II oscillators, (51) should be generalized by{
meq2(ω, β) d2x2(t)

dt2 + ceq2(ω, β) dx2(t)
dt + kx2(t) = e(t)

x2(0) = x10,
.
x2(0) = v20.

(53)

Similarly, for Class III oscillators, we generalize (51) to be the form{
meq3(ω, α, β) d2x3(t)

dt2 + ceq3(ω, α, β) dx2(t)
dt + kx3(t) = e(t)

x3(0) = x30,
.
x3(0) = v30.

(54)

Three generalized oscillation Equations (52)–(54), can be unified in the form meqj
d2xj(t)

dt2 + ceqj
dxj(t)

dt + kxj(t) = e(t)

xj(0) = xj0,
.
xj(0) = v30

, j = 1, 2, 3. (55)

By introducing the symbols ωeqn,j =
√

k
meqj

and ςeqj =
ceqj

2
√

meqjk
for j = 1, 2, 3, we rewrite the above by


d2xj(t)

dt2 + 2ςeqjωeqn,j
dxj(t)

dt + ω2
eqn,jxj(t) =

e(t)
meqj

xj(0) = xj0,
.
xj(0) = v30

, j = 1, 2, 3. (56)

Let Yj(ω) be the Fourier transform of yj(t), where yj(t)(j = 1, 2, 3) respectively corresponds to the
one in (31), (42), and (43). Denote by Xj(ω) the Fourier transform of xj(t). Then, if we find proper meqj
and ceqj such that

Yj(ω) = Xj(ω), j = 1, 2, 3, (57)

the second-order equation (52), or (53), or (54) is equal to the fractional oscillation Equation (31), or
(42), or (43), respectively.

Obviously, once we discover the equivalent equations of the fractional oscillation Equations (52),
or (53), and (54), all problems stated previously can be readily solved.
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4. Equivalent Systems of Three Classes of Fractional Oscillators

In this section, we first present an equivalent system and then its equivalent mass and damping
in Sections 4.1–4.3, respectively for each class of fractional oscillators.

4.1. Equivalent System for Fractional Oscillators in Class I

4.1.1. Equivalent Oscillation Equation of Fractional Oscillators in Class I

Theorem 1 gives the equivalent oscillator with the integer order for the fractional oscillators in
Class I.

Theorem 1 (Equivalent oscillator I). Denote a fractional oscillator in Class I by

m
dαy1(t)

dtα
+ ky1(t) = 0, 1 < α ≤ 2. (58)

Then, its equivalent oscillator with the equation of order 2 is in the form

−mωα−2 cos
απ

2
d2x1(t)

dt2 + mωα−1 sin
απ

2
dx1(t)

dt
+ kx1(t) = 0, 1 < α ≤ 2. (59)

Proof. Consider the frequency response of (58) with the excitation of the Dirac-delta function δ(t).
In doing so, we study

m
dαhy1(t)

dtα
+ khy1(t) = δ(t), 1 < α ≤ 2. (60)

Doing the Fourier transform on the both sides of (60) produces[
m(iω)α + k

]
Hy1(ω) = 1, 1 < α ≤ 2, (61)

where Hy1(ω) is the Fourier transform of hy1(t). Using the principal value of i, we have

iα = cos
απ

2
+ i sin

απ

2
. (62)

Thus, (61) implies [
m(iω)α + k

]
Hy1(ω) =

{
m
(
cos απ

2 + i sin απ
2
)
ωα + k

}
Hy1(ω)

=
(
mωα cos απ

2 + imωα sin απ
2 + k

)
Hy1(ω) = 1.

(63)

Therefore, we have the frequency response of (60) in the form

Hy1(ω) =
1

mωα cos απ
2 + imωα sin απ

2 + k
. (64)

On the other hand, for 1 < α ≤ 2, we consider (59) by

−mωα−2 cos
απ

2
d2hx1(t)

dt2 + mωα−1 sin
απ

2
dhx1(t)

dt
+ khx1(t) = δ(t). (65)

Performing the Fourier transform on the both sides of (65) yields[
−mωα−2 cos απ

2
(
−ω2)+ mωα−1 sin απ

2 (iω) + k
]
Hx1(ω)

=
(
mωα cos απ

2 + imωα sin απ
2 + k

)
Hx1(ω) = 1,

(66)
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where Hx1(ω) is the Fourier transform of hx1(t). Therefore, we have

Hx1(ω) =
1

mωα cos απ
2 + imωα sin απ

2 + k
. (67)

By comparing (64) with (67), we see that

Hy1(ω) = Hx1(ω). (68)

Thus, (59) is the equivalent equation of (58). The proof completes. �

4.1.2. Equivalent Mass of Fractional Oscillators in Class I

From the first item on the left side of (59), we obtain the equivalent mass for the fractional
oscillators of Class I type.

Theorem 2 (Equivalent mass I). The equivalent mass of the fractional generators in Class I, denoted by meq1,
is expressed by

meq1 = meq1(ω, α) = −
(

ωα−2 cos
απ

2

)
m, 1 < α ≤ 2. (69)

Proof. According to the Newton’s second law, the inertia force in the system of the fractional
oscillator (58) corresponds to the first item on the left side of its equivalent system (59). That is,

−mωα−2 cos απ
2

d2x1(t)
dt2 . Thus, the coefficient of d2x1(t)

dt2 is an equivalent mass expressed by (69). Hence,
the proof finishes. �

From Theorem 2, we reveal a power law phenomenon with respect to meq1 in terms of ω.

Remark 1. The equivalent mass I, meq1, follows the power law in terms of oscillation frequency ω in the form

meq1(ω, α) ∼ ωα−2m, 1 < α ≤ 2. (70)

The equivalent mass meq1 relates to the oscillation frequency ω, the fractional order α, and the
primary mass m. Denote by

Rm1(ω, α) = −ωα−2 cos
απ

2
, 1 < α ≤ 2. (71)

Then, we have
meq1 = meq1(ω, α) = Rm1(ω, α)m, 1 < α ≤ 2. (72)

Note 4.1: Since
Rm1(ω, 2) = 1, (73)

meq1(ω, α) reduces to the primary mass m when α = 2. That is,

meq1(ω, 2) = m. (74)

In the case of α = 2, therefore, both (58) and (59) reach the conventional harmonic oscillation with
damping free in the form

m
d2x1(t)

dt2 + kx1(t) = 0.

Note 4.2: If α→ 1, we have

lim
α→1

meq1(ω, α) = 0 for ω 6= 0. (75)
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The above implies that meq1 vanishes if α → 1. Consequently, any oscillation disappears in
that case.

Note 4.3: When 1 < α ≤ 2, we attain

0 < Rm1(ω, α) ≤ 1 for ω > 1. (76)

Thus, we reveal an interesting phenomenon expressed by

meq1(ω, α) ≤ m for 1 < α ≤ 2, ω > 1. (77)

The coefficient Rm1(ω, α) is plotted in Figure 1.Symmetry 2017, 9, x FOR PEER REVIEW  15 of 106 
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Remark 2. For α ∈ (0, 2), we have
lim

ω→∞
meq1(ω, α) = 0. (78)

The interesting and novel behavior, described above, implies that a fractional oscillator in Class I
does not oscillate for ω→ ∞ because it is equivalently massless in that case.

Remark 3. For α ∈ (0, 2), we have
lim
ω→0

meq1(ω, α) = ∞. (79)

The interesting behavior, revealed above, says that a fractional oscillator of Class I type does not
oscillate at ω = 0 because its mass is equivalently infinity in addition to the explanation of static status
conventionally described by ω = 0.

4.1.3. Equivalent Damping of Fractional Oscillators of Class I

We now propose the equivalent damping.

Theorem 3 (Equivalent damping I). The equivalent damping of a fractional oscillator in Class I, denoted by
ceq1, is expressed by

ceq1 = ceq1(ω, α) =
(

ωα−1 sin
απ

2

)
m, 1 < α ≤ 2. (80)

Proof. The second term on the left side of (59) is the friction with the linear viscous damping coefficient
denoted by (80). The proof completes. �

Denote
Rc1(ω, α) = ωα−1 sin

απ

2
, 1 < α ≤ 2. (81)
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Then, we have
ceq1(ω, α) = Rc1(ω, α)m. (82)

The coefficient Rc1(ω, α) is indicated in Figure 2.Symmetry 2017, 9, x FOR PEER REVIEW  16 of 106 
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Remark 4. The equivalent damping I relies on ω, m, and α. It obeys the power law in terms of ω in the form

ceq1(ω, α) ∼ ωα−1m, 1 < α ≤ 2. (83)

Note 4.4: Because
ceq1(ω, α)

∣∣
α=2 = 0, (84)

we see again that a fractional oscillator of Class I type reduces to the conventional harmonic one when
α = 2.

Remark 5. An interesting behavior of ceq1, we found, is expressed by

lim
ω→∞

ceq1(ω, α) = ∞, 1 < α < 2. (85)

The above says that the equivalent oscillator (59), as well as the fractional oscillator (58), never
oscillates at ω→ ∞ for 1 < α < 2 because its damping is infinitely large in that case. Due to

lim
ω→0

ceq1(ω, α) = 0, 1 < α < 2, (86)

we reveal a new damping behavior of a fractional oscillator in Class I in that it is equivalently
dampingless for 1 < α < 2 at ω = 0.

4.2. Equivalent Oscillation System for Fractional Oscillators of Class II Type

4.2.1. Equivalent Oscillation Equation of Fractional Oscillators in Class II

Theorem 4 below describes the equivalent oscillator for the fractional oscillators of Class II type.

Theorem 4 (Equivalent oscillator II). Denote a fractional oscillator in Class II by

m
d2y2(t)

dt2 + c
dβy2(t)

dtβ
+ ky2(t) = 0, 0 < β ≤ 1. (87)
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Then, its equivalent 2-order oscillation equation is given by(
m− cωβ−2 cos

βπ

2

)
d2x2(t)

dt2 +

(
cωβ−1 sin

βπ

2

)
dx2(t)

dt
+ kx2(t) = 0, 0 < β ≤ 1. (88)

Proof. Consider the following equation:

m
d2hy2(t)

dt2 + c
dβhy2(t)

dtβ
+ khy2(t) = δ(t), 0 < β ≤ 1. (89)

Denote by Hy2(ω) the Fourier transform of hy2(t). Then, it is its frequency transfer function.
Taking the Fourier transform on the both sides of (89) yields[

−mω2 + c(iω)β + k
]

Hy2(ω) = 1, 0 < β ≤ 1. (90)

With the principal value of iβ, (90) becomes[
−mω2 + c(iω)β + k

]
Hy2(ω) =

{
−mω2 + c

(
cos βπ

2 + i sin βπ
2

)
ωβ + k

}
Hy2(ω)

=
(
−mω2 + cωβ cos βπ

2 + k + icωβ sin βπ
2

)
Hy2(ω) = 1.

(91)

The above means

Hy2(ω) =
1

−mω2 + cωβ cos βπ
2 + k + icωβ sin βπ

2

. (92)

On the other hand, we consider the equivalent oscillation equation II with the Dirac-δ excitation by(
m− cωβ−2 cos

βπ

2

)
d2hx2(t)

dt2 +

(
cωβ−1 sin

βπ

2

)
dhx2(t)

dt
+ k

d2hx2(t)
dt2 = δ(t), 0 < β ≤ 1. (93)

Performing the Fourier transform on the both sides of the above produces[
−mω2 + cωβ cos βπ

2 + icωβ sin βπ
2 (iω) + k

]
Hx2(ω)

=
(
−mω2 + cωβ cos βπ

2 + k + icωβ sin βπ
2

)
Hx2(ω) = 1,

(94)

where Hx2(ω) the Fourier transform of hx2(t). Thus, from the above, we have

Hx2(ω) =
1

−mω2 + cωβ cos βπ
2 + k + icωβ sin βπ

2

. (95)

Equations (92) and (95) imply
Hy2(ω) = Hx2(ω). (96)

Hence, (88) is the equivalent oscillation equation of the fractional oscillators of Class II. This completes
the proof.
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4.2.2. Equivalent Mass of Fractional Oscillators of Class II

The equivalent mass of the fractional oscillators of Class II type is presented in Theorem 5.

Theorem 5 (Equivalent mass II). Let meq2 be the equivalent mass of the fractional oscillators of Class II
type. Then,

meq2 = meq2(ω, β) = m− cωβ−2 cos
βπ

2
, 0 < β ≤ 1. (97)

Proof. Consider the Newton’s second law. Then, we see that the inertia force in the equivalent oscillator
II is

(
m− cωβ−2 cos βπ

2

)
d2x2
dt2 . Therefore, (97) holds. The proof completes. �

From Theorem 5, we reveal a power law phenomenon with respect to the equivalent mass II.

Remark 6. The equivalent mass meq2 obeys the power law in terms of ω in the form

meq2 ∼ −cωβ−2, 0 < β ≤ 1. (98)

Note 4.5: Equation (97) exhibits that meq2 is related to the oscillation frequency ω, the fractional
order β, the primary mass m, and the primary damping c.

Remark 7. For 0 < β ≤ 1, we have
lim

ω→∞
meq2(ω, β) = m. (99)

Figure 3 shows its plots for m = c = 1 with the part of meq2(ω, β)> 0.
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Remark 8. For 0 < β < 1, we have
lim
ω→0

meq2(ω, β) = −∞. (100)

Note 4.6: The equivalent mass II is negative if ω is small enough.
Figure 4 exhibits the negative part of meq2(ω, β).
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4.2.3. Equivalent Damping of Fractional Oscillators in Class II 
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Remark 9. We restrict our research for meq2(ω, β) > 0.

Note 4.7: The equivalent mass II reduces to the primary mass m for β = 1 as indicated below.

meq2(ω, β)
∣∣
β=1 = m. (101)

In fact, a fractional oscillator in Class II reduces to the conventional oscillator below if β = 1

m
d2x2

dt2 + c
dx2

ct
+ kx2 = 0.

4.2.3. Equivalent Damping of Fractional Oscillators in Class II

Let ceq2 be the equivalent damping of a fractional oscillator in Class II. Then, we put forward the
expression of ceq2 with Theorem 6.

Theorem 6 (Equivalent damping II). The equivalent damping of the fractional oscillators in Class II is in
the form

ceq2 = ceq2(ω, β) = cωβ−1 sin
βπ

2
, 0 < β ≤ 1. (102)

Proof. The second term on the left side of (88) is the friction force with the linear viscous damping
coefficient denoted by (102). The proof completes. �
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Denote by

Rc2(ω, β) = ωβ−1 sin
βπ

2
, 0 < β ≤ 1. (103)

Then, we have
ceq2(ω, β) = Rc2(ω, β)c. (104)

Figure 5 indicates Rc2(ω, β).
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Remark 10. The equivalent damping ceq2 is associated with the oscillation frequency ω, the primary damping c,
and the fractional order β. It follows the power law in terms of ω in the form

ceq2(ω, β) ∼ ωβ−1c, 0 < β ≤ 1. (105)

Note 4.8: The following says that ceq2 reduces to the primary damping c if β = 1.

ceq2(ω, β)
∣∣
β=1 = c. (106)

Remark 11. The equivalent damping ceq2 has, for β ∈ (0, 1), the property given by

lim
ω→∞

ceq2(ω, β) = 0. (107)

Note 4.9: The equivalent oscillation equation of Class II fractional oscillators reduces to m d2x2(t)
dt2 +

kx2(t) = 0 in the two cases. One is ω→ ∞, see Remark 7 and Remark 12. The other is c = 0.
Note 4.10: Remark 5 for lim

ω→∞
ceq1(ω, β) = ∞ and Remark 11 just above suggest a substantial

difference between two types of fractional oscillators from the point of view of the damping at ω→ ∞.

Remark 12. The equivalent damping ceq2 has, for β∈ (0, 1), the asymptotic property for ω→ 0 in the form

lim
ω→0

ceq2(ω, β) = ∞. (108)

The above property implies that a fractional oscillator in Class II does not oscillate at ω → 0
because not only it is in static status but also its equivalent damping is infinitely large.
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4.3. Equivalent Oscillation System for Fractional Oscillators of Class III

4.3.1. Equivalent Oscillation Equation of Fractional Oscillators in Class III

We present Theorem 7 below to explain the equivalent oscillation equation for the fractional
oscillators of Class III.

Theorem 7 (Equivalent oscillator III). Denote a fractional oscillation equation in Class III by

m
dαy3(t)

dtα
+ c

dβy3(t)
dtβ

+ ky3(t) = 0, 1 < α ≤ 2, 0 < β ≤ 1. (109)

Then, its equivalent oscillator of order 2 for 1 < α ≤ 2 and 0 < β ≤ 1 is in the form

−
(

mωα−2 cos απ
2 + cωβ−2 cos βπ

2

)
d2x3(t)

dt2

+
(

mωα−1 sin απ
2 + cωβ−1 sin βπ

2

)
dx3(t)

dt + kx3(t) = 0.
(110)

Proof. Let us consider the equation

m
dαhy3(t)

dtα
+ c

dβhy3(t)
dtβ

+ khy3(t) = δ(t), 1 < α ≤ 2, 0 < β ≤ 1. (111)

Let Hy3(ω) be the Fourier transform of hy3(t). Doing the Fourier transform on the both sides of the
above results in [

m(iω)α + c(iω)β + k
]

Hy3(ω) = 1, 1 < α ≤ 2, 0 < β ≤ 1. (112)

Taking into account the principal values of iα and iβ, (112) becomes[
m(iω)α + c(iω)β + k

]
Hy3(ω)

=
[
m
(
cos απ

2 + i sin απ
2
)
ωα + c

(
cos βπ

2 + i sin βπ
2

)
ωβ + k

]
Hy3(ω)

=
[
mωα cos απ

2 + cωβ cos βπ
2 + k + i

(
mωα sin απ

2 + cωβ sin βπ
2

)]
Hy3(ω) = 1.

(113)

Consequently, we have

Hy3(ω) =
1

mωα cos απ
2 + cωβ cos βπ

2 + k + i
(

mωα sin απ
2 + cωβ sin βπ

2

) . (114)

On the other hand, considering the equivalent oscillator III driven by the Dirac-δ function, we have

−
(

mωα−2 cos απ
2 + cωβ−2 cos βπ

2

)
d2hx3(t)

dt2 +
(

mωα−1 sin απ
2 + cωβ−1 sin βπ

2

)
dhx3(t)

dt + khx3(t)= δ(t). (115)

When doing the Fourier transform on the both sides of the above, we obtain(
mωα cos απ

2 + cωβ cos βπ
2

)
Hx3(ω) + i

(
mωα sin απ

2 + cωβ sin βπ
2

)
Hx3(ω) + kHx3(ω)= 1, (116)

where Hx3(ω) is the Fourier transform of hx3(t). Therefore, from the above, we get

Hx3(ω) =
1

mωα cos απ
2 + cωβ cos βπ

2 + k + i
(

mωα sin απ
2 + cωβ sin βπ

2

) . (117)
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Two expressions, (114) and (117), imply that

Hx3(ω) = Hy3(ω). (118)

Thus, Theorem 7 holds. �

4.3.2. Equivalent Mass of Fractional Oscillators in Class III

From Section 4.3.1, we propose the equivalent mass of the fractional oscillators in Class III type
by Theorem 8.

Theorem 8 (Equivalent mass III). Let meq3 be the equivalent mass of the fractional oscillators in Class III.
Then, for 1 < α ≤ 2 and 0 < β ≤ 1,

meq3 = meq3(ω, α, β) = −
(

mωα−2 cos
απ

2
+ cωβ−2 cos

βπ

2

)
. (119)

Proof. When considering the Newton’s second law in the equivalent oscillator III (110), we immediately
see that Theorem 8 holds. �

Remark 13. The equivalent mass meq3 obeys the power law in terms of ω.

Note 4.11: The equivalent mass meq3 is related to ω, m, and c, as well as a pair of fractional
orders (α, β).

Note 4.12: If α = 2 and β = 1, meq3 reduces to the primary m, i.e.,

meq3(ω, α, β)
∣∣
α=2,β=1 = m. (120)

As a matter of fact, a fractional oscillator of Class III reduces to the ordinary oscillator when α = 2
and β = 1.

Remark 14. In the case of ω→ ∞, we obtain

lim
ω→∞

meq3(ω, α, β) = 0, 1 < α < 2, 0 < β < 1. (121)

Therefore, we suggest that a fractional oscillator in Class III does not oscillate for ω→∞ because its
equivalent mass disappears in that case. Figure 6 shows its positive part for α = 1.5, β = 0.9, m = c = 1.
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Remark 15. In the case of ω→ 0, we obtain

lim
ω→0

meq3(ω, α, β) = −∞, 1 < α < 2, 0 < β < 1. (122)

In fact, if ω is small enough, meq3(ω, α, β) will be negative, see Figure 7.
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Remark 16. This research restricts meq3(ω, α, β) ∈ (0, ∞).

4.3.3. Equivalent Damping of Fractional Oscillators in Class III

Let ceq3 be the equivalent damping of a fractional oscillator of Class III type. Then, we propose its
expression with Theorem 9.

Theorem 9 (Equivalent damping III). The equivalent damping of the fractional oscillators in Class III is given
by, for 1 < α ≤ 2 and 0 < β ≤ 1,

ceq3 = ceq3(ω, α, β) = mωα−1 sin
απ

2
+ cωβ−1 sin

βπ

2
. (123)

Proof. The second term on the left side of the equivalent oscillator III is the friction force with the
linear viscous damping coefficient denoted by (123). Thus, the proof completes. �

Remark 17. The equivalent damping ceq3 relates to ω, m, c, and a pair of fractional orders (α, β). It obeys the
power law in terms of ω. It contains two terms. The first term is hyperbolically increasing in ωα−1 as α > 1 and
the second hyperbolically decayed with ωβ−1 since β < 1.

Note 4.13: From (123), we see that ceq3 reduces to the primary damping c for α = 2 and β = 1.
That is,

ceq3(ω, α, β)
∣∣
α=2,β=1 = c. (124)

Remark 18. One asymptotic property of ceq3 for ω→ ∞, due to lim
ω→∞

ωα−1 = ∞ for 1 < α ≤ 2, is given by

lim
ω→∞

ceq3(ω, α, β) = ∞. (125)

The above says that a fractional oscillator of Class III does not vibrate for ω→ ∞.
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Remark 19. Another asymptotic property of ceq3 in terms of ω for ω → 0, owing to lim
ω→0

ωβ−1 = ∞

for 0 < β < 1, is expressed by
lim
ω→0

ceq3(ω, α, β) = ∞. (126)

A system does not vibrate obviously in the case of ω→ 0 but Remark 19 suggests a new view
about that. Precisely, its equivalent damping is infinitely large at ω → 0. Figures 8 and 9 illustrate
ceq3(ω, α, β) for m = c = 1.
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4.4. Summary 

We have proposed three equivalent oscillation equations with order 2 to equivalently 
characterize three classes of fractional oscillators, opening a novel way of studying fractional 
oscillators. The analytic expressions of equivalent mass eqjm  and damping eqjc  (j = 1, 2, 3) for each 
equivalent oscillator have been presented. One general thing regarding eqjm and damping eqjc is that 
they follow power laws. Another thing in common is that they are dependent on oscillation 
frequency ω and fractional order. 
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Note 4.14: The equivalent damping ceq3= 0 if both α = 2 and c = 0:

ceq3(ω, α, β)
∣∣
α=2,c=0 = 0. (127)

4.4. Summary

We have proposed three equivalent oscillation equations with order 2 to equivalently characterize
three classes of fractional oscillators, opening a novel way of studying fractional oscillators. The analytic
expressions of equivalent mass meqj and damping ceqj (j = 1, 2, 3) for each equivalent oscillator have
been presented. One general thing regarding meqj and damping ceqj is that they follow power laws.
Another thing in common is that they are dependent on oscillation frequency ω and fractional order.

5. Equivalent Natural Frequencies and Damping Ratio of Three Classes of Fractional Oscillators

We have presented three equivalent oscillation equations corresponding to three classes of
fractional oscillators in the last section. Functionally, they are abstracted in a unified form

meqj
d2xj(t)

dt2 + ceqj
dxj(t)

dt
+ kxj(t) = f (t), j = 1, 2, 3. (128)

In each equivalent oscillator, either meqj or ceqj is not a constant in general. Instead, either is a
function of the oscillation frequency ω and the fractional order α for meq1 and ceq1, β for meq2 and ceq2,
(α, β) for meq3 and ceq3. Consequently, natural frequencies and damping ratios of fractional oscillators
should rely on ω and fractional order. We shall propose their analytic expressions in this section.

5.1. Equivalent Natural Frequency I

Definition 1. Denote by ωeqn,j a natural frequency of a fractional oscillator in the jth class (j = 1, 2, 3). It takes
the form

ωeqn,j =

√
k

meqj
, j = 1, 2, 3, (129)

where meqj is the equivalent mass of the fractional oscillator in the jth class.

With the above definition, we write (128) by

d2xj(t)
dt2 +

ceqj

meqj

dxj(t)
dt

+
k

meqj
xj(t) =

d2xj(t)
dt2 +

ceqj

meqj

dxj(t)
dt

+ ω2
eqn,jxj(t) =

f (t)
meqj

, j = 1, 2, 3. (130)

Note 5.1: ωeqn,j may take the conventional natural frequency, denoted by

ωn =

√
k
m

, (131)

as a special case.

Corollary 1 (Equivalent natural frequency I1). The equivalent natural frequency I1, which we denote it by
ωeqn,1, of a fractional oscillator in Class I is given by

ωeqn,1 =
ωn√

−ωα−2 cos απ
2

, 1 < α ≤ 2. (132)
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Proof. According to (129), we have, for 1 < α ≤ 2,

ωeqn,1 =

√
k

meq1
=

√
k

−mωα−2 cos απ
2

=

√
1

−ωα−2 cos απ
2

√
k
m

=
ωn√

−ωα−2 cos απ
2

. (133)

The proof finishes. �

Figure 10 shows the plots of ωeqn,1.Symmetry 2017, 9, x FOR PEER REVIEW  27 of 106 
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2
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α
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=
−=

=
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Corollary 2 (Equivalent natural frequency I2). The natural frequency I2, ,2 ,eqnω  of a fractional oscillator 
in Class II is given by 

,2
2

.
1 cos

2

n
eqn c

m
β

ωω
βπω −

=
−

 
(135) 

Proof. Following (129), we have 
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Figure 10. Natural frequency ωeqn,1. Solid line: α = 1.8. Dot line: α = 1.5. Dash line: α = 1.2. (a) ωn = 1.
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Note 5.2: From Figure 10, we see that ωeqn,1 is an increasing function with ω. Besides, the greater
the value of α the smaller the ωeqn,1.

Note 5.3: ωeqn,1 becomes ωn if α = 2. In fact,

ωeqn,1
∣∣
α=2 =

√
k

meq1

∣∣∣∣∣
α=2

=
ωn√

−ωα−2 cos απ
2

∣∣∣∣∣∣
α=2

= ωn. (134)

Corollary 2 (Equivalent natural frequency I2). The natural frequency I2, ωeqn,2, of a fractional oscillator in
Class II is given by

ωeqn,2 =
ωn√

1− c
m ωβ−2 cos βπ

2

. (135)

Proof. Following (129), we have

ωeqn,2 =

√
k

meq2
=

√
k

m− cωβ−2 cos βπ
2

=

√√√√ k

m
(

1− c
m ωβ−2 cos βπ

2

) =
ωn√

1− c
m ωβ−2 cos βπ

2

.

Hence, the proof completes. �

Figure 11 indicates the curves of ωeqn,2.
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Note 5.5: ,2eqnω  takes nω  as a special case for β = 1. As a matter of fact, 

,2 1
2

1

.
1 cos

2

n
eqn nc

m

β
β

β

ωω ω
βπω

=
−

=

= =
−

 (136) 

Corollary 3 (Equivalent natural frequency I3). The natural frequency I3, denoted by ,3 ,eqnω  of a 
fractional oscillator in Class III is given by 

,3
2 2

.
cos cos

2 2

n
eqn

c
m

α β

ωω
απ βπω ω− −

=
 − + 
 

 
(137) 

Proof. With (129), we write 

,3
2 23 2 2

.
cos cos cos cos2 2 2 2

n
eqn

eq

k k
m cm c

m
α β α β

ωω
απ βπ απ βπω ω ω ω− − − −

= = =
   − + − +      

 
(138) 

The above completes the proof. □ 

Figure 12 gives the illustrations of ,3.eqnω  

Figure 11. Curves of ωeqn,2 for m = c = 1. Solid line: β = 0.8. Dot line: β = 0.5. Dash line: β = 0.3.
(a) ωn = 1. (b) ωn = 2.

Note 5.4: Figure 11 shows that ωeqn,2 is a decreasing function with ω. The greater the value of β

the smaller the ωeqn,2.
Note 5.5: ωeqn,2 takes ωn as a special case for β = 1. As a matter of fact,

ωeqn,2
∣∣
β=1 =

ωn√
1− c

m ωβ−2 cos βπ
2

∣∣∣∣∣∣
β=1

= ωn. (136)

Corollary 3 (Equivalent natural frequency I3). The natural frequency I3, denoted by ωeqn,3, of a fractional
oscillator in Class III is given by

ωeqn,3 =
ωn√

−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

) . (137)

Proof. With (129), we write

ωeqn,3 =
√

k
meq3

=
√

k
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

) = ωn√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

) . (138)

The above completes the proof. �

Figure 12 gives the illustrations of ωeqn,3.
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Definition 2. Let eqjς  be the equivalent damping ratio of the equivalent system of a fractional oscillator in 
Class j. It is defined by 
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Note 5.6: Figure 12 exhibits that ωeqn,3 is an increasing function in terms of ω.
Note 5.7: ωeqn,3 takes ωn as a special case for α = 2 and β = 1. Indeed,

ωeqn,3
∣∣
α=2,β=0 =

√√√√ k

−
(

mωα−2 cos απ
2 + cωβ−2 cos βπ

2

)
∣∣∣∣∣∣∣
α=2,β=1

=

√
k
m

= ωn. (139)

5.2. Equivalent Damping Ratio

Definition 2. Let ςeqj be the equivalent damping ratio of the equivalent system of a fractional oscillator in
Class j. It is defined by

ςeqj =
ceqj

2
√

meqjk
, j = 1, 2, 3. (140)
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Corollary 4 (Equivalent damping ratio I). The equivalent damping ratio of a fractional oscillator in Class I is
expressed by

ςeq1 = ςeq1(ω, α) =
ω

α
2 sin απ

2

2ωn

√
− cos απ

2

, 1 < α ≤ 2. (141)

Proof. Replacing meq1 and ceq1 in the expression below with the equivalent mass I and the equivalent
damping I described in Section 4

ςeq1 =
ceq1

2
√

meq1k
(142)

yields

ςeq1 =
mωα−1 sin απ

2

2
√(
−mωα−2 cos απ

2
)
k
=

ω
α
2 sin απ

2

2
√
− cos απ

2

√
m
k
=

ω
α
2 sin απ

2

2ωn

√
− cos απ

2

, 1 < α ≤ 2. (143)

The proof finishes. �

Remark 20. The damping ratio ςeq1 follows the power law in terms of ω.

Remark 21. The damping ratio of fractional oscillators in Class I relates to the oscillation frequency ω and the
fractional order α. It is increasing with respect to ω.

ςeq1(0, α) = 0 and ςeq1(∞, α) = ∞. (144)

Figure 13 shows the curves of ςeq1(ω, α).
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Note 5.8: Figure 13 indicates that the smaller the α the greater the 1.eqς  

Corollary 5 (Equivalent damping ratio II). The damping ratio of a fractional oscillator in Class II is given by 

Figure 13. Illustrations of ςeq1(ω, α). Solid line: α = 1.3. Dot line: α = 1.6. Dash line: α = 1.9. (a) For ωn = 1.
(b) For ωn = 3.

Note 5.8: Figure 13 indicates that the smaller the α the greater the ςeq1.

Corollary 5 (Equivalent damping ratio II). The damping ratio of a fractional oscillator in Class II is given by

ςeq2 = ςeq2(ω, β) =
ςωβ−1 sin βπ

2√
1− c

m ωβ−2 cos βπ
2

, 0 < β ≤ 1, (145)

where ς = c
2
√

mk
.
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Proof. When replacing the meq2 and ceq2 in the following expression by the equivalent mass II and the
equivalent damping II proposed in Section 4, we attain

ςeq2 =
ceq2

2
√

meq2k
=

cωβ−1 sin βπ
2

2
√(

m−cωβ−2 cos βπ
2

)
k
=

cωβ−1 sin βπ
2

2
√(

1− c
m ωβ−2 cos βπ

2

)
mk

=
cωβ−1 sin βπ

2

2
√

mk
√

1− c
m ωβ−2 cos βπ

2

=
ςωβ−1 sin βπ

2√
1− c

m ωβ−2 cos βπ
2

, 0 < β ≤ 1.

This finishes the proof. �

Remark 22. The damping ratio ςeq2 obeys the power law in terms of ω.

Remark 23. The damping ratio ςeq2 is associated with ω and the fractional order β. It is decreasing in terms
of ω.

Note 5.9: ςeq2 takes ζ as a special case for β = 1. In fact,

ςeq2(ω, β)
∣∣
β=1 =

ςωβ−1 sin βπ
2√

1− c
m ωβ−2 cos βπ

2

∣∣∣∣∣∣
β=1

= ς. (146)

Figure 14 indicates the plots of ςeq2(ω, β) in the case of m = 1, c = 1, and k = 1.
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Corollary 6 (Equivalent damping ratio III). Let 3eqς  be the damping ratio of a fractional oscillator in 
Class III. Then, for 1 < α ≤ 2, 0 < β ≤ 1, 

Figure 14. Plots of ςeq2(ω, β) for m = c = k = 1. Solid line: β = 0.9. Dot line: β = 0.6. Dash line: β = 0.3.

Corollary 6 (Equivalent damping ratio III). Let ςeq3 be the damping ratio of a fractional oscillator in Class
III. Then, for 1 < α ≤ 2, 0 < β ≤ 1,

ςeq3 = ςeq3(ω, α, β) =
ωα−1 sin απ

2 + 2ςωnωβ−1 sin βπ
2

2ωn

√
−
(

ωα−2 cos απ
2 + 2ςωnωβ−2 cos βπ

2

) . (147)

Proof. If replacing the meq3 and ceq3 below with the equivalent mass III and the equivalent damping III
presented in Section 4, we obtain
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ςeq3 =
ceq3

2
√

meq3k
=

mωα−1 sin απ
2 +cωβ−1 sin βπ

2

2
√
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

)
k

=
m
(

ωα−1 sin απ
2 + c

m ωβ−1 sin βπ
2

)
2
√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

)
mk

=
m
(

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

)
2
√

mk
√
−
(

ωα−2 cos απ
2 +2ςωnωβ−2 cos βπ

2

)
=

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

2ωn

√
−
(

ωα−2 cos απ
2 +2ςωnωβ−2 cos βπ

2

) .

Thus, we finish the proof. �

Remark 24. The damping ratio ςeq3 follows the power law in terms of ω.

Remark 25. ςeq3 relates to ω and a pair of fractional orders (α, β).

Note 5.10: ςeq3 regards ζ as a special case for α = 2 and β = 1. As a matter of fact,

ςeq3(ω, 2, 1) =
ωα−1 sin απ

2 + 2ςωnωβ−1 sin βπ
2

2ωn

√
−
(

ωα−2 cos απ
2 + 2ςωnωβ−2 cos βπ

2

)
∣∣∣∣∣∣∣∣
α=2,β=1

= ς. (148)

Figure 15 demonstrates the figures of ςeq3(ω, α, β) in the case of m = 1, c = 1, and k = 1.
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5.3. Equivalent Natural Frequency II 

Now, with two parameters ,eqn jω  and eqjς  presented above, we rewrite the equivalent 
oscillator (130) by 

2
2

, ,2

( ) ( ) ( )2 ( ) ,     1, 2,3.j j
eqj eqn j eqn j j

eqj

d x t dx t f tx t j
dt mdt

ς ω ω+ + = =  (149) 
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2 2
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Corollary 7 (Equivalent natural frequency II1). Let ,1eqdω  be the functional damped natural frequency of 
a fractional oscillator in Class I. It may be termed the equivalent natural frequency II1. Then,  
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Figure 15. Demonstrations of ςeq3(ω, α, β) in m = c = k = 1. Solid line: α = 1.9. Dot line: α = 1.8. Dash
line: α = 1.7. (a) For β = 0.8. (b) For β = 0.5. (c) For β = 0.2. (d) For β = 1.



Symmetry 2018, 10, 40 30 of 91

5.3. Equivalent Natural Frequency II

Now, with two parameters ωeqn,j and ςeqj presented above, we rewrite the equivalent oscillator
(130) by

d2xj(t)
dt2 + 2ςeqjωeqn,j

dxj(t)
dt

+ ω2
eqn,jxj(t) =

f (t)
meqj

, j = 1, 2, 3. (149)

The characteristic equation of (149) is given by

s2
j + 2ςeqjωeqn,jsj + ω2

eqn,j = 0, j = 1, 2, 3. (150)

The characteristic roots are in the form

sj,1,2 = −ςeqjωeqn,j ±
√

ς2
eqjω

2
eqn,j −ω2

eqn,j = −ςeqjωeqn,j ± iωeqn,j

√
1− ς2

eqj, j = 1, 2, 3. (151)

Functionally, we utilize the symbol ωeqd,j for

ωeqd,j = ωeqn,j

√
1− ς2

eqj, j = 1, 2, 3. (152)

Thus, the characteristic roots are

sj,1,2 = −ςeqjωeqn,j ± iωeqd,j, j = 1, 2, 3. (153)

Note that, in practice, 0 ≤ ςeqj < 1 because 1 ≤ ςeqj means no oscillation at all.
We write those above for the sake of applying the theory of linear oscillations to fractional ones.

Now, we discuss ωeqd,j.

Corollary 7 (Equivalent natural frequency II1). Let ωeqd,1 be the functional damped natural frequency of a
fractional oscillator in Class I. It may be termed the equivalent natural frequency II1. Then,

ωeqd,1 = ωeqd,1(ω, α) =
ωn√

−ωα−2 cos απ
2

√
1−

ωα sin2 απ
2

4ω2
n
∣∣cos απ

2

∣∣ , 1 < α ≤ 2. (154)

Proof. Note that
ωeqd,1 = ωeqn,1

√
1− ς2

ed1. (155)

Using the above ςed1, we have

ωeqd,1 = ωeqn,1

√
1− ς2

ed1 =
ωn√

−ωα−2 cos απ
2

√√√√√1−

 ω
α
2 sin απ

2

2ωn

√∣∣cos απ
2

∣∣
2

.

This finishes the proof. �

The parameter ωeqd,1 functionally takes the form of damped natural frequency as in the
conventional linear oscillation theory. In this research, we do not distinguish the natural frequencies
with damped or damping free. At most, we just say that it is a functional damped one. It relates to the
oscillation frequency ω and the fractional order α.

Remark 26. ωeqd,1 is not a monotonic function of ω.
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Note 5.11: ωn is a special case of ωeqd,1 when α = 2:

ωeqd,1(ω, 2) =
ωn√

−ωα−2 cos απ
2

√
1−

ωα sin2 απ
2

4ω2
n
∣∣cos απ

2

∣∣
∣∣∣∣∣∣
α=2

= ωn. (156)

As a matter of fact, fractional oscillators of Class I are damping free for α = 2. Figure 16 illustrates
the plots of ωeqd,1(ω, α).
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Corollary 8 (Equivalent natural frequency II2). Let ωeqd,2 be the functional damped natural frequency of a
fractional oscillator in Class II. Term it with the equivalent natural frequency II2. Then, for 0 < β ≤ 1,

ωeqd,2 = ωeqd,2(ω, β) =
ωn√

1− c
m ωβ−2 cos βπ

2

√√√√1−
ς2ω2(β−1) sin2 βπ

2

1− c
m ωβ−2 cos βπ

2

. (157)

Proof. Consider
ωeqd,2 = ωeqn,2

√
1− ς2

ed2. (158)

Replacing ωeqn,2 and ςed2 in the above yields

ωeqd,2 = ωeqn,2

√
1− ς2

ed2 = ωn√
1− c

m ωβ−2 cos βπ
2

√√√√1−
(

ςωβ−1 sin βπ
2

2
√

1− c
m ωβ−2 cos βπ

2

)2

= ωn√
1− c

m ωβ−2 cos βπ
2

√
1− ς2ω2(β−1) sin2 βπ

2

1− c
m ωβ−2 cos βπ

2
.

Thus, Corollary 8 holds. �

Remark 27. ωeqd,2 is related to ω and the fractional order β.

Note 5.12: The conventional damped natural frequency, say,

ωd = ωn

√
1− ς2 (159)

is a special case of ωeqd,2(ω, β) for β = 1.
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Figure 17 gives the plots of ωeqd,2(ω, β).
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Corollary 9 (Equivalent natural frequency II3). Let ωeqd,3 = ωeqd,3(ω, α, β) be the functional damped
natural frequency of a fractional oscillator in Class III. Call it the equivalent natural frequency II3. Then, for
1 < α ≤ 2 and 0 < β ≤ 1, we have

ωeqd,3 =

ωn

√√√√1−
[ (

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

)2

4ω2
n

[
−
(

ωα−2 cos απ
2 +2ςωnωβ−2 cos βπ

2

)]
]2

√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

) . (160)

Proof. In the expression below

ωeqd,3 = ωeqn,3

√
1− ς2

ed3, (161)

we replace ωeqd,3 and ςeq3 by those expressed above. Then, we have

ωeqd,3 = ωeqn,3

√
1− ς2

ed3 =
√

k
meq3

√
1− ς2

ed3

=

ωn

√√√√√√√1−

 ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

2ωn

√
−
(

ωα−2 cos απ
2 +2ςωnωβ−2 cos βπ

2

)


2

√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

)

=

ωn

√√√√√√1−


(

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

)2

4ω2
n

[
−
(

ωα−2 cos απ
2 +2ςωnωβ−2 cos βπ

2

)]


2

√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

) .

Therefore, the corollary holds. �

Note 5.13: The conventional damped natural frequency ωd is a special case of ωeqd,3 for
(α, β) = (2, 1). Indeed,
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ωeqd,3(ω, 2, 1) =

ωn

√√√√1−
[ (

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

)2

4ω2
n

[
−
(

ωα−2 cos απ
2 +2ςωnωβ−2 cos βπ

2

)]
]2

√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

)
∣∣∣∣∣∣∣∣∣∣∣∣
α=1,β=1

= ωn

√
1− ς2. (162)

Remark 28. The natural frequency ωeqd,3 is associated with ω and a pair of fractional orders (α, β).

Figures 18 and 19 indicate its plots.
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5.4. There Exists Infinity of Natural Frequencies of a Fractional Oscillator 
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5.4. There Exists Infinity of Natural Frequencies of a Fractional Oscillator

The previous discussions imply that there exists infinity of natural frequencies, for either ωeqn,j or
ωeqd,j, because each is dependent on ω ∈ (0, ∞). We functionally derived the two characteristic roots of
the frequency equation (151), namely, sj,1,2, actually stand for infinity of roots owing to ω ∈ (0, ∞).

Taking a fractional oscillator in Class I into account, its frequency equation is given by

sα + ω2
n = 0, 1 < α ≤ 2. (163)

Then, it is easy to see that there exists infinitely many characteristic roots in the above, also see
Li et al. [18].

A contribution in this work in representing characteristic roots of three classes of fractional
oscillators is that they are expressed analytically. Moreover, functionally, they take the form as that in
the theory of conventional linear oscillations, making it possible to represent solutions to three classes
of fractional oscillators by using elementary functions, which are easier for use in both engineering
applications and theoretic analysis of fractional oscillators.

6. Free Responses to Three Classes of Fractional Oscillators

We put forward the free responses in this section to three classes of fractional oscillators based on
their equivalent oscillators presented in Section 4. Since the equivalent oscillators are expressed by
using second-order differential equations in form, in methodology, therefore, it is easy for us to find
the responses we concern with. Note that the equivalence explained in Section 4 says that

Yj(ω) = Xj(ω), j = 1, 2, 3, (164)

where the subscript j stands for the Class I to III. Consequently,

yj(t) = xj(t), j = 1, 2, 3. (165)

Therefore, our research implies three advances.

• First, proposing the free responses to three classes of fractional oscillators using the way of solving
conventional oscillators.

• Then, since the responses to conventional oscillators are represented by elementary functions while
those to fractional ones are expressed by special functions, such as the Mittag-Leffler function
and its generalizations, we shall present novel representation to a certain special functions by
elementary ones.

• Finally, analytic expressions of the logarithmic decrements, which are useful in practice, of three
classes of fractional oscillators are proposed.

6.1. General Form of Free Responses

Consider the free response to the functional equivalent oscillator in Class j in the form
meqj

d2xj(t)
dt2 + ceqj

dxj(t)
dt + kxj(t) = 0

xj(0) = xj0,
dxj(t)

dt

∣∣∣
t=0

= vj0

, j = 1, 2, 3. (166)

Following the representation style in engineering, we rewrite it by
d2xj(t)

dt2 + 2ςeqjωeqn,j
dxj(t)

dt + ω2
eqn,jxj(t) = 0

xj(0) = xj0,
dxj(t)

dt

∣∣∣
t=0

= vj0

, j = 1, 2, 3 . (167)
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Therefore (Timoshenko ([1], p. 34), Jin and Xia ([79], p. 11)), we have, for t ≥ 0,

xj(t) = e−ςeqjωeqn,jt

(
xj0 cos ωeqd,jt +

vj0 + ςeqjωeqn,jxj0

ωeqd,j
sin ωeqd,jt

)
. (168)

The above may be rewritten in the form

xj(t) = Aeqje
−ςeqjωeqn,jt cos

(
ωeqd,jt− θeqj

)
, t ≥ 0, (169)

where the equivalent amplitude Aeqj is given by

Aeqj =

√√√√x2
j0 +

[
vj0 + ςeqjωeqn,jxj0

ωeqd,j

]2

, (170)

and the equivalent phase θeqj is

θeqj = tan−1 vj0 + ςeqjωeqn,jxj0

ωeqd,jxj0
. (171)

Note that, for ωeqn,j, ςeqj, Aeqj, and θeqj, each is not constant for fractional oscillators. Instead, each
is generally a function of oscillation frequency ω and fractional order.

6.2. Free Response to Fractional Oscillators in Class I

We state the free response to a fractional oscillator in Class I by Theorem 10.

Theorem 10 (Free response I). Let x1(t) be the free response to a fractional oscillator in Class I. Then, for
1 < α ≤ 2, x1(t) is given by

x1(t) = e
− ω sin απ

2
2|cos απ

2 |
t



x10 cos

(
ωn√

ωα−2|cos απ
2 |

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t

)

+

v10+
ω

α
2 sin απ

2

2ωn

√
|cos απ

2 |
x10√

1− ωα sin2 απ
2

4ω2
n|cos απ

2 |
sin

(
ωn√

ωα−2|cos απ
2 |

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t

)


. (172)

Proof. For t ≥ 0, consider

x1(t) = e−ςeq1ωeqn,1t

(
x10 cos ωeqd,1t +

v10 + ςeq1ωeqn,1x10

ωeqd,1
sin ωeqd,1t

)
. (173)
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In the above, replacing ωeqn,1 by the one in (132), ςeq1 with that in (141), and ωeqd,1 by the one in
(154) yields

x1(t) = e
− ω

α
2 sin απ

2
2ωn
√
|cos απ

2 |
ωn√

ωα−2 |cos απ
2 |

t



x10 cos

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |√

ωα−2|cos απ
2 |

t



+

v10+
ω

α
2 sin απ

2

2ωn

√
|cos απ

2 |
ωn√

ωα−2|cos απ
2 |

x10

ωn√
ωα−2|cos απ

2 |

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

sin

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |√

ωα−2|cos απ
2 |

t





= e
− ω sin απ

2
2|cos απ

2 |
t

x10 cos

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t√
ωα−2|cos απ

2 |

+

v10+
ω

α
2 sin απ

2

2ωn

√
|cos απ

2 |
x10√

1− ωα sin2 απ
2

4ω2
n|cos απ

2 |
sin

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |√

ωα−2|cos απ
2 |

t


.

This completes the proof. �

Figure 20 indicates x1(t) with fixed ω.
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Figure 20. Indicating free response 1( )x t  for 10 10 nx v ω= =  = 1. (a) α = 1.9. Solid line: ω = 1 ( 1eqς  = 

0.08). Dot line: ω = 0.7 ( 1eqς  = 0.04). (b) α = 1.6. Solid line: ω = 1 ( 1eqς  = 0.33). Dot line: ω = 0.7 ( 1eqς  = 

0.16). (c) α = 1.3. Solid line: ω = 1 ( 1eqς = 0.66). Dot line: ω = 0.7 ( 1eqς  = 0.42). (d) α = 2. Solid line: ω = 1 

( 1eqς = 0). Dot line: ω = 0.7 ( 1eqς = 0). 

Note 6.1: As indicated in Figure 20, both oscillation frequency ω and the fractional order α 
have affects on the damping 1( , ),eqς ω α  also see Figure 10. When α = 2, 1( )x t  reduces to the free 
response to the ordinary harmonic oscillation with damping free in the form (also see Figure 20d) 
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The free response to a fractional oscillator in Class I is presented in (172). It uses elementary 
functions instead of special functions.  

Since there exists infinity of natural frequencies for a fractional oscillator, as we explained in 
Section 5, 1( )x t  is actually a function of both t and ω as can be seen from (172). In Figure 20, plots 
are only specifically with fixed ω. Its plots with varying ω are viewed by Figure 21. 
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Figure 20. Indicating free response x1(t) for x10 = v10 = ωn = 1. (a) α = 1.9. Solid line: ω = 1
(ςeq1 = 0.08). Dot line: ω = 0.7 (ςeq1 = 0.04). (b) α = 1.6. Solid line: ω = 1 (ςeq1 = 0.33). Dot line: ω = 0.7
(ςeq1 = 0.16). (c) α = 1.3. Solid line: ω = 1 (ςeq1 = 0.66). Dot line: ω = 0.7 (ςeq1 = 0.42). (d) α = 2. Solid
line: ω = 1 (ςeq1 = 0). Dot line: ω = 0.7 (ςeq1 = 0).
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Note 6.1: As indicated in Figure 20, both oscillation frequency ω and the fractional order α have
affects on the damping ςeq1(ω, α), also see Figure 10. When α = 2, x1(t) reduces to the free response to
the ordinary harmonic oscillation with damping free in the form (also see Figure 20d)

x1(t) =
(

x10 cos ωnt +
v10

ωn
sin ωnt

)
, t ≥ 0.

The free response to a fractional oscillator in Class I is presented in (172). It uses elementary
functions instead of special functions.

Since there exists infinity of natural frequencies for a fractional oscillator, as we explained in
Section 5, x1(t) is actually a function of both t and ω as can be seen from (172). In Figure 20, plots are
only specifically with fixed ω. Its plots with varying ω are viewed by Figure 21.
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Figure 21. Illustrating free response x1(t) with variable ω ( = 0, 0.2, 0.4, ..., 10) for x10 = v10 = 1.
(a) For ωn = 1 and α = 1.9 (0 ≤ ςeq1 ≤ 0.64). (b) For ωn = 3 and α = 1.6 (0 ≤ ςeq1 ≤ 0.63).

When emphasizing the point of time-frequency behavior, we view it in t-ω plane as
Figure 22 shows.
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Figure 22. Indicating free response x1(t) in t-ω plane for t = 0, 1, ..., 30 and ω = 1, 2, ..., 5,
with x10 = v10 = 1, ωn = 6. (a) α = 1.9 (0.01 ≤ ςeq1 ≤ 0.28). (b) α = 1.6 (0.05 ≤ ςeq1 ≤ 0.72). (c) α = 1.3
(0.11 ≤ ςeq1 ≤ 0.89). (d) α = 2 (ςeq1 = 0).

Let ti and ti + 1 be two time points where xj(ti) reaches its successive peak values of xj(ti)

and xj(ti+1), respectively. Let ∆eqj be the logarithmic decrement of xj(ti). Then, from (178),
we immediately obtain

∆eqj = ln
xj(ti)

xj(ti+1)
=

2πςeqj√
1− ς2

eqj

. (174)

Corollary 10 (Decrement I). Let x1(t) be the free response of a fractional oscillator in Class I. Then, its
logarithmic decrement is given in the form

∆eq1 =
π√

1−
(

ω
α
2 sin απ

2
2ωn
√
− cos απ

2

)2

ω
α
2 sin απ

2

ωn

√
− cos απ

2

, 1 < α ≤ 2. (175)

Proof. According to (174), we have

∆eq1 = ln
x1(ti)

x1(ti+1)
=

2πςeq1√
1− ς2

eq1

=
π√

1−
(

ω
α
2 sin απ

2
2ωn
√
− cos απ

2

)2

ω
α
2 sin απ

2

ωn

√
− cos απ

2

, 1 < α ≤ 2.

The proof finishes. �

Since ∆eq1 is a function of ω and α, we may write it with ∆eq1(ω, α). Figure 23 indicates ∆eq1.
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Figure 23. Plots of ∆eq1. Solid line: α = 1.9. Dot line: α = 1.6. (a) For ωn = 1. (b) For ωn = 5. (c) For
ωn = 10.

Note 6.2: ∆eq1= 0 for α = 2. As a matter of fact, a fractional oscillator in Class I reduces to a
harmonic one if α = 2. Accordingly, ∆eq1= 0 in that case.

6.3. Free Response to Fractional Oscillators in Class II

We state the free response to a fractional oscillator in Class II by Theorem 11.

Theorem 11 (Free response II). Denote by x2(t) the free response to a fractional oscillator of Class II type.
Then, it is, for t ≥ 0 and 1 < β ≤ 2, in the form

x2(t) = e
− ςωnωβ−1 sin βπ

2
1− c

m ωβ−2 cos βπ
2

t



x20 cos


ωn

√√√√1− c2ω2(β−1) sin2 βπ
2

4
(

m−cωβ−2 cos βπ
2

)
k

t

√(
1− c

m ωβ−2 cos βπ
2

)


+

v20+
cωβ−1 sin βπ

2

2
(

m−cωβ−2 cos βπ
2

) x20

ωn

√√√√1− c2ω2(β−1) sin2 βπ
2

4
(

m−cωβ−2 cos βπ
2

)
k

sin


ωn

√√√√1− c2ω2(β−1) sin2 βπ
2

4
(

m−cωβ−2 cos βπ
2

)
k

t

√(
1− c

m ωβ−2 cos βπ
2

)




. (176)
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Proof. Note that, for t ≥ 0,

x2(t) = e−ςeq2ωeqn,2t

(
x20 cos ωeqd,2t +

v20 + ςeq2ωeqn,2x20

ωeqd,2
sin ωeqd,2t

)
. (177)

In the above expression, we replace ςeq2, ωeqd,2, and ωeqn,2 by those expressed in Section 5. Then,
we have (176). Thus, Theorem 11 holds. �

Note 6.3: If β = 1, x2(t) degenerates to the ordinary free response to an oscillator with the viscous
damper c. In fact,

x2(t)|β=1 = e
− ςωnωβ−1 sin βπ

2
1− c

m ωβ−2 cos βπ
2

t



x20 cos


ωn

√√√√1− c2ω2(β−1) sin2 βπ
2

4
(

m−cωβ−2 cos βπ
2

)
k

t

√(
1− c

m ωβ−2 cos βπ
2

)


+

v20+
cωβ−1 sin βπ

2

2
(

m−cωβ−2 cos βπ
2

) x20

ωn

√√√√1− c2ω2(β−1) sin2 βπ
2

4
(

m−cωβ−2 cos βπ
2

)
k

sin


ωn

√√√√1− c2ω2(β−1) sin2 βπ
2

4
(

m−cωβ−2 cos βπ
2

)
k

t

√(
1− c

m ωβ−2 cos βπ
2

)



β=1

= e−ςωnt

[
x20 cos

(
ωn

√
1− c2

4mk t
)
+

v20+
c

2m x20

ωn

√
1− c2

4mk

sin
(

ωn

√
1− c2

4mk t
)]

= e−ςωnt
[

x20 cos
(

ωn
√

1− ς2t
)
+ v20+ςωnx20

ωn
√

1−ς2
sin
(

ωn
√

1− ς2t
)]

.

Note 6.4: As far as a fractional oscillator in Class II was concerned, its free response in the closed
form is rarely reported. Theorem 11 gives it by using elementary functions.

Let m = c = k = x10 = v10 = 1, and ω = 30. We use Figure 24 to illustrate x2(t).
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Note 6.4: As far as a fractional oscillator in Class II was concerned, its free response in the 
closed form is rarely reported. Theorem 11 gives it by using elementary functions. 

Let m = c = k = 10 10 1,x v= =  and ω = 30. We use Figure 24 to illustrate 2 ( ).x t  
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Figure 25. Plots of free response 2 ( )x t  with ω (= 1, 2, ..., 5), m = c = k = 1 = 10 10 1.x v= =  (a) For β = 
0.2 (0.04 ≤ 2eqς  ≤ 0.70). (b) For β = 0.4 (0.12 ≤ 2eqς  ≤ 0.67). (c) For β = 0.6 (0.22 ≤ 2eqς  ≤ 0.63). (d) For 

β = 0.8 (0.35 ≤ 2eqς  ≤ 0.57). 
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Figure 24. Illustrating free response x2(t) with fixed ω when m = c = k = x10 = v10 = 1. (a) β = 0.3.
Solid line: ω = 30 (ςeq2 = 0.02). Dot line: ω = 10 (ςeq2 = 0.05). (b) β = 0.6. Solid line: ω = 30 (ςeq2 = 0.10).
Dot line: ω = 10 (ςeq2 = 0.16). (c) β = 0.9 Solid line: ω = 30 (ςeq2 = 0.35). Dot line: ω = 10 (ςeq2 = 0.40).
(d) β = 1. Solid line: ω = 30 (ςeq2 = 0.50). Dot line: ω = 10 (ςeq2 = 0.50).

Similar to x1(t), x2(t) is also with the argument ω. Its plots with variable ω are demonstrated in
Figure 25. Figure 26 shows its plots in t-ω plane.
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Figure 25. Plots of free response x2(t) with ω (= 1, 2, ..., 5), m = c = k = 1 = x10 = v10 = 1. (a) For β = 0.2
(0.04 ≤ ςeq2 ≤ 0.70). (b) For β = 0.4 (0.12 ≤ ςeq2 ≤ 0.67). (c) For β = 0.6 (0.22 ≤ ςeq2 ≤ 0.63). (d) For
β = 0.8 (0.35 ≤ ςeq2 ≤ 0.57).
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Figure 26. Plots of free response x2(t) in t-ω plane with m = k = x10 = v10 = 1, c = 0.5, for t = 0, 1, ..., 30;
ω = 1, 2, ..., 5. (a) β = 0.3 (0.04≤ ςeq2 ≤ 0.15). (b) β = 0.6 (0.11≤ ςeq2 ≤ 0.24). (c) β = 0.9 (0.21≤ ςeq2 ≤ 0.26).
(d) β = 1 (ςeq2 = 0.25).

Corollary 11 (Decrement II). Denote by x2(t) the free response to a fractional oscillator in Class II. Then,
for 0 < β ≤ 1, its logarithmic decrement ∆eq2, is in the form

∆eq2 =
2π√√√√1−

(
ςωβ−1 sin βπ

2√
1− c

m ωβ−2 cos βπ
2

)2

ςωβ−1 sin βπ
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m ωβ−2 cos βπ

2

. (178)

Proof. According to (174), we have

∆eq2 = ln
x2(ti)

x2(ti+1)
=

2πςeq2√
1− ς2

eq2

. (179)

Replacing the above ςeq2 with that in (145) produces

∆eq2 =
2πςeq2√
1− ς2

eq2

=
2π√√√√1−

(
ςωβ−1 sin βπ

2√
1− c

m ωβ−2 cos βπ
2

)2

ςωβ−1 sin βπ
2√

1− c
m ωβ−2 cos βπ

2

.

This finishes the proof. �

Similar to ∆eq1, we may write ∆eq2 with ∆eq2(ω, β). Figure 27 indicates its plots.
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We now present the free response to a fractional oscillator in Class III by Theorem 12. 
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Note 6.5: ∆eq2 reduces to the conventional logarithmic decrement if β = 1, because

∆eq2
∣∣
β=1 =
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6.4. Free Response to Fractional Oscillators in Class III

We now present the free response to a fractional oscillator in Class III by Theorem 12.

Theorem 12 (Free response III). Let x3(t) be the free response to a fractional oscillator in Class III. Then,
for t ≥ 0, 1< α ≤ 2, 0 < β ≤ 1, it is given by
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Proof. Note that, for t ≥ 0,

x3(t) = e−ςeq3ωeqn,3t

(
x30 cos ωeqd,3t +

v30 + ςeq3ωeqn,3x30

ωeqd,3
sin ωeqd,3t

)
. (182)

In (182), when substituting ςeq3, ωeqd,3, and ωeqn,3 with those explained in Section 5, we have (181).
The proof finishes. �

Note 6.6: If (α, β) = (2, 1), x3(t) returns to be the free response to an ordinary oscillator with the
viscous damping. As a matter of fact,

x3(t)|α=2,β=1 = e−ςωnt
(

x30 cos ωdt +
v30 + ςωnx30

ωd
sin ωdt

)
, (183)

where ωd = ωn
√

1− ς2.
Figure 28 indicates x3(t) for m = c = k = x10 = v10 = 1.
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Note that the plots regarding with 3 ( )x t  in Figure 28 are with fixed ω. However, actual 3 ( )x t  
is frequency varying. Figure 29 shows its frequency varying pictures in time domain and Figure 30 
in t-ω plane. 
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Figure 29. Free response 3 ( )x t  with variable ω (=1, 2, ..., 10) for m = c = k = 1. (a) α = 1.9, β = 0.8 ( 3eqς  

0.66). (b) α = 1.5, β = 0.8 ( 3eqς  = 1.33). (c) α = 1.8, β = 0.3 ( 3eqς  = 0.91). (d) α = 2, β = 1 ( 3eqς  = 0.50). 

Figure 28. Plots of free response x3(t) for m = c = k = x10 = v10 = 1. Solid line: ω = 1.1. Dot line:
ω = 1.5. (a) α = 1.8, β = 0.8 (ςeq3 = 0.78). (b) α = 1.5, β = 0.8 (ςeq3 = 1.33). (c) α = 1.8, β = 0.3 (ςeq3 = 0.91).
(d) α = 2, β = 1 (ςeq3 = 0.50).

Note that the plots regarding with x3(t) in Figure 28 are with fixed ω. However, actual x3(t) is
frequency varying. Figure 29 shows its frequency varying pictures in time domain and Figure 30 in
t-ω plane.
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Figure 29. Free response 3 ( )x t  with variable ω (=1, 2, ..., 10) for m = c = k = 1. (a) α = 1.9, β = 0.8 ( 3eqς  

0.66). (b) α = 1.5, β = 0.8 ( 3eqς  = 1.33). (c) α = 1.8, β = 0.3 ( 3eqς  = 0.91). (d) α = 2, β = 1 ( 3eqς  = 0.50). 
Figure 29. Free response x3(t) with variable ω (=1, 2, ..., 10) for m = c = k = 1. (a) α = 1.9, β = 0.8
(ςeq3 = 0.66). (b) α = 1.5, β = 0.8 (ςeq3 = 1.33). (c) α = 1.8, β = 0.3 (ςeq3 = 0.91). (d) α = 2, β = 1 (ςeq3 = 0.50).
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β = 0.8 (0.49 ≤ ςeq3 ≤ 1.49). (d) α = 2, β = 1 (ςeq3 = 0.05).

Corollary 12 (Decrement III). Denote by x3(t) the free response to a fractional oscillator in Class III. Then, for
1 < α ≤ 2 and 0 < β ≤ 1, its logarithmic decrement, denoted by ∆eq3, is given by
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Proof. Note that

∆eq3 = ln
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x3(ti+1)
=
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. (185)

Replacing the above ςeq3 with that in (147) yields (184). This completes the proof. �
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When α = 2 and β = 1, ∆eq3 = ∆eq3(ω, α, β) becomes the conventional logarithmic decrement.
In fact,
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As ∆eq3 is a function of ω and (α, β), we write it by ∆eq3(ω, α, β). Figures 31 and 32 show its plots.
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Figure 31. 3( , , ) :eq ω α βΔ  Logarithmic decrement of fractional oscillator in Class III for m = c = k = 1. (a) 

Solid line: α = 1.7, β = 0.8. Dot line: α = 1.7, β = 0.5. (b) Solid line: α = 1.8, β = 0.8. Dot line: α = 1.8, β = 0.5. 
Figure 31. ∆eq3(ω, α, β) : Logarithmic decrement of fractional oscillator in Class III for m = c = k = 1.
(a) Solid line: α = 1.7, β = 0.8. Dot line: α = 1.7, β = 0.5. (b) Solid line: α = 1.8, β = 0.8. Dot line: α = 1.8,
β = 0.5.
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6.5. Application to Representing Generalized Mittag-Leffler Function (1) 

The previous research (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7)) presented 
the free response to fractional oscillators of Class I type by using a kind of special function, called 
the generalized Mittag-Leffler function, see (32). The novelty of our result presented in Theorem 10 
is in that Equation (172) or (173) is consistent with the representation style in engineering by using 
elementary functions. Thus, we obtain novel representations of the generalized Mittag-Leffler 
functions as follows. 
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(b) Solid line: α = 1.8, β = 0.8. Dot line: α = 1.8, β = 0.5.

6.5. Application to Representing Generalized Mittag-Leffler Function (1)

The previous research (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7)) presented
the free response to fractional oscillators of Class I type by using a kind of special function, called
the generalized Mittag-Leffler function, see (32). The novelty of our result presented in Theorem 10
is in that Equation (172) or (173) is consistent with the representation style in engineering by using
elementary functions. Thus, we obtain novel representations of the generalized Mittag-Leffler functions
as follows.

Corollary 13. The generalized Mittag-Leffler function in the form

x1(t) = x10Eα,1
[
−(ωnt)α]+ v10tEα,2

[
−(ωnt)α], 1 < α ≤ 2, t ≥ 0, (187)

is the solution to fractional oscillators in Class I (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7)).
It can be expressed by the one in (172). That is, for 1 < α ≤ 2, t ≥ 0,
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x1(t) = x10Eα,1
[
−(ωnt)α]+ v10tEα,2

[
−(ωnt)α]

= e
− ω sin απ

2
2|cos απ

2 |
t



x10 cos

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t√
ωα−2|cos απ

2 |



+


v10+

ω
α
2 sin απ

2

2ωn

√
|cos απ

2 |
x10√

1− ωα sin2 απ
2

4ω2
n|cos απ

2 |

 sin

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t√
ωα−2|cos απ

2 |




.

(188)

The proof of Corollary 13 is straightforward from (172).
When v10= 0 in (187), we obtain a corollary below.

Corollary 14. The generalized Mittag-Leffler function given by

x1(t) = x10Eα,1
[
−(ωnt)α], 1 < α ≤ 2, t ≥ 0, (189)

can be expressed by the elementary functions, for 1 < α ≤ 2, t ≥ 0, in the form

x1(t) = x10Eα,1
[
−(ωnt)α] = e

− ω sin απ
2

2|cos απ
2 |

t



x10 cos

(
ωn√

ωα−2|cos απ
2 |

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t

)

+


ω

α
2 sin απ

2

2ωn

√
|cos απ

2 |
x10√

1− ωα sin2 απ
2

4ω2
n|cos απ

2 |

 sin

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t√
ωα−2|cos απ

2 |




. (190)

Proof. If v10 = 0 in (187), (188) becomes (189). The proof completes. �

If x10= 0 in (187), we obtain another corollary as follows.

Corollary 15. The generalized Mittag-Leffler function expressed by

x1(t) = v10tEα,2
[
−(ωnt)α], 1 < α ≤ 2, t ≥ 0, (191)

can be represented, for 1 < α ≤ 2, t ≥ 0, by the elementary functions in the form

x1(t) = v10tEα,2
[
−(ωnt)α] = e

− ω sin απ
2

2|cos απ
2 |

t


 v10√

1− ωα sin2 απ
2

4ω2
n|cos απ

2 |

 sin

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |√

ωα−2
∣∣cos απ

2

∣∣ t


. (192)

Proof. When x10 = 0 in (187), (188) becomes (192). The proof finishes. �

7. Impulse Responses to Three Classes of Fractional Oscillators

In this section, we shall present the impulse responses to three classes of fractional oscillators
using elementary functions.

In Section 4, we have proved that

Hyj(ω) = Hxj(ω), j = 1, 2, 3,
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where Hyj(ω) is the frequency response function solved directly from a jth fractional oscillator while
Hxj(ω) is the one derived from its equivalent oscillator. Doing the inverse Fourier transform on the
both sides above, therefore, we have

hyj(t) = hxj(t), j = 1, 2, 3,

where hyj(t) is the impulse response obtained directly from the jth fractional oscillator but hxj(t)
is the one solved from its equivalent one. In that way, therefore, we may establish the theoretic
foundation for representing the impulse responses to three classes of fractional oscillators by using
elementary functions.

The main highlight presented in this section is to propose the impulse responses to three classes
of fractional oscillators in the closed analytic form expressed by elementary functions. As a by product,
we shall represent a certain generalized Mittag-Leffler functions using elementary functions.

7.1. General Form of Impulse Responses

Given a following functional form of equivalent oscillators for finding their impulse responses,
we denote by hj(t) the impulse response to the equivalent oscillator in Class j in the form

meqj
d2hj(t)

dt2 + ceqj
dhj(t)

dt
+ khj(t) = δ(t), j = 1, 2, 3. (193)

Rewrite the above in the form

d2hj(t)
dt2 +

ceqj

meqj

dhj(t)
dt

+
k

meqj
hj(t) =

δ(t)
meqj

, j = 1, 2, 3. (194)

According to the results in the previous sections, we have

d2hj(t)
dt2 + 2ςeqjωeqn,j

dhj(t)
dt

+ ω2
eqn,jhj(t) =

δ(t)
meqj

, j = 1, 2, 3. (195)

Therefore, functionally, we have

hj(t) =
e−ςeqjωeqn,jt

meqjωeqd,j
sin ωeqd,jt, t ≥ 0. (196)

Equation (196) is a general form of the impulse response to fractional oscillators for Class j
(j = 1, 2, 3). Its specific form for each Class is discussed as follows.

7.2. Impulse Response to Fractional Oscillators in Class I

Theorem 13 (Impulse response I). Let h1(t) be the impulse response to a fractional oscillator in Class I. Then,
for t ≥ 0 and 1 < α ≤ 2, we have

h1(t) =

e
− ω sin απ

2
2|cos απ

2 |
t
sin

(
ωn√

ωα−2|cos απ
2 |

√
1− ω2α sin2 απ

2
4ω2

n|cos απ
2 |

t

)

mωn

√
ωα−2

∣∣cos απ
2

∣∣√1− ω2α sin2 απ
2

4ω2
n|cos απ

2 |

. (197)

Proof. From (196), we have

h1(t) =
e−ςeq1ωeqn,1t

meq1ωeqd,1
sin ωeqd,1t, t ≥ 0. (198)
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When replacing meq1 by that in Section 4, ςeq1 and ωeqd,1 as well as ωeqn,1 with those in Section 5,
respectively, we obtain

h1(t) = e−ςeq1ωeqn,1t

meq1ωeqd,1
sin ωeqd,1t =

e
−

ω
α
2 sin απ

2
2ωn
√
|cos απ

2 |
ωn√

ωα−2 |cos απ
2 |

t

sin

ωn

√√√√1−
ω2α sin2 απ

2
4ω2

n|cos απ
2 |

t√
ωα−2|cos απ

2 |

ωα−2|cos απ
2 |m ωn√

ωα−2|cos απ
2 |

√
1− ω2α sin2 απ

2
4ω2

n|cos απ
2 |

= e
−

ω sin απ
2

2|cos απ
2 |

t sin

ωn

√√√√1−
ω2α sin2 απ

2
4ω2

n |cos απ
2 |

t
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ωα−2 |cos απ

2 |

mωn

√
ωα−2|cos απ

2 |
√

1− ω2α sin2 απ
2

4ω2
n|cos απ

2 |
.

This finishes the proof. �

Figure 33 shows the plots of h1(t), where the oscillation frequency ω is fixed. Note that ω is an
argument of h1(t). Therefore, its pictures in time domain are indicated in Figure 34. Figure 35 indicates
its figures in t-ω plane.
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Figure 33. Plots of impulse response h1(t) with ωn = 1. (a) α = 1.9, solid line: ω = 1 (ςeq1 = 0.08); dot line:
ω = 0.7 (ςeq1 = 0.04). (b) α = 1.6, solid line: ω = 1 (ςeq1 = 0.33); dot line: ω = 0.7 (ςeq1 = 0.19). (c) α = 1.3,
solid line: ω = 1 (ςeq1 = 0.66); dot line: ω = 0.7 (ςeq1 = 0.42). (d) α = 2, solid line: ω = 1 (ςeq1 = 0); dot line:
ω = 0.7 (ςeq1 = 0).
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7.3. Impulse Response to Fractional Oscillators in Class II 

Theorem 14 (Impulse response II). Denote by 2 ( )h t  the impulse response to a fractional oscillator in 
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7.3. Impulse Response to Fractional Oscillators in Class II 

Theorem 14 (Impulse response II). Denote by 2 ( )h t  the impulse response to a fractional oscillator in 
Class II. For t ≥ 0 and 1 < β ≤ 2, therefore, it is given by 

Figure 35. Impulse response h1(t) in t-ω plane with m = 1, ωn = 0.3 for t = 0, 1, ..., 30; ω = 1, 2, ..., 5.
(a) α = 1.9 (0.26 ≤ ςeq1 ≤ 5.58). (b) α = 2 (ςeq1 = 0).

Note 7.1: The impulse response h1(t) reduces to the conventional one if α = 2. In fact,

h1(t)|α=2 =
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7.3. Impulse Response to Fractional Oscillators in Class II

Theorem 14 (Impulse response II). Denote by h2(t) the impulse response to a fractional oscillator in Class II.
For t ≥ 0 and 1 < β ≤ 2, therefore, it is given by

h2(t) =

e
− ςωnωβ−1 sin βπ

2
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m ωβ−2 cos βπ

2

. (200)

Proof. From (196), we have

h2(t) = e−ςeq2ωeqn,2t 1
meq2ωeqd,2

sin ωeqd,2t, t ≥ 0. (201)

By replacing meq2 with that in Section 4, ςeq2, ωeqn,2, and ωeqd,2 by those in Section 5, we obtain

h2(t) =
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This is (200). Hence, the proof completes. �

Figure 36 illustrates h2(t) with fixed ω. Its plots with variable ω are shown in Figure 37. Its pictures
in t-ω plane are indicated in Figure 38.
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Figure 37. Plots of impulse response 2 ( )h t  with variable ω for m = c = k = 1 in time domain. (a) For β 
= 0.63, ω = 1, 2, ..., 5 (0.24 ≤ 2eqς  ≤ 0.62). (b) For β = 0.63, ω = 1, 2, ..., 10 (0.18 ≤ 2eqς  ≤ 0.62). (c) For β = 

0.83, ω = 1, 2, ..., 5 (0.37 ≤ 2eqς  ≤ 0.56). (d) For β = 0.83, ω = 1, 2, ..., 10 (0.33 ≤ 2eqς  ≤ 0.56). 

Figure 36. Illustrating impulse response h2(t) for m = c = k = 1. Solid line: ω = 30. Dot line: ω = 10.
(a) β = 0.3, solid line: ω = 30 (ςeq2 = 0.02); dot line: ω = 10 (ςeq2 = 0.05). (b) β = 0.6, solid line: ω = 30
(ςeq2 = 0.10); dot line: ω = 10 (ςeq2 = 0.16). (c) β = 0.9, solid line: ω = 30 (ςeq2 = 0.35); dot line: ω = 10
(ςeq2 = 0.40). (d) β = 1, solid line: ω = 30 (ςeq2 = 0.50); dot line: ω = 10 (ςeq2 = 0.50).
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Figure 37. Plots of impulse response 2 ( )h t  with variable ω for m = c = k = 1 in time domain. (a) For β 
= 0.63, ω = 1, 2, ..., 5 (0.24 ≤ 2eqς  ≤ 0.62). (b) For β = 0.63, ω = 1, 2, ..., 10 (0.18 ≤ 2eqς  ≤ 0.62). (c) For β = 

0.83, ω = 1, 2, ..., 5 (0.37 ≤ 2eqς  ≤ 0.56). (d) For β = 0.83, ω = 1, 2, ..., 10 (0.33 ≤ 2eqς  ≤ 0.56). 

Figure 37. Plots of impulse response h2(t) with variable ω for m = c = k = 1 in time domain. (a) For β = 0.63,
ω = 1, 2, ..., 5 (0.24 ≤ ςeq2 ≤ 0.62). (b) For β = 0.63, ω = 1, 2, ..., 10 (0.18 ≤ ςeq2 ≤ 0.62). (c) For β = 0.83,
ω = 1, 2, ..., 5 (0.37≤ ςeq2 ≤ 0.56). (d) For β = 0.83, ω = 1, 2, ..., 10 (0.33≤ ςeq2 ≤ 0.56).



Symmetry 2018, 10, 40 55 of 91
Symmetry 2017, 9, x FOR PEER REVIEW  62 of 106 

 

h2

t 

ω 

h2

t 

ω

 
(a) (b)

h2

t 

ω 

h2

t 

ω 

 
(c) (d)

Figure 38. Illustrating impulse response 2 ( )h t  in t-ω plane for m = c = k = 1 with t = 0, 1, ..., 50; ω = 1, 
2, ..., 5. (a) β = 0.3 (0.08 ≤ 2eqς  ≤ 0.69). (b) β = 0.6 (0.22 ≤ 2eqς  ≤ 0.63). (c) β = 0.9 (0.43 ≤ 2eqς  ≤ 0.54). 

(d) β = 1 ( 2eqς  = 0.50). 

Note 7.2: The impulse response 2 ( )h t  reduces to the conventional one if β = 1. As a matter of 
fact, 

1

2

sin
2 2 2( 1) 2

1 cos
2

2

2 1
2 2( 1) 2

2

2

1

2

2

sin
2sin 1

1 cos
2( )

sin
21 cos 1

2 1 cos
2

sin 1 .
1

n

n

t
c
m

n

n

t

n

n

e tc
mh t

cm cm
m

e t
m

β

β

βπςω ω
β

βπω

β

β
β

β

β

β

ςω

βπς ω
ω βπω

βπς ωβπω ω βπω

ω ς
ω ς

−

−
−−

−

−

=
−

−

−

=

−

 
 
 −
 − 

=  
 
 

− − 
 −
  

= −
−

 (202) 

7.4. Impulse Response to Fractional Oscillators in Class III 

We present the impulse response to fractional oscillators in Class III with Theorem 15. 

Theorem 15 (Impulse response III). Let 3 ( )h t  be the impulse response to a fractional oscillator in Class 
III. For t ≥ 0, 1 < α ≤ 2, 0 < β ≤ 1, it is in the form 
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Figure 38. Illustrating impulse response h2(t) in t-ω plane for m = c = k = 1 with t = 0, 1, ..., 50; ω = 1, 2, ..., 5.
(a) β = 0.3 (0.08 ≤ ςeq2 ≤ 0.69). (b) β = 0.6 (0.22 ≤ ςeq2 ≤ 0.63). (c) β = 0.9 (0.43 ≤ ςeq2 ≤ 0.54). (d) β = 1
(ςeq2 = 0.50).

Note 7.2: The impulse response h2(t) reduces to the conventional one if β = 1. As a matter of fact,

h2(t)|β=1 =


e
−

ςωnωβ−1 sin βπ
2

1− c
m ωβ−2 cos βπ

2

t

sin ωn

√√√√1− ς2ω2(β−1) sin2 βπ
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1− c
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ωnm
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1− c
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2


β=1

= e−ςωnt

mωn
√

1−ς2
sin ωn

√
1− ς2t.

(202)

7.4. Impulse Response to Fractional Oscillators in Class III

We present the impulse response to fractional oscillators in Class III with Theorem 15.

Theorem 15 (Impulse response III). Let h3(t) be the impulse response to a fractional oscillator in Class III.
For t ≥ 0, 1 < α ≤ 2, 0 < β ≤ 1, it is in the form

h3(t) =
e
− mωα−1 sin απ

2 +cωβ−1 sin βπ
2

2

√
−(mωα−2 cos απ

2 +cωβ−2 cos βπ
2 )k

ωeqn,3t

sin ωeqd,3t

−
(

mωα−2 cos απ
2 + cωβ−2 cos βπ

2

)
ωeqd,3

, (203)

where
ωeqn,3 =

ωn√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

) ,
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and

ωeqd,3 =

ωn

√√√√1−
(

mωα−1 sin απ
2 +cωβ−1 sin βπ

2

)2

4
[
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

)
k
]

√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

) .

Proof. With (196), we get

h3(t) = e−ςeq3ωeqn,3t 1
meq3ωeqd,3

sin ωeqd,3t, t ≥ 0. (204)

In the above expression, substitute meq3 with the one in Section 4, ςeq3, ωeqd,3, ωeqn,3 by those in
Section 5, respectively, we have, for t ≥ 0,

h3(t) =
e
− mωα−1 sin απ

2 +cωβ−1 sin βπ
2

2

√
−(mωα−2 cos απ

2 +cωβ−2 cos βπ
2 )k

ωeqn,3t

sin ωeqd,3t

−
(

mωα−2 cos απ
2 + cωβ−2 cos βπ

2

)
ωeqd,3

.

The right side on the above is (203). Thus, the proof completes. �

The plots of h3(t) with fixed ω are shown in Figure 39, with variable ω in Figure 40, and in t-ω
plane by Figure 41.
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The right side on the above is (203). Thus, the proof completes. □ 

The plots of 3 ( )h t  with fixed ω are shown in Figure 39, with variable ω in Figure 40, and in t-ω 
plane by Figure 41. 
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Figure 40. Impulse response 3 ( )h t  to a fractional oscillator in Class III for m = c = 1, k = 25 ( nω  = 5). 
(a) (α, β) = (1.8, 0.8), ω = 1, 2, ..., 5 (0.09 ≤ 3eqς  ≤ 0.45). (b) (α, β) = (1.5, 0.8), ω = 1, 2, ..., 5 (0.09 ≤ 3eqς  ≤ 

0.20). (c) (α, β) = (1.3, 0.8), ω = 1, 2, ..., 5 (0.48 ≤ 3eqς  ≤ 0.67). 
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Figure 39. Impulse response h3(t) for m = c = 1, k = 25 (ωn = 5). (a) (α, β) = (1.8, 0.3), solid line: ω = 2
(ςeq3 = 0.03); dot line: ω = 1 (ςeq3 = 0.02). (b) (α, β) = (1.5, 0.8), solid line: ω = 2 (ςeq3 = 0.20); dot line:
ω = 1 (ςeq3 = 0.10). (c) (α, β) = (1.8, 0.5), solid line: ω = 2 (ςeq3 = 0.05); dot line: ω = 1 (ςeq3 = 0.02).
(d) (α, β) = (2, 1), solid line: ω = 2 (ςeq3 = 0); dot line: ω = 1 (ςeq3 = 0).
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Figure 40. Impulse response 3 ( )h t  to a fractional oscillator in Class III for m = c = 1, k = 25 ( nω  = 5). 
(a) (α, β) = (1.8, 0.8), ω = 1, 2, ..., 5 (0.09 ≤ 3eqς  ≤ 0.45). (b) (α, β) = (1.5, 0.8), ω = 1, 2, ..., 5 (0.09 ≤ 3eqς  ≤ 
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Figure 40. Impulse response h3(t) to a fractional oscillator in Class III for m = c = 1, k = 25 (ωn = 5).
(a) (α, β) = (1.8, 0.8), ω = 1, 2, ..., 5 (0.09≤ ςeq3 ≤ 0.45). (b) (α, β) = (1.5, 0.8), ω = 1, 2, ..., 5 (0.09 ≤ ςeq3 ≤ 0.20).
(c) (α, β) = (1.3, 0.8), ω = 1, 2, ..., 5 (0.48 ≤ ςeq3 ≤ 0.67).
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7.5. Application to Represetenting Generalized Mittag-Leffler Function (2) 

The impulse response to fractional oscillators in Class I by using the generalized Mittag-Leffler 
function is in the form (Uchaikin ([38], Chapter 7))  
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The proof is straightforward from Theorem 13 and (206). 

Figure 41. Impulse response to a fractional oscillator in Class III in t-ω plane for m = c = 1, k = 25
(ωn= 5) with t = 0, 1, ..., 30; ω = 1, 2, ..., 5. (a) α = 1.8, β = 0.8 (0.09 ≤ ςeq3 ≤ 0.45). (b) α = 1.8, β = 0.4
(0.07 ≤ ςeq3 ≤ 0.15). (c) α = 1.5, β = 0.8 (0.33 ≤ ςeq3 ≤ 0.91). (d) α = 2, β = 1 (ςeq3 = 0).
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Note 7.3: The impulse response h3(t) degenerates to the conventional one when α = 2 and
β = 1. Indeed,

h3(t)|α=2,β=1 =


e
− mωα−1 sin απ

2 +cωβ−1 sin βπ
2

2

√
−(mωα−2 cos απ

2 +cωβ−2 cos βπ
2 )k

ωeqn,3t

sin ωeqd,3t

−
(

mωα−2 cos απ
2 + cωβ−2 cos βπ

2

)
ωeqd,3


α=2,β=1

=
e−ςωnt

mωd
sin ωdt. (205)

7.5. Application to Represetenting Generalized Mittag-Leffler Function (2)

The impulse response to fractional oscillators in Class I by using the generalized Mittag-Leffler
function is in the form (Uchaikin ([38], Chapter 7))

h1(t) = tα−1Eα,α
[
−(ωnt)α], 1 < α ≤ 2, t ≥ 0. (206)

In this section, we propose the representation of (206) by elementary functions.

Corollary 16. The generalized Mittag-Leffler function in the form (206) can be expressed by the elementary
functions in Theorem 13, for 1 < α ≤ 2 and t ≥ 0, in the form

tα−1Eα,α
[
−(ωnt)α] = e

− ω sin απ
2

2|cos απ
2 |

t
sin

ωn

√
1− ω2α sin2 απ

2
4ω2

n|cos απ
2 |√

ωα−2|cos απ
2 |

t

mωn

√
ωα−2

∣∣cos απ
2

∣∣√1− ω2α sin2 απ
2

4ω2
n|cos απ

2 |

. (207)

The proof is straightforward from Theorem 13 and (206).

8. Step Responses to Three Classes of Fractional Oscillators

In this section, we shall put forward the unit step responses to three classes of fractional oscillators
in the analytic closed forms with elementary functions. Besides, we shall suggest a novel expression of
a certain generalized Mittag-Leffler function by using elementary functions.

8.1. General Form of Step Responses

Denote by gj(t) (j = 1, 2, 3) the step response to a fractional oscillator in the jth Class. Then, it is
also the step response to the jth equivalent oscillator. Precisely, gj(t) is the solution to the jth equivalent
oscillator expressed by {

meqj
..
gj(t) + ceqj

.
gj(t) + kgj(t) = u(t)

gj(0) = 0,
.
gj(0) = 0

, j = 1, 2, 3 . (208)

The solution to the above equation is given by

gj(t) =
t∫

0

hj(τ)dτ =
1
k

1− e−ςeqjωeqn,jt√
1− ς2

eqj

cos
(

ωeqd,jt− φj

), j = 1, 2, 3, (209)

where
φj = tan−1 ςeqj√

1− ς2
eqj

, j = 1, 2, 3. (210)
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8.2. Step Response to a Fractional Oscillator in Class I

Theorem 16 (Step response I). Let g1(t) be the unit step response to a fractional oscillator in Class I. For t ≥ 0
and 1 < α ≤ 2, it is given by

g1(t) =
1
k


1−

e
− ω sin απ

2
2|cos απ

2 |
t
cos

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |√

−ωα−2 cos απ
2

t− φ1


√

1−
(

ω
α
2 sin απ

2
2ωn
√
− cos απ

2

)2


, (211)

where

φ1 = tan−1 ςeq1√
1− ς2

eq1

= tan−1

ω
α
2 sin απ

2

2ωn

√
|cos απ

2 |√√√√1−
(

ω
α
2 sin απ

2

2ωn

√
|cos απ

2 |

)2
. (212)

Proof. Note that

g1(t) =
1
k

1− e−ςeq1ωeqn,1t√
1− ς2

eq1

cos
(

ωeqd,1t− φ1

). (213)

Substituting ςeq1 with the one in (141) into the above produces

g1(t) = 1
k

[
1− e−ςeq1ωeqn,1t cos(ωeqd,1t−φ1)√

1−ς2
eq1

]
= 1

k

1− e
−

ω
α
2 sin απ

2
2ωn
√
− cos απ

2
ωeqn,1t

cos(ωeqd,1t−φ1)√√√√1−
(

ω
α
2 sin απ

2
2ωn
√
− cos απ

2

)2

. (214)

Replacing ωeqn,1 and ωeqd,1 with those in Section 5 in the above yields (211) and (212). The proof
finishes. �

Figure 42 shows the unit step response g1(t) with fixed oscillation frequency ω. Note that g1(t)
takes ω as an argument. Thus, we use Figure 43 to indicate g1(t) with variable ω in time domain.
Its plots in t-ω plane are shown in Figure 44.

Symmetry 2017, 9, x FOR PEER REVIEW  67 of 106 

 

2

11 1
1 2 2

1
2

sin
2

2 cos
2

tan tan .
1

sin
21

2 cos
2

n
eq

eq

n

α

α

απω

απως
φ

ς
απω

απω

− −= =
−  

 
 −  
  
 

 
(212) 

Proof. Note that 

( )
1 ,1

1 ,1 12
1

1( ) 1 cos .
1

eq eqn t

eqd

eq

eg t t
k

ς ω

ω φ
ς

− 
 = − −
 − 

 (213) 

Substituting 1eqς with the one in (141) into the above produces 
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1
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cos cos1 1( ) 1 1 .  
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n

e t e t
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k k

α απω
ω

απως ω

α

ω φ ω φ

ς απω

απω

−
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  − −  = − = −  −    

  
  −
  −    

 (214) 

Replacing ,1eqnω  and ,1eqdω  with those in Section 5 in the above yields (211) and (212). The proof 
finishes. □ 

Figure 42 shows the unit step response 1( )g t  with fixed oscillation frequency ω. Note that 

1( )g t  takes ω as an argument. Thus, we use Figure 43 to indicate 1( )g t  with variable ω in time 
domain. Its plots in t-ω plane are shown in Figure 44. 
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Figure 42. Cont.
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Figure 43. Step response 1( )g t  to a fractional oscillator in Class I with variable ω for m = k = 1. (a) α 
= 1.3, ω = 1, 1.2, 1.4, ..., 5 (0.66 ≤ 1eqς  ≤ 1.88). (b) α = 1.5, ω = 1, 1.2, 1.4, ..., 10 (0.66 ≤ 1eqς  ≤ 2.95). (c) α 

= 1.7, ω = 1, 1.2, 1.4, ..., 10 (0.08 ≤ 1eqς  ≤ 0.36). (d) α = 1.9, ω = 1, 1.12, 1.14, ..., 10 (0.08 ≤ 1eqς  ≤ 0.70). 
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Figure 42. Unit step response g1(t) to a fractional oscillator in Class I with fixed ω for m = k = 1.
(a) α = 1.3, solid line: ω = 1 (ςeq1 = 0.66); dot line: ω = 0.7 (ςeq1 = 0.52). (b) α = 1.6, solid line: ω = 1
(ςeq1 = 0.33); dot line: ω = 0.7 (ςeq1 = 0.25). (c) α = 1.9, solid line: ω = 1 (ςeq1 = 0.08); dot line: ω = 0.7
(ςeq1 = 0.06). (d) α = 2 (ςeq1 = 0).
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= 1.3, ω = 1, 1.2, 1.4, ..., 5 (0.66 ≤ 1eqς  ≤ 1.88). (b) α = 1.5, ω = 1, 1.2, 1.4, ..., 10 (0.66 ≤ 1eqς  ≤ 2.95). (c) α 
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Figure 43. Step response g1(t) to a fractional oscillator in Class I with variable ω for m = k = 1. (a) α = 1.3,
ω = 1, 1.2, 1.4, ..., 5 (0.66 ≤ ςeq1 ≤ 1.88). (b) α = 1.5, ω = 1, 1.2, 1.4, ..., 10 (0.66 ≤ ςeq1 ≤ 2.95). (c) α = 1.7,
ω = 1, 1.2, 1.4, ..., 10 (0.08 ≤ ςeq1 ≤ 0.36). (d) α = 1.9, ω = 1, 1.12, 1.14, ..., 10 (0.08 ≤ ςeq1 ≤ 0.70).
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= 1.3, ω = 1, 1.2, 1.4, ..., 5 (0.66 ≤ 1eqς  ≤ 1.88). (b) α = 1.5, ω = 1, 1.2, 1.4, ..., 10 (0.66 ≤ 1eqς  ≤ 2.95). (c) α 

= 1.7, ω = 1, 1.2, 1.4, ..., 10 (0.08 ≤ 1eqς  ≤ 0.36). (d) α = 1.9, ω = 1, 1.12, 1.14, ..., 10 (0.08 ≤ 1eqς  ≤ 0.70). 
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Figure 44. Step response g1(t) to a fractional oscillator in Class I in t-ω plane for m = k = 1, ω = 0, 1, ..., 5.
(a) α = 1.9 (0 ≤ ςeq1 ≤ 0.36). (b) α = 1.6 (0 ≤ ςeq1 ≤ 1.18).

Note 8.1: If α = 2, g1(t) reduces to the conventional step response with damping free. In fact,

g1(t)|α=2 =
1
k


1−

e
− ω sin απ

2
2|cos απ

2 |
t
cos

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |√

−ωα−2 cos απ
2

t− φ1


√

1−
(

ω
α
2 sin απ

2
2ωn
√
− cos απ

2

)2


α=2

=
1
k
(1− cos ωnt), (215)

and

φ1|α=1 = tan−1

ω
α
2 sin απ

2

2ωn

√
|cos απ

2 |√√√√1−
(

ω
α
2 sin απ

2

2ωn

√
|cos απ

2 |

)2

∣∣∣∣∣∣∣∣∣∣∣∣
α=2

= 0. (216)

8.3. Step Response to a Fractional Oscillator in Class II

Theorem 17 (Step response II). Denote by g2(t) the unit step response to a fractional oscillator in Class II.
It is in the form, for t ≥ 0 and 0 < β ≤ 1,

g2(t) =
1
k


1−

e
− ςωnωβ−1 sin βπ

2
1− c

m ωβ−2 cos βπ
2

t
cos


ωn

√√√√1− ς2ω2(β−1) sin2 βπ
2

1− c
m ωβ−2 cos βπ

2√(
1− c

m ωβ−2 cos βπ
2

) t− φ2


√

1− ς2ω2(β−1) sin2 βπ
2

1− c
m ωβ−2 cos βπ

2


, (217)

where

φ2 = tan−1 ςeq2√
1− ς2

eq2

= tan−1

ςωβ−1 sin βπ
2√

1− c
m ωβ−2 cos βπ

2√
1− ς2ω2(β−1) sin2 βπ

2

1− c
m ωβ−2 cos βπ

2

. (218)
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Proof. ; Substituting ςeq2 with that in Section 5 into the following expression

g2(t) =
1
k

1− e−ςeq2ωeqn,2t√
1− ς2

eq2

cos
(

ωeqd,2t− φ2

) (219)

yields

g2(t) =
1
k

1− e
− ςωβ−1 sin βπ

2√
1− c

m ωβ−2 cos βπ
2

ωeqn,2t

√
1− ς2ω2(β−1) sin2 βπ

2

1− c
m ωβ−2 cos βπ

2

cos
(

ωeqd,2t− φ2

)
. (220)

On the other side, replacing ωeqn,2 by the one in (135) in the above results in

g2(t) = 1
k

1− e

−
ςωβ−1 sin βπ

2√
1− c

m ωβ−2 cos βπ
2

ωeqn,2t

cos(ωeqd,2t−φ2)√√√√1− ς2ω2(β−1) sin2 βπ
2

1− c
m ωβ−2 cos βπ

2

 = 1
k

1− e
−

ςωnωβ−1 sin βπ
2

1− c
m ωβ−2 cos βπ

2

t

cos(ωeqd,2t−φ2)√√√√1− ς2ω2(β−1) sin2 βπ
2

1− c
m ωβ−2 cos βπ

2

.

Finally, substituting ωeqd,2 by that in (157) in the above produces (217) and (218). Hence, we finish the
proof. �

We use Figure 45 to indicate g2(t) with fixed ω. When considering variable ω, we show g2(t) in
Figure 46 in time domain and Figure 47 in t-ω plane.
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Figure 45. Step response 2 ( )g t  to a fractional oscillator in Class II with fixed ω for m = c = k = 1. (a) β 
= 0.3, solid line: ω = 20 ( 2eqς  = 0.03); dot line: ω = 5 ( 2eqς  = 0.08). (b) β = 0.6, solid line: ω = 20 ( 2eqς  = 

0.12); dot line: ω = 5 ( 2eqς  = 0.22). (c) β = 0.9, solid line: ω = 20 ( 2eqς  = 0.37); dot line: ω = 5 ( 2eqς  = 

0.43). (d) β = 1, solid line: ω = 20 ( 2eqς  = 0.50); dot line: ω = 5 ( 2eqς  = 0.50). 
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Figure 45. Step response g2(t) to a fractional oscillator in Class II with fixed ω for m = c = k = 1.
(a) β = 0.3, solid line: ω = 20 (ςeq2 = 0.03); dot line: ω = 5 (ςeq2 = 0.08). (b) β = 0.6, solid line: ω = 20
(ςeq2 = 0.12); dot line: ω = 5 (ςeq2 = 0.22). (c) β = 0.9, solid line: ω = 20 (ςeq2 = 0.37); dot line: ω = 5
(ςeq2 = 0.43). (d) β = 1, solid line: ω = 20 (ςeq2 = 0.50); dot line: ω = 5 (ςeq2 = 0.50).
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Figure 45. Step response 2 ( )g t  to a fractional oscillator in Class II with fixed ω for m = c = k = 1. (a) β 
= 0.3, solid line: ω = 20 ( 2eqς  = 0.03); dot line: ω = 5 ( 2eqς  = 0.08). (b) β = 0.6, solid line: ω = 20 ( 2eqς  = 

0.12); dot line: ω = 5 ( 2eqς  = 0.22). (c) β = 0.9, solid line: ω = 20 ( 2eqς  = 0.37); dot line: ω = 5 ( 2eqς  = 

0.43). (d) β = 1, solid line: ω = 20 ( 2eqς  = 0.50); dot line: ω = 5 ( 2eqς  = 0.50). 
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Figure 46. Step response 2 ( )g t  to a fractional oscillator in Class II with variable ω for m = c = k = 1. 
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Figure 47. Step response 2 ( )g t  in t-ω plane for m = c = 1 and nω = 0.3 (k = 0.09), with t = 0, 1, ..., 30, ω 
= 1, 2, 3, 4. (a) β = 0.3 (0.09 ≤ 2eqς  ≤ 0.69). (b) β = 0.6 (0.24 ≤ 2eqς  ≤ 0.63). (c) β = 0.9 (0.44 ≤ 2eqς  ≤ 

0.54). (d) β = 1 ( 2eqς  = 0.50). 
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Figure 46. Step response g2(t) to a fractional oscillator in Class II with variable ω for m = c = k = 1.
(a) β = 0.3, ω = 1, 2, ..., 5 (0.08 ≤ ςeq2 ≤ 0.69). (b) β = 0.3, ω = 1, 2, ..., 10 (0.22 ≤ ςeq2 ≤ 0.63). (c) β = 0.9,
ω = 1, 2, ..., 5 (0.43 ≤ ςeq2 ≤ 0.54). (d) β = 0.9, ω = 1, 2, ..., 10 (0.40 ≤ ςeq2 ≤ 0.54).
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Figure 47. Step response g2(t) in t-ω plane for m = c = 1 and ωn = 0.3 (k = 0.09), with t = 0, 1, ..., 30,
ω = 1, 2, 3, 4. (a) β = 0.3 (0.09 ≤ ςeq2 ≤ 0.69). (b) β = 0.6 (0.24 ≤ ςeq2 ≤ 0.63). (c) β = 0.9
(0.44 ≤ ςeq2 ≤ 0.54). (d) β = 1 (ςeq2 = 0.50).
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Note 8.2: When β = 1, g2(t) turns to be the ordinary step response. As a matter of fact,

g2(t)|β=1 =
1
k

[
1− e−ςωeqn,2t√

1− ς2
cos
(

ωn

√
1− ς2t− φ2

)]
, (221)

where

φ2|β=1 = tan−1

ςωβ−1 sin βπ
2√

1− c
m ωβ−2 cos βπ

2√
1− ς2ω2(β−1) sin2 βπ

2

1− c
m ωβ−2 cos βπ

2

∣∣∣∣∣∣∣∣∣∣
β=1

= tan−1 ς√
1− ς2

. (222)

8.4. Step Response to a Fractional Oscillator in Class III

Theorem 18 (Step response III). Let g3(t) be the unit step response to a fractional oscillator in Class III. It is
in the form, for t ≥ 0, 1 < α ≤ 2, and 0 < β ≤ 1,

g3(t) =
1
k



1−



e
− mωα−1 sin απ

2 +cωβ−1 sin βπ
2

2(mωα−2 |cos απ
2 |−cωβ−2 cos βπ

2 )
t

cos


ωn

√√√√√√1−

(
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2 +cωβ−1 sin βπ
2

)2

4
[
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

)
k
]

√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

) t− φ3




√√√√√1−

 mωα−1 sin απ
2 +cωβ−1 sin βπ

2

2
√
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

)
k

2



, (223)

where

φ3 = tan−1 ςeq3√
1− ς2

eq3

= tan−1

cωβ−1 sin βπ
2

2
√(

m−cωβ−2 cos βπ
2

)
k√√√√1−

(
c2ω2(β−1) sin2 βπ

2

4
(

m−cωβ−2 cos βπ
2

)
k

) . (224)

Proof. Replacing ςeq3 by that in (147) on the left side of the following produces the right side in
the form

g3(t) = 1
k

[
1− e−ςeq3ωeqn,3t√

1−ς2
eq3

cos
(

ωeqd,3t− φ3

)]

= 1
k


1− e

−
mωα−1 sin απ

2 +cωβ−1 sin βπ
2

2

√
−(mωα−2 cos απ

2 +cωβ−2 cos βπ
2 )k

ωeqn,3t

cos(ωeqd,3t−φ3)√√√√√√√1−

 mωα−1 sin απ
2 +cωβ−1 sin βπ

2

2

√
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

)
k


2


.

(225)
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Further, replacing ωeqn,3 with the one in (137) in the above yields

g3(t) = 1
k


1− e

−

ωn(mωα−1 sin απ
2 +cωβ−1 sin βπ

2 )√
−(ωα−2 cos απ

2 + c
m ωβ−2 cos βπ

2 )

2

√
−(mωα−2 cos απ

2 +cωβ−2 cos βπ
2 )k

t

cos(ωeqd,3t−φ3)√√√√√√√1−

 mωα−1 sin απ
2 +cωβ−1 sin βπ

2

2

√
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

)
k


2



= 1
k


1− e

−
mωα−1 sin απ

2 +cωβ−1 sin βπ
2

2(mωα−2 |cos απ
2 |−cωβ−2 cos βπ

2 )
t

cos(ωeqd,3t−φ3)√√√√√√√1−

 mωα−1 sin απ
2 +cωβ−1 sin βπ

2

2

√
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

)
k


2


.

(226)

Finally, considering ωeqd,3 expressed by (160), we have (223) and (224). Hence, the proof finishes. �

Figure 48 illustrates g3(t) in time with fixed ω while Figure 49 is with variable ω. Its illustrations
in t-ω plane are shown in Figure 50.Symmetry 2017, 9, x FOR PEER REVIEW  75 of 106 
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Figure 49. Demonstrating step response g3(t) with variable ω ( = 1, 2, ..., 5) for m = c = 1, k = 25 (ωn = 5).
(a) (α, β) = (1.8, 0.8) (0.13 ≤ ςeq3 ≤ 1.22). (b) (α, β) = (1.5, 0.8) (0.34 ≤ ςeq3 ≤ 0.91). (c) (α, β) = (1.3, 0.8)
(0.49 ≤ ςeq3 ≤ 1.14).
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Figure 50. Illustrating step response g3(t) in t-ω plane for m = c = k = 1, with t = 0, 1, ..., 30, ω = 1, 2, ..., 5.
(a) (α, β) = (1.8, 0.3) (0.05 ≤ ςeq3 ≤ 0.10). (b) (α, β) = (1.8, 0.5) (0.09 ≤ ςeq3 ≤ 0.20). (c) (α, β) = (1.5, 0.6)
(0.25 ≤ ςeq3 ≤ 0.55). (d) (α, β) = (2, 1) (0.49 ≤ ςeq3 ≤ 0.96).

Note 8.3: For (α, β) = (2, 1), g3(t) reduces to the conventional step response. Indeed,

g3(t)|α=2,β=1 =
1
k

[
1− e−ςωnt√

1− ς2
cos
(

ωn

√
1− ς2t− φ3|α=2,β=1

)]
, (227)

where

φ3|α=2,β=1 = tan−1

mωα−1 sin απ
2 +cωβ−1 sin βπ

2

2
√
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

)
k√√√√√1−

 mωα−1 sin απ
2 +cωβ−1 sin βπ

2

2
√
−
(

mωα−2 cos απ
2 +cωβ−2 cos βπ

2

)
k

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
α=2,β=1

= tan−1 ς√
1− ς2

. (228)

8.5. Application to Represetenting Mittag-Leffler Function (3)

The step response to fractional oscillators in Class I by using the generalized Mittag-Leffler
function is in the form (Uchaikin ([38], Chapter 7))

g1(t) = tαEα,α+1
[
−(ωnt)α], 1 < α ≤ 2, t ≥ 0. (229)

In the following corollary, we propose the representation of (229) by elementary functions.

Corollary 17. The generalized Mittag-Leffler function expressed by (229) can be represented by using the
elementary functions described in Theorem 16. Precisely, for t ≥ 0 and 1 < α ≤ 2, we have

tαEα,α+1
[
−(ωnt)α] = 1

k


1−

e
− ω sin απ

2
2|cos απ

2 |
t
cos

ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |√

−ωα−2 cos απ
2

t− φ1


√

1−
(

ω
α
2 sin απ

2
2ωn
√
− cos απ

2

)2


, (230)

where φ1 is given by (212).
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Proof. The left side of (230) equals to g1(t) following Theorem 16. According to (229), therefore, (230)
holds. This completes the proof. �

9. Frequency Responses to Three Classes of Fractional Oscillators

We put forward frequency responses to three classes of fractional oscillators in this section.
They are expressed by elementary functions based on the theory of three equivalent oscillators
addressed in Section 4.

9.1. General Form of Frequency Responses to Three Classes of Fractional Oscillators

Denote by Hj(ω) the Fourier transform of the impulse response hj(t) to a fractional oscillator
in Class j (j = 1, 2, 3), where hj(t) is given by (196). Then, it is the frequency response function to a
fractional oscillator in Class j (j = 1, 2, 3).

In fact, doing the Fourier transform on the both sides of (195) produces(
−ω2 + i2ςeqjωeqn,jω + ω2

eqn,j

)
Hj(ω) =

1
meqj

. (231)

Thus, we have

Hj(ω) =
1

meqj

(
ω2

eqn,j −ω2 + i2ςeqjωeqn,jω
) =

1

meqjω
2
eqn,j

(
1− ω2

ω2
eqn,j

+ i2ςeqj
ω

ωeqn,j

) . (232)

Note that
meqjω

2
eqn,j = meqj

k
meqj

= k. (233)

Therefore, by letting γeqj be the equivalent frequency ratio of a fractional oscillator in Class j, Hj(ω)

may be expressed by

Hj(ω) =
1

k
(

1− γ2
eqj + i2ςeqjγeqj

) , j = 1, 2, 3. (234)

The amplitude of Hj(ω) is

∣∣Hj(ω)
∣∣ = 1

k
1√(

1− γ2
eqj

)2
+
(
2ςeqjγeqj

)2
, j = 1, 2, 3. (235)

Its phase frequency response is given by

ϕj(ω) = tan−1 2ςeqjγeqj

1− γ2
eqj

, j = 1, 2, 3. (236)

9.2. Frequency Response to a Fractional Oscillator in Class I

Theorem 19 (Frequency response I). Let H1(ω) be the frequency response to a fractional oscillator in Class I.
Then, for 1 < α ≤ 2, it is in the form

H1(ω) =
1

k
(

1− ωα|cos απ
2 |

ω2
n

+ i ωα sin απ
2

ω2
n

) . (237)
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Proof. In the equation below,

H1(ω) =
1

k
(

1− γ2
eq1 + i2ςeq1γeq1

) , (238)

when replacing γeq1 by

γeq1 = γeq1(ω, α) =
ω

ωeqn,1
=

ω
√

ωα−2
∣∣cos απ

2

∣∣
ωn

, (239)

and 2ςeq1γeq1 by

2ςeq1γeq1 = 2
ω

α
2 sin απ

2

2ωn

√∣∣cos απ
2

∣∣
ω
√

ωα−2
∣∣cos απ

2

∣∣
ωn

=
ωα sin απ

2
ω2

n
, (240)

we have (237). This completes the proof. �

From Theorem 19, we have the amplitude of H1(ω) given by

|H1(ω)| = 1/k√(
1− ωα|cos απ

2 |
ω2

n

)2
+
(

ωα sin απ
2

ω2
n

)2
, (241)

and the phase in the form

ϕ1(ω) = tan−1

ωα sin απ
2

ω2
n

1− ωα|cos απ
2 |

ω2
n

= tan−1 ωα sin απ
2

ω2
n −ωα

∣∣cos απ
2

∣∣ . (242)

Note 9.1 (Equivalent frequency ratio I): The equivalent frequency ratio γeq1 is a function of
oscillation frequency ω and the fractional order α. It may be denoted by γeq1(ω, α).

Figure 51 shows the plot of γeq1. Figure 52 indicates the illustrations of H1(ω).
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Amplitude 1( )H ω  in ordinary coordinate. (b) 1( )H ω  in log-log. (c) Phase 1( )ϕ ω  in ordinary 

coordinate. (d) 1( )ϕ ω  in log-log. 

Figure 52. Frequency response H1(ω) to fractional oscillators in Class I with m = k = 1. Solid line:
α = 1.8 (0.04 ≤ ςeq1 ≤ 0.06). Dot line: α = 1.5 (0.13 ≤ ςeq1 ≤ 0.19). Dash line: α = 1.2 (0.33 ≤ ςeq1 ≤ 0.46).
(a) Amplitude |H1(ω)| in ordinary coordinate. (b) |H1(ω)| in log-log. (c) Phase ϕ1(ω) in ordinary
coordinate. (d) ϕ1(ω) in log-log.
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Note 9.2: If α = 2, H1(ω)→ ∞ at ω = ωn. In that case, H1(ω) turns to be the ordinary frequency
response with damping free in the form

H1(ω)|α=2 =
1/k

1− ωα|cos απ
2 |

ω2
n

+ i ωα sin απ
2

ω2
n

∣∣∣∣∣∣∣
α=2

=
1/k

1− ω2

ω2
n

=
1/k

1− γ2 . (243)

9.3. Frequency Response to a Fractional Oscillator in Class II

Theorem 20 (Frequency response II). Denote by H2(ω) the frequency response to a fractional oscillator in
Class II. Then, for 0 < β ≤ 1, it is given by

H2(ω) =
1/k

1− γ2
(

1− c
m ωβ−2 cos βπ

2

)
+ i 2ςωβ sin βπ

2
ωn

, (244)

where γ = ω
ωn

is the ordinary frequency ratio.

Proof. Consider
H2(ω) =

1

k
(

1− γ2
eq2 + i2ςeq2γeq2

) . (245)

Note that

γeq2 = γeq2(ω, β) =
ω

ωeqn,2
=

ω

ωn

√
1− c

m
ωβ−2 cos

βπ

2
= γ

√
1− c

m
ωβ−2 cos

βπ

2
. (246)

Besides,

2ςeqγeq2 =
2ςωβ−1 sin βπ

2√
1− c

m ωβ−2 cos βπ
2

(
ω

ωn

√
1− c

m
ωβ−2 cos

βπ

2

)
=

2ςωβ sin βπ
2

ωn
. (247)

Therefore, (245) becomes
H2(ω) = 1

k
(

1−γ2
eq2+i2ςeq2γeq2

)
= 1/k

1−
(

ω
ωn

√
1− c

m ωβ−2 cos βπ
2

)2
+i

2ςωβ sin βπ
2

ωn

= 1/k

1−γ2
(

1− c
m ωβ−2 cos βπ

2

)
+i

2ςωβ sin βπ
2

ωn

.

This finishes the proof. �

From Theorem 20, we have the amplitude of H2(ω) in the form

|H2(ω)| = 1/k√[
1− γ2

(
1− c

m ωβ−2 cos βπ
2

)]2
+

(
2ςωβ sin βπ

2
ωn

)2
, (248)

and its phase given by

ϕ2(ω) = tan−1
2ςωβ sin βπ

2
ωn

1− γ2
(

1− c
m ωβ−2 cos βπ

2

) . (249)
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Note 9.3 (Equivalent frequency ratio II): The equivalent frequency ratio γeq2 is dependent on
oscillation frequency ω and the fractional order β as can be seen from (9.16). We denote it by γeq2(ω, β).

Figure 53 indicates the plot of γeq2(ω, β). H2(ω) is shown in Figure 54.
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Note 9.4: When β = 1, H2(ω) reduces to that of an ordinary oscillator’s in the form (also see
Figure 55).

H2(ω)|β=1 = 1/k

1−γ2
(

1− c
m ωβ−2 cos βπ

2

)
+i

2ςωβ sin βπ
2

ωn

∣∣∣∣∣∣
β=1

= 1/k
1−γ2+i2ς ω

ωn
= 1/k

1−γ2+i2ςγ
.

(250)
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9.4. Frequency Response to a Fractional Oscillator in Class III

Theorem 21 (Frequency response III). Let H3(ω) be the frequency response to a fractional oscillator of Class
III type. Then, for 1 < α ≤ 2 and 0 < β ≤ 1, H3(ω) is in the form

H3(ω) =
1/k

1− γ2
(

ωα−2
∣∣cos απ

2

∣∣− cωβ−2 cos βπ
2

m

)
+ i

γ
(

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

)
ωn

(
ωα−2|cos απ

2 |−2ςωnωβ−2 cos βπ
2

) . (251)

Proof. In the equation below

H3(ω) =
1

k
(

1− γ2
eq3 + i2ςeq3γeq3

) , (252)
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we notice

γeq3 = γeq3(ω, α, β) = ω
ωeqn,3

= ω
ωn

√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

)
= γ

√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

)
.

(253)

In addition,

2ςeq3γeq3 = 2


(

ωα−1 sin απ
2 + 2ςωnωβ−1 sin βπ

2

)
γ

√
−
(

ωα−2 cos απ
2 + c

m ωβ−2 cos βπ
2

)


2ωn

√
−
(

ωα−2 cos απ
2 +2ςωnωβ−2 cos βπ

2

)

=
γ
(

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

)
ωn

(
ωα−2|cos απ

2 |−2ςωnωβ−2 cos βπ
2

) .

(254)

Thus, (252) becomes

H3(ω) =
1/k

1− γ2
(

ωα−2
∣∣cos απ

2

∣∣− cωβ−2 cos βπ
2

m

)
+ i

γ
(

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

)
ωn

(
ωα−2|cos απ

2 |−2ςωnωβ−2 cos βπ
2

) .

Therefore, the proof completes. �

From Theorem 21, we obtain |H3(ω)| in the form

|H3(ω)| = 1/k√√√√√√√√

[
1− γ2

(
ωα−2

∣∣cos απ
2

∣∣− c
m ωβ−2 cos βπ

2

)]2

+

[
γ
(

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

)
ωn

(
ωα−2|cos απ

2 |−2ςωnωβ−2 cos βπ
2

)
]2



. (255)

The phase ϕ3(ω) is given by

ϕ3(ω) = tan−1

γ
(

ωα−1 sin απ
2 +2ςωnωβ−1 sin βπ

2

)
ωn

(
ωα−2|cos απ

2 |−2ςωnωβ−2 cos βπ
2

)
1− γ2

(
ωα−2

∣∣cos απ
2

∣∣− c
m ωβ−2 cos βπ

2

) . (256)

Note 9.5 (Equivalent frequency ratio III): γeq3 relates to ω and a pair of fractional orders (α, β).
Figure 56 indicates its plots. Figure 57 demonstrates H3(ω).
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Figure 56. Plots of equivalent frequency ratio 3( , , )eqγ ω α β  for m = c = k = 1. (a) Solid line: (α, β) = 

(1.8, 0.8). Dot line: (α, β) = (1.5, 0.8). (b) Solid line: (α, β) = (1.5, 0.8). Dot line: (α, β) = (1.5, 0.6). 
Figure 56. Plots of equivalent frequency ratio γeq3(ω, α, β) for m = c = k = 1. (a) Solid line: (α, β) =
(1.8, 0.8). Dot line: (α, β) = (1.5, 0.8). (b) Solid line: (α, β) = (1.5, 0.8). Dot line: (α, β) = (1.5, 0.6).



Symmetry 2018, 10, 40 76 of 91Symmetry 2017, 9, x FOR PEER REVIEW  87 of 106 

 

 

0.01 0.1 1 101 .10 3

0.01

0.1

gamma3(omega, alpha, beta) (log)

|H
3(

om
eg

a)
| (

lo
g)

   

 

0.01 0.1 1 100.01

0.1

1

10

gamma3(omega, alpha, beta) (log)

ph
i3

(o
m

eg
a)

 (l
og

)

      

 
(a)

0.01 0.1 1 101 .10 3

0.01

0.1

gamma3(omega, alpha, beta) (log)

|H
3(

om
eg

a)
| (

lo
g)

    

 

0.1 1 100.01

0.1

1

10

gamma3(omega, alpha, beta) (log)

ph
i3

(o
m

eg
a)

 (l
og

)

      

 
(b)

 
Figure 57. Cont.



Symmetry 2018, 10, 40 77 of 91

Symmetry 2017, 9, x FOR PEER REVIEW  88 of 106 

 

 

0.01 0.1 10.01

0.1

gamma3(omega, alpha, beta) (log)

|H
3(

om
eg

a)
| (

lo
g)

   

 

0.1 1 100.01

0.1

1

10

gamma3(omega, alpha, beta) (log)

ph
i3

(o
m

eg
a)

 (l
og

)

      

 
(c)

Figure 57. Illustrations of frequency response 3( )H ω  to fractional oscillators of Class III with m = c 
= 1, k = 25. (a) 3( )H ω  and 3 ( ).ϕ ω  Solid line: (α, β) = (1.8, 0.9) (0.23 ≤ 3eqς  ≤ 0.54). Dot line: (α, β) = 

(1.5, 0.9) (0.36 ≤ 3eqς  ≤ 1.04). (b) 3( )H ω and 3 ( ).ϕ ω Solid line: (α, β) = (1.8, 0.7) (0.27 ≤ 3eqς  ≤ 0.50). 

Dot line: (α, β) = (1.5, 0.7) (0.50 ≤ 3eqς  ≤ 0.95). (c) 3( )H ω  and 3 ( ).ϕ ω  Solid line: (α, β) = (1.8, 0.55) 

(0.31 ≤ 3eqς  ≤ 0.46). Dot line: (α, β) = (1.5, 0.55) (0.86 ≤ 3eqς  ≤ 0.97). 

Note 9.6: If (α, β) = (2, 1), 3 ( )H ω  reduces to the ordinary one given by 

3 2( , ) (2,1)

1/( ) .
1 2

kH
iα βω

γ ςγ=
=

− +
 (257)
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When the excitation force takes the sinusoidal one in the form of cosωt or sinωt, the response is 
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solution to fractional oscillators. Kaslik and Sivasundaram stated that the exact periodic solution 
does not exist ([81], p. 1495, Remark 5). The view of Kaslik and Sivasundaram’s in [81] is also 
implied in other works of researchers. Taking fractional oscillators in Class I as an example, 
Mainardi noticed that the solution to fractional oscillators for 1 < α < 2, when driven by sinusoidal 
function, does not exhibit permanent oscillations but asymptotically algebraic decayed ([25], p. 
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Note 9.6: If (α, β) = (2, 1), H3(ω) reduces to the ordinary one given by

H3(ω)|(α,β)=(2,1) =
1/k

1− γ2 + i2ςγ
. (257)

10. Sinusoidal Responses of Three Classes of Fractional Oscillators

When the excitation force takes the sinusoidal one in the form of cosωt or sinωt, the response is
termed sinusoidal response, which plays a role in the field of oscillations.

10.1. Stating Problem

Note that the sinusoidal response to fractional oscillators attracts research interests but it is yet
a problem that has not been solved satisfactorily. In fact, the existence of the sinusoidal response
to fractional oscillators remains a problem. In mathematics, it is regarded as a problem of periodic
solution to fractional oscillators. Kaslik and Sivasundaram stated that the exact periodic solution does
not exist ([81], p. 1495, Remark 5). The view of Kaslik and Sivasundaram’s in [81] is also implied in
other works of researchers. Taking fractional oscillators in Class I as an example, Mainardi noticed that
the solution to fractional oscillators for 1 < α < 2, when driven by sinusoidal function, does not exhibit
permanent oscillations but asymptotically algebraic decayed ([25], p. 1469), also see Achar et al. ([33],
lines above Equation (14)), Duan et al. ([39], p. 49).

As a matter of fact, when considering a fractional oscillator of Class I type for 1 < α < 2 without
the case of α = 2 in the form

m
dαy1(t)

dtα
+ ky1(t) = cos ωt, 1 < α < 2, (258)
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it is obvious that y1(t) must contain steady-state component that is not equal to 0 for t→ ∞ no matter
what value of α ∈ (1, 2) is. Otherwise, the conservation law of energy would be violated. The problem
is what the complete solution of y1(t) should be.

The actual solution y1(t) should, in reality, consist of two parts. One is the steady-state part,
denoted by y1s(t), where the subscript s stands for steady-state, which is not equal to 0 for t→ ∞ and
for any value of α ∈ (1, 2). The other is the transient part, denoted by y1tr(t), where the subscript tr
means transient. Thus, the complete solution should, qualitatively, be in the form

y1(t) = y1tr(t) + y1s(t). (259)

We contribute the complete solutions to three classes of fractional oscillators regarding their
sinusoidal responses in this section. Our results will show that there exist steady-state components
for fractional oscillators in either class with any value of α ∈ (1, 2) for those in Class I, or β ∈ (0, 1) in
Class II, or any combination of α ∈ (1, 2) with β ∈ (0, 1) for those in Class III.

10.2. Stating Research Thought

Consider the sinusoidal responses to three classes fractional oscillators based on the equivalent
oscillation equation in the form

meqj
d2xj(t)

dt2 + ceqj
dxj(t)

dt + kxj(t) = A cos ωt

xj(0) = xj0,
dxj(t)

dt

∣∣∣
t=0

= vj0

, j = 1, 2, 3. (260)

The complete response xj(t) consists of the zero state response, denoted by xjzs(t), and zero input
response denoted by xjzi(t), according to the theory of differential equations. Therefore,

xj(t) = xjzs(t) + xjzi(t), (261)

where xjzi(t) is solved from
meqj

d2xjzi(t)
dt2 + ceqj

dxjzi(t)
dt + kxjzi(t) = 0

xj(0) = xj0,
dxj(t)

dt

∣∣∣
t=0

= vj0

, j = 1, 2, 3. (262)

On the other hand, xjzs(t) is the solution to
meqj

d2xjzs(t)
dt2 + ceqj

dxjzs(t)
dt + kxjzs(t) = A cos ωt

xj(0) = 0,
dxj(t)

dt

∣∣∣
t=0

= 0
, j = 1, 2, 3. (263)

Note that xjzi(t) is actually the free response to the fractional oscillators in Class j. It has been
solved in Section 6. Thus, the focus of this section is on (263).

10.3. General Form of Sinusoidal Responses to Three Classes of Fractional Oscillators

The solution to (263) in the general form, for t > 0, j = 1, 2, 3, is given by

xjzs(t) =
1

meqjωeqd,j

A


(

ω2
eqn,j −ω2

)
cos ωt + 2ςeqjωeqn,jω sin ωt

+e−ςeqjωeqn,jt

[(
ω2

eqn,j −ω2
)

cos ωeqd,jt−
ςeqj

(
ω2

eqn,j+ω2
)

sin ωeqd,jt√
1−ς2

eqj

]
(

ω2
eqn,j −ω2

)2
+
(
2ςeqjωeqn,jω

)2
. (264)
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10.4. Sinusoidal Response to Fractional Oscillators in Class I

Theorem 22 (Sinusoidal response I). Let x1zs(t) be the zero state sinusoidal response to a fractional oscillator
in Class I. Then, for t > 0 and 1 < α ≤ 2, it is in the form

x1zs(t) = 1
mωn

√
−ωα−2 cos απ

2√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |


A[

ω4
(

ω2
n

−ωα cos απ
2
−1
)2

+
ω4 sin2 απ

2

|cos απ
2 |

2

]



ω4
(

ω2
n

−ωα cos απ
2
− 1
)2

cos ωt + ω2 sin απ
2

|cos απ
2 |

sin ωt

+e
− ω sin απ

2
2|cos απ

2 |
t



ω4
(

ω2
n

−ωα cos απ
2
− 1
)2

cos
ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t

√
−ωα−2 cos απ

2

−

ω
α
2 sin απ

2
2ωn
√
− cos απ

2
ω4
(

ω2
n

−ωα cos απ
2
+1
)2

sin

ωn

√√√√1−
ωα sin2 απ

2
4ω2

n|cos απ
2 |

t

√
−ωα−2 cos απ

2√√√√1−
(

ω
α
2 sin απ

2
2ωn
√
− cos απ

2

)2





.

(265)

Proof. Consider the expression below

x1zs(t) = 1
meq1ωeqd,1

A



(
ω2

eqn,1 −ω2
)

cos ωt + 2ςeq1ωeqn,1ω sin ωt

+e−ςeq1ωeqn,1t

[(
ω2

eqn,1 −ω2
)

cos ωeqd,1t− ςeq1√
1−ς2

eq1

(
ω2

eqn,1 + ω2
)

sin ωeqd,1t

]
(

ω2
eqn,1−ω2

)2
+(2ςeq1ωeqn,1ω)

2
. (266)

In the above, replacing meq1 by the one in Section 4, ςeq1, ωeqd,1 and ωeqn,1 by those in Section 5,
respectively, produces (265). This finishes the proof. �

Denote by x1zs,s(t) and x1zs,tr(t) the steady component and the instantaneous one, respectively.
Then, we have

x1zs,s(t) =

 1

mωn
√
−ωα−2 cos απ

2

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

A

ω4
(

ω2
n

−ωα cos απ
2
−1
)2

+
ω4 sin2 απ

2

|cos απ
2 |

2


[

ω4
(

ω2
n

−ωα cos απ
2
− 1
)2

cos ωt + ω2 sin απ
2

|cos απ
2 |

sin ωt
]

.

(267)

and

x1zs,tr(t) =

 1

mωn
√
−ωα−2 cos απ

2

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

A

ω4
(

ω2
n

−ωα cos απ
2
−1
)2

+
ω4 sin2 απ

2

|cos απ
2 |

2




e
− ω sin απ

2
2|cos απ

2 |
t


ω4
(

ω2
n

−ωα cos απ
2
− 1
)2

cos
ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t

√
−ωα−2 cos απ

2

−

ω
α
2 sin απ

2
2ωn
√
− cos απ

2√√√√1−
(

ω
α
2 sin απ

2
2ωn
√
− cos απ

2

)2
ω4
(

ω2
n

−ωα cos απ
2
+ 1
)2

sin
ωn

√
1− ωα sin2 απ

2
4ω2

n|cos απ
2 |

t

√
−ωα−2 cos απ

2




.

(268)
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Figure 58. Illustrating 1 ( )zsx t for m = 1, k = 9 ( nω = 3), ω = 1. Solid line: α = 1.9 ( 1eqς = 0.03). Dot line: α = 
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Remark 29. We found that the sinusoidal response to fractional oscillators in Class I for any value of α ∈ (1, 
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Figure 59. Steady-state component, 1 , ( ),zs sx t  of sinusoidal response to a fractional oscillator in Class 

I for m = 1, k = 9 ( nω  = 3), ω = 1. Solid line: α = 1.9 ( 1eqς  = 0.03). Dot line: α = 1.6 ( 1eqς  = 0.11). Dash 

dot line: α = 1.3 ( 1eqς  = 0.22). 

The illustration of 1 , ( )zs trx t  is indicated in Figure 60. 
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Figure 60. Instantaneous component 1 , ( )zs trx t  for m = 1, k = 9 ( nω = 3), ω = 1. Solid line: α = 1.9 ( 1eqς  

= 0.03). Dot line: α = 1.6 ( 1eqς  = 0.11). Dash dot line: α = 1.3 ( 1eqς  = 0.22). 

Note 10.2: For α = 2, we have 

Figure 58. Illustrating x1zs(t) for m = 1, k = 9 (ωn = 3), ω = 1. Solid line: α = 1.9 (ςeq1 = 0.03). Dot line:
α = 1.6 (ςeq1 = 0.11). (a) t = 0, 1, ..., 20. (b) t = 0, 1, ..., 100.

Note 10.1: x1zs(t) is not a pure harmonic function as can be seen from Figure 58.

Remark 29. We found that the sinusoidal response to fractional oscillators in Class I for any value of α ∈ (1, 2)
does have steady-state component x1zs,s(t) expressed by (267), also see Figure 59.
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Figure 60. Instantaneous component 1 , ( )zs trx t  for m = 1, k = 9 ( nω = 3), ω = 1. Solid line: α = 1.9 ( 1eqς  

= 0.03). Dot line: α = 1.6 ( 1eqς  = 0.11). Dash dot line: α = 1.3 ( 1eqς  = 0.22). 

Note 10.2: For α = 2, we have 

Figure 59. Steady-state component, x1zs,s(t), of sinusoidal response to a fractional oscillator in Class I
for m = 1, k = 9 (ωn = 3), ω = 1. Solid line: α = 1.9 (ςeq1 = 0.03). Dot line: α = 1.6 (ςeq1 = 0.11). Dash dot
line: α = 1.3 (ςeq1 = 0.22).

The illustration of x1zs,tr(t) is indicated in Figure 60.
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Figure 60. Instantaneous component x1zs,tr(t) for m = 1, k = 9 (ωn = 3), ω = 1. Solid line: α = 1.9
(ςeq1 = 0.03). Dot line: α = 1.6 (ςeq1 = 0.11). Dash dot line: α = 1.3 (ςeq1 = 0.22).
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Note 10.2: For α = 2, we have

x1zs(t) = 1
mωn

A

ω4
(

ω2
n

ω2 −1
)2

[
ω4
(

ω2
n

ω2 − 1
)2

cos ω t + ω4
(

ω2
n

ω2 − 1
)2

cos ωnt
]

= A
mωn

(cos ω t + cos ωnt).

(269)

10.5. Sinusoidal Response to Fractional Oscillators in Class II

Theorem 23 (Sinusoidal response II). Denote by x2zs(t) the zero state sinusoidal response to a fractional
oscillator in Class II. Then, for t > 0 and 0 < β ≤ 1, it is expressed by

x2zs(t) = 1

mωn

√
1− c

m ωβ−2 cos βπ
2

√√√√1−
(

ς2ω2(β−1) sin2 βπ
2

1− c
m ωβ−2 cos βπ

2

)2

A(
ω2

n
1− c

m ωβ−2 cos βπ
2

−ω2

)2

+

(
2ςωnωβ sin βπ

2
1− c

m ωβ−2 cos βπ
2

)2



(
ω2

n

1− c
m ωβ−2 cos βπ

2
−ω2

)
cos ωt + 2ςωnωβ sin βπ

2

1− c
m ωβ−2 cos βπ

2
sin ωt

+e
− ςωnωβ−1 sin βπ

2
1− c

m ωβ−2 cos βπ
2

t




(

ω2
n

1− c
m ωβ−2 cos βπ

2
−ω2

)
cos

ωn

√√√√1−
(

ς2ω2(β−1) sin2 βπ
2

1− c
m ωβ−2 cos βπ

2

)2

t√
1− c

m ωβ−2 cos βπ
2



−

ςωβ−1 sin βπ
2√

1− c
m ωβ−2 cos βπ

2

(
ω2

n
1− c

m ωβ−2 cos βπ
2

+ω2

)
√√√√√1−

 ςωβ−1 sin βπ
2√

1− c
m ωβ−2 cos βπ

2

2

sin
ωn

√√√√1−
(

ς2ω2(β−1) sin2 βπ
2

1− c
m ωβ−2 cos βπ

2

)2

t√
1− c

m ωβ−2 cos βπ
2





.

(270)

Proof. In the following expression,

x2zs(t) = 1
meq2ωeqd,2

A(
ω2

eqn,2−ω2
)2

+(2ςeq2ωeqn,2ω)
2

(
ω2

eqn,2 −ω2
)

cos ωt + 2ςeq2ωeqn,2ω sin ωt

+e−ςeq2ωeqn,2t

[(
ω2

eqn,2 −ω2
)

cos ωeqd,2t− ςeq2√
1−ς2

eq2

(
ω2

eqn,2 + ω2
)

sin ωeqd,2t

]
,

(271)

replacing meq2 with the one in Section 4, ςeq2, ωeqd,2 and ωeqn,2 by those in Section 5, results in (270).
The proof completes. �
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The stead-state part of x2zs,s(t) is represented by

x2zs,s(t) = 1

mωn

√
1− c

m ωβ−2 cos βπ
2

√√√√1− ς2ω2(β−1) sin2 βπ
2

1− c
m ωβ−2 cos βπ

2

A(
ω2

n
1− c

m ωβ−2 cos βπ
2

−ω2

)2

+

(
2ςωnωβ sin βπ

2
1− c

m ωβ−2 cos βπ
2

)2

[(
ω2

n

1− c
m ωβ−2 cos βπ

2
−ω2

)
cos ωt + 2ςωnωβ sin βπ

2

1− c
m ωβ−2 cos βπ

2
sin ωt

]
.

(272)

On the other side, the transient part x2zs,tr(t) is given by

x2zs,tr(t) = 1

mωn

√
1− c

m ωβ−2 cos βπ
2
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.

(273)

Figures 61–63 show the plots of x2zs(t), x2zs,s(t), and x2zs,tr(t).
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Figures 61–63 show the plots of 2 ( ),zsx t 2 , ( ),zs sx t and 2 , ( ).zs trx t  
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Figure 61. Sinusoidal response 2 ( )zsx t to a fractional oscillator in Class II with β = 0.9 (solid line) 
( 2eqς = 0.14), β = 0.6 (dot line) ( 2eqς = 0.07), β = 0.3 (dash dot line) ( 2eqς = 0.03) with m = c = 1, nω = 3 and 

ω = 1. 

Figure 61. Sinusoidal response x2zs(t) to a fractional oscillator in Class II with β = 0.9 (solid line) (ςeq2 = 0.14),
β = 0.6 (dot line) (ςeq2 = 0.07), β = 0.3 (dash dot line) (ςeq2 = 0.03) with m = c = 1, ωn = 3 and ω = 1.
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Note 10.3: If β = 1, we obtain the zero-state response of the conventional sinusoidal response to 
a 2-order oscillator in the form 
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 (274)

Remark 30. We discovered that the sinusoidal response to fractional oscillators in Class II for any value of β 
∈ (0, 1) does have steady-state component 2 , ( )zs sx t  described by (272), also see Figure 62. 

10.6. Sinusoidal Response to Fractional Oscillators in Class III 

Theorem 24 (Sinusoidal response III). Let 3 ( )zsx t  be the zero state sinusoidal response to a fractional 
oscillator of Class III type. Then, for t > 0, 1 < α ≤ 2, and 0 < β ≤ 1, it is written in the form 
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Remark 30. We discovered that the sinusoidal response to fractional oscillators in Class II for any value of β 
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Note 10.3: If β = 1, we obtain the zero-state response of the conventional sinusoidal response to a
2-order oscillator in the form

x2zs(t)|β=1 =
1

mωn
√
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Ae−ςωnt
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ω2
n −ω2) cos ωn

√
1− ς2t− ς(ω2
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1−ς2t√
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]
(ω2

n −ω2)
2 + (2ςωnω)2 . (274)

Remark 30. We discovered that the sinusoidal response to fractional oscillators in Class II for any value of
β ∈ (0, 1) does have steady-state component x2zs,s(t) described by (272), also see Figure 62.

10.6. Sinusoidal Response to Fractional Oscillators in Class III

Theorem 24 (Sinusoidal response III). Let x3zs(t) be the zero state sinusoidal response to a fractional oscillator
of Class III type. Then, for t > 0, 1 < α ≤ 2, and 0 < β ≤ 1, it is written in the form
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(275)

where meq3 and ωeqd, 3 are given by (119) and (160), respectively.

Proof. In the following expression,

x3zs(t) =
1

meq3ωeqd,3

A



(
ω2

eqn,3 −ω2
)

cos ωt + 2ςeq3ωeqn,3ω sin ωt
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eq3

(
ω2

eqn,3 + ω2
)

sin ωeqd,3t



(
ω2

eqn,3 −ω2
)2

+
(
2ςeq3ωeqn,3ω

)2
, (276)

Substituting ςeq3, ωeqn,3 and ωeqd,3 with those in Section 5 yields the Theorem 24. That completes
the proof. �

Figure 64 illustrates x3zs(t).
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The steady-state part of x3zs(t) is in the form
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Symmetry 2018, 10, 40 86 of 91

Its transient part, taking into account (160), is given by
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(278)

The steady-state component and the transient one of x3zs(t) are shown in Figures 65 and 66,
respectively.
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Remark 31. We revealed that the sinusoidal response to fractional oscillators in Class III for any value of α ∈ 
(1, 2) and β ∈ (0, 1) does have steady-state component 3 , ( )zs sx t described by (277), also see Figure 65. 

Remark 32. The results presented above show that the exact periodic solutions to three classes of fractional 
oscillators exist. 

Figure 65. Indicating the steady-state component of x3zs(t) with (α, β) = (1.8, 0.8) (solid line) (ςeq3 = 0.13),
(α, β) = (1.5, 0.8) (dot line) (ςeq3 = 0.22), (α, β) = (1.3, 0.8) (dash dot line) (ςeq3 = 0.40) with m = c = 1, k = 36
(ωn = 6) and ω = 1.
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Note 10.4: When (α, β) = (2, 1), x3zs(t) reduces to the ordinary zero-state sinusoidal response to a
2-order oscillator in the form
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Remark 31. We revealed that the sinusoidal response to fractional oscillators in Class III for any value of
α ∈ (1, 2) and β ∈ (0, 1) does have steady-state component x3zs,s(t) described by (277), also see Figure 65.

Remark 32. The results presented above show that the exact periodic solutions to three classes of fractional
oscillators exist.

11. Discussion

Three classes of fractional oscillators previously studied are usually characterized by constant-
coefficient fractional differential equations. The basic theory and key point I presented in Section 4 is
to equivalently represent them by the second-order differential equations with variable-coefficients.
In this way, three classes of fractional oscillators, which are nonlinear in nature, all reduce to linear
oscillators with variable-coefficients. In methodology, that may open a new way of the linearization to
describe and research fractional oscillators.

In addition to keep fractional properties of fractional oscillators with its equivalences, for instance,
the characteristic roots of a fractional oscillator being infinitely large as explained by Li et al. [18]
and Duan et al. [39], based on the proposed equivalent oscillators, we also reveal other properties
of fractional oscillators, which may be very difficult, if not impossible, to be described directly from
the point of view of fractional differential equations, such as the equivalent, i.e., intrinsic, masses
meqj, equivalent dampings ceqj, equivalent natural frequencies ωeqn,j and ωeqd,j (j = 1, 2, 3) of fractional
oscillators, which are nonlinear with the power laws in terms of oscillation frequency ω as stated in
Sections 4 and 5.

The significance of the presented theory with respect to three classes of fractional oscillators in
both theory and practice is about the closed form analytic formulas of the responses to fractional
oscillators explained in Sections 6–10 by using elementary functions, making the matters much better
in engineering.



Symmetry 2018, 10, 40 88 of 91

Note that power laws plays a role in understanding the nature in general, see, e.g., Gabaix et al. [82],
Stanley [83]. As a matter of fact, the fractional order α relates to the fractal dimension, see
Lim et al. [20–22]. Thus, my study of the power laws previously stated is quite beginning in the aspect
of fractional oscillations. Further research is needed in future. In addition to that, our future work will
consider the applications of the present equivalent theory of the fractional oscillators to fractional noise
in communication systems (Levy and Pinchas [84], Pinchas [85]), partial differential equations, such as
transient phenomena of complex systems or fractional diffusion equations (Toma [86], Bakhoum and
Toma [87], Cattani [88], Mardani et al. [89]).

12. Conclusions

We have established a theory of equivalent oscillators with respect to three classes of fractional
oscillation systems. Its principle is to represent a fractional oscillator with constant coefficients (mass
and damping) by a 2-order oscillator equivalently with variable mass and damping. The analytic
expressions of equivalent masses, equivalent dampings, equivalent damping ratios, equivalent natural
frequencies, and equivalent frequency ratios have been presented. We have revealed that the equivalent
masses and dampings of three classes of fractional oscillators follow power laws in terms of oscillation
frequency. By using elementary functions, we have put forward the closed form representations
of responses (free, impulse, step, frequency, sinusoidal) to three classes of fractional oscillators.
Additionally, analytic expressions of the logarithmic decrements of three classes of fractional oscillators
have been proposed. As by products, we have stated the representations of four types of the generalized
Mittag-Leffler functions in the closed form with elementary functions.
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