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Abstract: This article addresses three classes of fractional oscillators named Class I, II and III. It is
known that the solutions to fractional oscillators of Class I type are represented by the
Mittag-Leffler functions. However, closed form solutions to fractional oscillators in Classes II and
III are unknown. In this article, we present a theory of equivalent systems with respect to three
classes of fractional oscillators. In methodology, we first transform fractional oscillators with
constant coefficients to be linear 2-order oscillators with variable coefficients (variable mass and
damping). Then, we derive the closed form solutions to three classes of fractional oscillators using
elementary functions. The present theory of equivalent oscillators consists of the main highlights as
follows. (1) Proposing three equivalent 2-order oscillation equations corresponding to three classes
of fractional oscillators; (2) Presenting the closed form expressions of equivalent mass, equivalent
damping, equivalent natural frequencies, equivalent damping ratio for each class of fractional
oscillators; (3) Putting forward the closed form formulas of responses (free, impulse, unit step,
frequency, sinusoidal) to each class of fractional oscillators; (4) Revealing the power laws of
equivalent mass and equivalent damping for each class of fractional oscillators in terms of
oscillation frequency; (5) Giving analytic expressions of the logarithmic decrements of three
classes of fractional oscillators; (6) Representing the closed form representations of some of the
generalized Mittag-Leffler functions with elementary functions. The present results suggest a
novel theory of fractional oscillators. This may facilitate the application of the theory of fractional
oscillators to practice.

Keywords: fractional differential equations; fractional oscillations (vibrations); fractional
dynamical systems; nonlinear dynamical systems

1. Introduction

Any systems that consist of three elements, namely, inertia, restoration, and damping, may
oscillate. Therefore, oscillations are common phenomena encountered in various fields, ranging
from physics to mechanical engineering, see, e.g., [1-17].

Fractional oscillators and their processes attract the interests of researchers, see, e.g., [18-53].
There are problems worth studying with respect to fractional oscillators. On the one hand, the
analytical expressions in the closed forms of responses to certain fractional oscillators, e.g., those
described by (42) and (43) in Section 2, remain unknown. In addition, closed form representations
of some physical quantities in fractional oscillators, such as mass, damping, natural frequencies, in
the intrinsic sense, are lacking. On the other hand, technology and analysis methods, based on
2-order linear oscillations, almost dominate the preference of engineers although nonlinear
oscillations have been paid attention to. Therefore, from a view of engineering, it is meaningful to
establish a theory to deal with fractional oscillators with equivalent linear oscillation systems of
order 2. This article contributes my results in this aspect.

This research studies three classes of fractional oscillators.
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Class I: The first class contains oscillators with fractional inertia force m%(l<a <2)

only. Its oscillation equation is in the form of (31), see, e.g., Duan ([24], Equation (3)), Mainardi ([25],
Equation (27)), Zurigat ([26], Equation (16)), Blaszczyk and Ciesielski ([27], Equation (1)), Blaszczyk
et al. ([28], Equation (10)), Al-rabtah et al. ([29], Equation (3.1)), Drozdov ([30], Equation (9)),
Stanislavsky [31], Achar et al. ([32], Equation (1), [33], Equation (9), [34], Equation (2)), Tofighi ([35],
Equation (2)), Ryabov and Puzenko ([36], Equation (1)), Ahmad and Elwakil ([37], Equation (1)),
Uchaikin ([38], Chapter 7), Duan et al. ([39], Equation (4.2)).

Class II: The second consists of oscillators only with fractional damping term

c%(o < f <1, see, e.g., Lin et al. ([40], Equation (2)), Duan ([41], Equation (31)), Alkhaldi et al.
([42], Equation (1a)), Dai et al. ([43], Equation (1)], Ren et al. ([44], Equation (1)), Xu et al. ([45],
Equation (1)), He et al. ([46], Equation (4)), Leung et al. ([47], Equation (2)), Chen et al. ([48],
Equation (1)), Deti and Matignon ([49], Equation (1)), Drdganescu et al. ([50], Equation (4)),
Rossikhin and Shitikova ([51], Equation (3)), Xie and Lin ([52], Equation (1)), Chung and Jung [53].
That takes the form of (42) in the next Section.

Class III: The third includes the oscillators with both fractional inertia force

« B

m%(l< a <2) and fractional friction ¢ dd:ﬁ(t) (0< p<1), see, e.g., Liu et al. ([54], Equation
(1)), Gomez-Aguilar ([53], Equation (10)), Leung et al. ([50], Equation (3)). This class of oscillators is
expressed by (43).

By fractional oscillating in this research, we mean that either the inertia term (31) or the
damping (42) or both (43) are described by fractional derivative. Thus, this article studies all
described above from Class I to III except those fractional nonlinear ones, such as fractional van der
Pol oscillators (Leung et al. [47,55], Xie and Lin [52], Kavyanpoor and Shokrollahi [56], Xiao et al.
[57]), fractional Duffing ones (Xu et al. [45], Liu et al. [54], Chen et al. [58], Wen et al. [59], Liao [60]).
Besides, the meaning of fractional oscillation in this research neither implies those with fractional
displacement such as Abu-Gurra et al. [61] discussed nor those in the sense of subharmonic
oscillations as stated by Den Hartog ([3], Sections 8-10, Chapter 4), Ikeda [62], Fudan Univ. ([63],
pp- 96-97), Andronov et al. ([64], Section 5.1).

Fractional differential equations represented by (31), (42), and (43) are designated as fractional
oscillators in Class I, II, and III, respectively, in what follows. Note that closed form analytic
expressions for the responses (free, impulse, step, frequency, and sinusoidal) to fractional oscillators
in Class II and III are rarely reported. For oscillators in Class I, analytic expressions for the
responses (free, impulse, step) are only represented by a type of special functions called the
Mittag-Leffler functions but lack in representing the intrinsic properties, such as damping. This
article aims at presenting a unified approach to deal with three classes of fractional oscillators.

The present highlights are as follows.

e Establishing three equivalent 2-order differential equations respectively corresponding to three
classes of fractional oscillators.

e DPresenting the analytical representations, in the closed form, of equivalent masses, equivalent
dampings, equivalent damping ratios, equivalent natural frequencies, and equivalent frequency
ratios, for each class of fractional oscillators.

e Proposing the analytic expressions, in the closed form by using elementary functions, of the free,
impulse, step, frequency, and sinusoidal responses to three classes of fractional oscillators.

e Revealing the power laws of equivalent mass and equivalent damping for each class of
fractional oscillators.

e Representing some of the generalized Mittag-Leffler functions by using elementary functions.

Note that this article studies fractional oscillators by the way of dealing with fractional inertia
force and or fractional friction equivalently using inertia force and or fractional friction of integer
order. In doing so, methodologically speaking, the key point is about three equivalent oscillation
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models, which transform fractional inertia force and or fractional friction equivalently into inertia
force and or fractional friction of integer order, which we establish with Theorems 1-7. Though they
may yet imply a novel way to study fractional derivatives from the point of view of mathematics,
my focus in this research is on treating fractional oscillators from a view of physical or engineering
oscillations (vibrations).

The rest of the article is organized as follows. Section 2 is about preliminaries. The problem
statement and research thoughts are described in Section 3. We establish three equivalent 2-order
oscillation equations respectively corresponding to three classes of fractional oscillators in Section 4.
The analytical representations of equivalent masses, equivalent dampings, equivalent damping
ratios, equivalent natural frequencies for three classes of fractional oscillators are proposed in
Section 5. We present the analytic expressions of the free responses to three classes of fractional
oscillators in Section 6, the impulse responses to three classes of fractional oscillators in Section 7,
the step responses in Section 8, the frequency responses in Section 9, and the sinusoidal ones in
Section 10. Discussions are in Section 11, which is followed by conclusions.

2. Preliminaries

This Section consists of two parts. One is to describe the basic of linear oscillations and
fractional ones related to the next sections. The other the solutions to fractional oscillators in Class I
based on the generalized Mittag-Leffler functions.

2.1. Brief of Linear Oscillations of Order 2

2.1.1. Simple Oscillation Model

The simplest model of an oscillator of order 2 is with single degree of freedom (SDOF). It
consists of a constant mass m and a massless damper with a linear viscous damping constant c. The
stiffness of spring is denoted by spring constant k. That SDOF mass-spring system is described by

2
990, 90 g1y = e
dt dt (1)
4(0) = 4,,9'(0) = vo,

m

where e(t) is the forcing function. The solution g(f) may be the displacement in mechanical
engineering [1-7] or current in electronics engineering [8].
In physics and engineering, for facilitating the analysis, one usually rewrites (1) by

o, £ Y, Kgqy_e)
t m dt m m 2)
0(0) =0, a'(0) = Vs,

and further rewrites it by

90 1 20, 990, prq(0) = £V

dt? dt m 3)
9(0) = 6,,9'(0) = v,

where o, is called the natural angular frequency (natural frequency for short) with damping free
given by

0, = |~ 4)

and the parameter C is the damping ratio expressed by
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The characteristic equation of (3) is in the form

p? +2cw,p+a)’ =0,
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)

(6)

which is usually called the frequency equation in engineering [1-7]. The solution to the above is

given by
p1,2 = —cw, * ia)n 1_g2 ' (7)
where i=+/-L Taking into account damping, one uses the term damped natural frequency
denoted by . It is given by
@, =w,\1-¢°. (8)

Note 2.1: All parameters above, namely, m, c, k, {, @,

2.1.2. Responses

, and w,, are constants.

The free response, meaning that the response with e(t) = 0, is driven by initial conditions only.

It is given by

v, +
q(t) = e =" (qo cos a,t + —"2 %
@y

sin a)dt} t>0.

)

If e(t) = 6(t), where 6(t) is the Dirac-delta function, the response with zero initial conditions is
called the impulse response. In the theory of linear systems (Gabel and Roberts [65], Zheng et al.
[66]), the symbol k(t) is used for the impulse response. Thus, consider the equation

2
d hz(t) + 26w, —dh(t) +a’h(t) = @
dt dt
One has
e—gwnt
h(t) = sinayt, t=0.
Wy

. (10)

(11)

Let u(t) be the Heaviside unit step (unit step for short) function. Then, the response to (3) with
zero initial conditions is called the unit step response. As usual, it is denoted by g(t) in practice.

Thus, consider

d*g(t) dg(t) u(t)
a2 g Tee0="7
One has
t —gant
g(t):jh(r)olr:1 1-——cos(m,t -
0 k 1—g2

where

. (12)

)

(13)
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e
¢ =tan = (14)

Denote by H(w) the Fourier transform of h(f). Then, H(w) is usually called the frequency
response to the oscillator described by (3). It is in the form

H(o) 1 3 1
(@)= m(a)2—a)2+i2ga) co)_ @ .. o) (15)
With the parameter y defined by
®
V= P (16)

which is called frequency ratio, H(w) may be rewritten by

1
H(w)= .
(@) me? (1—72 + i2g7) (17)
The amplitude of H(w) is called the amplitude frequency response. It is in the form
1
|H ()| = .
ma? \/(1—72 )2 +(2¢7)° (18)
Its phase is termed the phase frequency response given by
4 2
p(w) =tan™ 1_% (19)

When the oscillator is excited by a sinusoidal function, the solution to (3) is termed the
sinusoidal or simple harmonic response. Suppose the sinusoidal excitation function is Acoswt,
where A is a constant. Then, the solution to

2
d qz(t) +2co, dq(t) +q(t) = Acos wt

dt dt m (20)
q(0) =d,,9'(0) = vy,

is the sinusoidal response in the form

A (a),f—a)z)coswt+2ga)na)sin wt
ma,

(0} )2 +(260,0)" |+ (a),'jZ N )cos o t—

qt) =

21)

- (0} +0” )Sin w,t

1-¢

The responses mentioned above are essential to linear oscillators. We shall give our results for
three classes of fractional oscillators with respect to those responses in this research.

2.1.3. Spectra of Three Excitations

The spectrum of (t) below means that 6(t) contains the equal frequency components for w € (0, «).
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T S(t)e'dt =1. (22)

The spectrum of u(f) is in the form

©

j u(t)e"dt = 78 (@) + i (23)
iw

—o0

The Fourier transform of cosat is given by

T cosate " dt = 7[S(w+ @) + 50— a)]. (24)

—0

Three functions or signals above, namely, 6(f), u(t), and sinusoidal functions, are essential to
the excitation forms in oscillations. However, their spectra do not exist in the domain of ordinary
functions but they exist in the domain of generalized functions. Due to the importance of
generalized functions in oscillations, for example, 0(t) and u(t), either theory or technology of
oscillations nowadays is in the domain of generalized functions. In the domain of generalized
functions, any function is differentiable of any times. The Fourier transform of any function exists
(Gelfand and Vilenkin [67], Griffel [68]).

2.1.4. Generalization of Linear Oscillators

Let us be beyond the scope of the conventionally physical quantities, such as displacement,
velocity, acceleration in mechanics, or current, voltage in electronics. Then, we consider the
response of the quantity g™ (t), where 7 is a positive integer. Precisely, we consider the following

oscillation equation

2 n n n
o|_2 4'90) |, 5, 919790 |, 04" _elt)
dt?| dt" dt| dt" " m (25)

q™(0) = 0,,9"* (0) = v,

The above may be taken as a generalization of the conventional oscillator described by (3).
Another expression of the above may be given by

n 2 n n
O], 55, 00, 0 _et)
at"| dt dt" | dt dt" m (26)
9™ (0) = 5,9 (0) = V.

Alternatively, we have a linear oscillation system described by

4 |, 470 490 e

dtn+2 n dtn+1 n dtn m (27)
9™ (0) =6, (0) = ,.

Physically, the above item with q"?(t) corresponds to inertia, the one with q™(t) to
restoration, and the one with g™ (t) damping.

Note that (27) remains a linear oscillator after all. Nevertheless, when generalizing n to be
fractions, for instance, considering -1< & <0and-1< &, <0, we may generalize (27) to be
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dsl+2q(t) dsz+1q(t)
m +C kg(t) =e(t
dt51+2 dt52+l + q() () (28)
4(0) = 9,9'(0) = vo.-

Then, we go into the scope of fractional oscillations.

2.2. Three Classes of Fractional Oscillators

v

-
Miller and Ross [69], Klafter et al. [70]),

Denote by D the Weyl fractional derivative of order v > 0. Then (Uchaikin [38],

1 j- f (u)du

LDHO=1 5 g

(29)

where I'(v) is the Gamma function. The Weyl fractional derivative is used in this research because it
is suitable for the Fourier transform in the domain of fractional calculus (Lavoie et al. ([71], p. 247)).

The Fourier transform of d d:v(t) , following Uchaikin ([72], Section 4.5.3), is given by
TdU ) i N
J'T()e ‘dt = (iw)” F(w), (30)

—0

where F(w) is the Fourier transform of f{f).
This article relates to three classes of fractional oscillators as follow. We denote the following
oscillation equation as a fractional oscillator in Class I.

dy, (1 _
=k, () = e(t)

VA (O) = Yio» yll(o) = y£)

l<a<?2. (31)

The free response to (31) is in the form (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7))

Vi) = YioBun [ ~(@) |+ ViotE, o[ ~(@)" |, 1<a@<2t>0, (32)
where E, (z) is the generalized Mittag-Leffler function given by

E,,(2)= ir( 5 AbeC.Re(@)>0Re() >0 (33)

k=0
The Mittag-Leffler function denoted by E(t) is in the form

E,(2)= g;‘l"( i)' aeC,Re(a) >0, (34)

referring Mathai and Haubold [73], or Gorenflo et al. [74], or Erdelyi et al. [75] for the Mittag-Leffler
functions.
Denote by h, (t) the impulse response to a fractional oscillator in Class I. Then (Uchaikin ([38],

Chapter 7)),

h () =t"E,, [~(a1)" ], 1<a<2t>0, (35)
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Let g, (t) be the step response to a fractional oscillator of Class I type. Then,

9,,() =t"E, .., [—(a)nt)a] l<a<2t>0. (36)

For a fractional oscillator in Class I, its sinusoidal response driven by sinwt is expressed by

y, (t) = A sin(wt - ) + Ae ™ cos {a)ntsin z_ Hz} +_[e‘St K, (s)ds, (37)
a 0
where
1
A= :
\/a)f" + 0™ + 20" " Cosa—zﬁ
(38)
A - 20
al\/ 4 4 2 2 2 ,
o), o, + @ + 20, 0" C0S—
o
T
B =-w,cos—, (39)
(04
o o OTC
" sin—
o=tan'— 2
a a ar
@] + o C0S =~
(40)
o sinEEDT _ o g L=a)m
0, =tan™" @ @ :
(24 (24
wsin(za)

K,(s)= (41)

72'(82 +o’ )(Sza +2s“ @’ cos(na) + w’* ) '

An oscillator that follows the oscillation equation below is called a fractional oscillator in Class IL

2 i
md yzz(t) +Cd Y, (t)
dt dt?

+ky,()=0, O0<pB<L (42)

The equation below is called an oscillation equation of a fractional oscillator in Class III.

a A
md ys(t)+cd y; ()
dt” dt”?

+ky,(t)=0, 1l<a<2 0<pg<l (43)

2.3. Equivalence of Functions in the Sense of Fourier Transform

Denote by F, (w) and F, (w) the Fourier transforms of f,(t) and f,(t), respectively. Then, if

Fi (@) =F, (), (44)

one says that
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f.(t) = f, (), (45)

in the sense of Fourier transform (Gelfand and Vilenkin [67], Papoulis [76]), implying

0

j [f,() - f,(t)]e™"dt=0. (46)

—o0

The above implies that a null function as a difference between f,(t) and f,(t) is allowed for

(45). An example relating to oscillation theory is the unit step function.
Denote by u,(t) in the form

0 = 1, t>0
LO=10 o (47)
Let u,(t) be
1, t>0
UZ(t):{O, t<0’ (48)

Clearly, either u,(t) or u,(t) isa unitstep function. The difference between two is a null function

given by

1, t=1

0, elsewhere’ (49)

ul(t) —U, ®= {

Thus, u,(t)=u,(t). In fact, the Fourier transform of either u,(t) or u,(t) equals to the right side on
(23).
Similarly, if f,(t) = f,(t), we say that (44) holds in the sense of

T[Fl(a))_ F, (a))]ei”’tda):o_ (50)

3. Problem Statement and Research Thoughts

We have mentioned three classes of fractional oscillators in Section 2. This section contains two
parts. One is the problem statement and the other research thoughts.

3.1. Problem Statement

We first take fractional oscillators in Class I as a case to state the problems this research
concerns with.

The analytical expressions with respect to the responses of free, impulse, step, to the oscillators
of Class I are mathematically obtained (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7)),
also see Section 2.2 in this article. All noticed that a fractional oscillator of Class I is damping free in
form but it is damped in nature due to fractional if 1 < @ < 2. However, there are problems unsolved
in this regard.

Problem 1. How to analytically represent the damping of Class I oscillators?

In this article, we call the damping of fractional oscillators in Class I equivalent damping
denoted by ¢

eql”
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It is known that damping relates to mass. Therefore, if we find ¢, in a fractional oscillator in

eql
Class I, its intrinsic mass must be different from the primary one m unless a = 2. We call it
equivalent mass and denote it by m,,.

Problem 2. How to analytically represent m,, ?

Because a fractional oscillator in Class I is damped in nature for a # 2, there must exist a
damped natural frequency. We call it equivalent damped natural frequency, denoted by @, ,. Then,

comes the problem below.

Problem 3. What is the representation of @, ?

As there exists m,, that differs from m if « # 2, the equivalent damping free natural frequency,

we denote it by @, ,,is different from the primary damping free natural frequency @, = \/K
m

qn,1?

Consequently, the following problem appears.

Problem 4. What is the expression of ,,,?

If we find the solutions to the above four, a consequent problem is as follows.

Problem 5. How to represent response (free, or impulse, or step, or sinusoidal) with m,,, C,,, @ and

eql? “eql' ““eqn,1?

[0)

L1 10 a fractional oscillator in Class I?

If we solve the above problems, the solution to the following problem is ready.
Problem 6. What is the physical mechanism of a fractional oscillator in Class I?
Note that the intrinsic damping for a Class II fractional oscillator must differ from its primary

d”y, (1)

damping ¢ owing to the fractional friction ¢ o

for p # 1. We call it the equivalent damping

denoted by ¢

.- Becausec, # ¢ if f # 1, the equivalent mass of a fractional oscillator in Class II,

denoted by m

L2 18 not equal to the primary m for § # 1. Thus, the six stated above are also unsolved
problems for fractional oscillators in Class II. They are, consequently, the problems unsolved for
Class III fractional oscillators.

Note that there are other problems regarding with three classes of fractional oscillators. For

example, the explicit expression of the sinusoidal response (37) in closed form needs investigation

because of the difficulty in finding the solution to je’s‘Ka(s)ds. We shall deal with them in
0

separate sections. The solutions to the problems described above constitute main highlights of this
research.

We note that the damping nature of a fractional oscillator in Class I was also observed by other
researchers, not explicitly stated though, as can be seen from, e.g., Zurigat ([26], Figure 1), Blaszczyk
et al. ([28], Figure 2), Al-rabtah et al. ([29], Figure 2), Ryabov and Puzenko ([36], Equation (5)),
Uchaikin ([38], Chapter 7), Duan et al. ([39], Equation (4.3), Figure 2), Gomez-Aguilar et al. ([53],
Equation (15), Figures 2 and 3), Chung and Jung ([77], Figure 1). One thing remarkable is by
Tofighi, who explored the intrinsic damping of an oscillator in Class I, see ([35], pp. 32-33). That
was an advance regarding with the damping implied in (31) but it may be unsatisfactory if one
desires its closed form of analytic expression.
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3.2. Research Thoughts

Let us qualitatively consider possible performances of equivalent mass and damping. In
engineering, people may purposely connect an auxiliary mass m, to the primary mass m so that the
equivalent mass of the total system is related to the oscillation frequency w (Harris ([4], p. 6.4)). In
the field of ship hull vibrations, added mass has to be taken into account in the equivalent mass
(i.e., total mass) of a ship hull (Korotkin [78]) so that the equivalent mass is w-varying. In fact, the
three dimensional fluid coefficient with respect to the added mass to a ship hull relates to the
oscillation frequency, see, e.g., Jin and Xia ([79], pp. 135-136), Nakagawa et al. [80].

In addition, damping may be also w-varying. A well-known case of w-varying damping is the
Coulomb damping (Timoshenko ([2], Chapter 1), Harris ([4], Equation (30.4))). Frequency varying
damping is a technique used in damping treatments, see, e.g., Harris ([4], Equation (37.8)). Besides,
commonly used damping assumptions in ship hull vibrations, such as the Copoknh’s, the Voigt’s,
the Rayleigh'’s, are all w-varying (Jin and Xia ([79], pp. 157-158)). Therefore, with the concept of
w-varying mass and damping, I purposely generalize the simple oscillation model expressed by (1)
in the form

d’® O|(t) dQ(t)

m,, (@) +Cy (@) — —+ka(t) =e(t)

q(O)—qo,q '(0) = v,.

(61)

The above second-order equation may not be equivalent to a fractional oscillator unless m,, and
or c,, are appropriately expressed and properly related to the fractional order a for Class I

oscillators, or  for Class II oscillators, or (a, ) for oscillators in Class III. For those reasons, we
further generalize (51) by

X1(t) dx, (t)
eql( o,a)—>— dt? *Ceqn (0,a) dt +kx, (t) = e(t) (52)
%, (0) = Xy, %, (0) = vy,
for Class I oscillators. As for Class II oscillators, (51) should be generalized by
d X, (t dx t
mae 0.8 D 0 (0, 228 k0 =0 .
XZ (0) - X10’ XZ (0) - VZO'
Similarly, for Class III oscillators, we generalize (51) to be the form
d X (t dx, (t
Mo (00, 5) 000 5) P2 ko () = o) "

X3 (0) - X30’ X3 (O) - V30'
Three generalized oscillation Equations (52)—(54), can be unified in the form
d*x. (t dx, (t
l()+c J()+kxj(t)=e(t)

eqj dt2 eqj dt , j:1,2,3. (55)
Xj(o) JO’ J(O) V30

By introducing the symbols @, ; = K and Geq = \/_ forj=1, 2, 3, we rewrite the above by
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d?x. (t dx. (t
—12()+ Seqj Peqn, j J()’L“’ezqn,JXj(t):G(t) .
dt mg, =123 (56)

dt
X; 0) = Xjo Xj (0) =g

Let Y,(w) be the Fourier transform of y, (t), where y,(t)(j=1, 2, 3) respectively corresponds
to the one in (31), (42), and (43). Denote by X, (w) the Fourier transform of x;(t). Then, if we find

proper m,; and c, such that

Y (@)=X;(@), j=1,2,3, (57)

the second-order equation (52), or (53), or (54) is equal to the fractional oscillation Equation (31), or
(42), or (43), respectively.

Obviously, once we discover the equivalent equations of the fractional oscillation equations
(52), or (53), and (54), all problems stated previously can be readily solved.
4. Equivalent Systems of Three Classes of Fractional Oscillators

In this section, we first present an equivalent system and then its equivalent mass and
damping in Sections 4.1-4.3, respectively for each class of fractional oscillators.

4.1. Equivalent System for Fractional Oscillators in Class I

4.1.1. Equivalent Oscillation Equation of Fractional Oscillators in Class I

Theorem 1 gives the equivalent oscillator with the integer order for the fractional oscillators in
Class I.

Theorem 1 (Equivalent oscillator I). Denote a fractional oscillator in Class I by

mt A0 @=0 1<a<2 &8)

Then, its equivalent oscillator with the equation of order 2 is in the form

2
—mwwzam%fd &0)+mwmgmffﬂﬁ§2+m40:o, l<a<2. (59)

dt? 2 dt

Proof. Consider the frequency response of (58) with the excitation of the Dirac-delta function 6(t). In
doing so, we study

RO

otk =60, 1<as<2 (60)

Doing the Fourier transform on the both sides of (60) produces

[mowY+k}Hﬂ@»:L l<a<?, (61)

where H () isthe Fourier transform of h,(t). Using the principal value of i, we have

i“—cos%+isin% 62
2 2 " ( )

Thus, (61) implies
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[m(ia))” + k} H, (w) = {m(cos%ﬂsin a_zrzjw,, + k} H,.(®)
= (ma)“ cos 2% +ima® sin 2% + kj H,, (o) =1.
2 2 Y

Therefore, we have the frequency response of (60) in the form

1

H yl (0)) = ar "

me” cos— +ime” sin—+k
2 2

On the other hand, for 1 < a <2, we consider (59) by

-2

—Maw

2
az d'hy (© hx;(t) +me**sin “—2”—th ® s vh (1) = 500).

COS—
2

Performing the Fourier transform on the both sides of (65) yields
[—mw“"2 cosOC—zﬂ(—a)2 )+mo™*sin %(ia})Jr k} H (o)
= (ma)" cosa—zﬂ +ime” sin OCT” + kj H, (o) =1,

where H, (@) isthe Fourier transform of h,(t). Therefore, we have

1

H (o) = .
X e . O . . . OF
mao 0037+|ma) sm7+k

By comparing (64) with (67), we see that
Hyl(a)) = Hxl(a))'
Thus, (59) is the equivalent equation of (58). The proof completes. o

4.1.2. Equivalent Mass of Fractional Oscillators in Class I

13 of 106

(63)

(64)

(65)

(66)

(67)

(68)

From the first item on the left side of (59), we obtain the equivalent mass for the fractional

oscillators of Class I type.

Theorem 2 (Equivalent mass I). The equivalent mass of the fractional generators in Class I, denoted by

m

s 1S expressed by

- ar
My, = My, (0, ) = —(a)"‘ 2 cosTJm, l<a<2.

(69)

Proof. According to the Newton’s second law, the inertia force in the system of the fractional
oscillator (58) corresponds to the first item on the left side of its equivalent system (59). That is,

d’x,(t)
dt?

ar d°x(t)

dt?

—me®~% cos Thus, the coefficient of

Hence, the proof finishes. o

is an equivalent mass expressed by (69).

From Theorem 2, we reveal a power law phenomenon with respect to m,, in terms of w.
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Remark 1. The equivalent mass 1, m,,, follows the power law in terms of oscillation frequency w in the form

eql?

My (@,0) ~ 0" °m, l<a<2. (70)

The equivalent mass m, relates to the oscillation frequency w, the fractional order a, and the

eql
primary mass m. Denote by

R, (0,a)=-0""? cosa—zﬂ, l<a<2. (71)
Then, we have
meql = meql (Cl), a) = le (a), a)m, l<a<?. (72)
Note 4.1: Since
le (a), 2) = 1, (73)

M, (@, @) reduces to the primary mass m when a = 2. That is,

My (@,2) =m. (74)

In the case of a = 2, therefore, both (58) and (59) reach the conventional harmonic oscillation
with damping free in the form

2
m%ww):o.

Note 4.2: If « —» 1, we have

Iin}m (w,)=0 for w#0. (75)

eql

The above implies that m,, vanishes if @« — 1. Consequently, any oscillation disappears in that case.

eql
Note 4.3: When 1 < a <2, we attain

0<R, (o)<l forw>1. (76)

Thus, we reveal an interesting phenomenon expressed by

Mg (@,)<m forl<a<2 w>1. (77)

The coefficient R ,(@,a) is plotted in Figure 1.
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Rm1(omega, alpha)

-----------------

omega
Figure 1. Plots of R (@,c). Solid line: & =1.2. Dot line: & = 1.5. Dash line: « = 1.8.

Remark 2. For a € (0, 2), we have

{!}IL];]O Mgy (a), 06) =0. (78)

The interesting and novel behavior, described above, implies that a fractional oscillator in
Class I does not oscillate for w — e because it is equivalently massless in that case.

Remark 3. For o (0, 2), we have

!]ImJ meql ((0, a) = . (79)

The interesting behavior, revealed above, says that a fractional oscillator of Class I type does
not oscillate at w = 0 because its mass is equivalently infinity in addition to the explanation of static
status conventionally described by w = 0.

4.1.3. Equivalent Damping of Fractional Oscillators of Class I

We now propose the equivalent damping.

Theorem 3 (Equivalent damping I). The equivalent damping of a fractional oscillator in Class 1, denoted
by c,,, isexpressed by

eql?

Cop = ceql(w, Q)= (wﬂ-lsin a—zﬂjm, l<a <2 (80)

Proof. The second term on the left side of (59) is the friction with the linear viscous damping
coefficient denoted by (80). The proof completes. o

Denote

R,(® ) :w“*lsina—zﬂ, l<a<2. (81)

Then, we have

Cop (@, @) =R (@, ). (82)

The coefficient R,(w,a) isindicated in Figure 2.
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Figure 2. R,(w,). Solid line: a =1.2. Dot line: @ = 1.5. Dash line: « = 1.8.

Remark 4. The equivalent damping I relies on w, m, and a. It obeys the power law in terms of w in the form

Cop(@,0) ~ 0" 'm, 1<a<2 (83)

Note 4.4: Because

Cal@a)| =0, (84)

we see again that a fractional oscillator of Class I type reduces to the conventional harmonic one
when a =2.

Remark 5. An interesting behavior of C,,, we found, is expressed by

eql?

{!)Lnjo Ceql(a),a) =0, l<a<?2. (85)

The above says that the equivalent oscillator (59), as well as the fractional oscillator (58), never
oscillates at @ — o for 1 < a < 2 because its damping is infinitely large in that case. Due to

!”im)c (a),a)=0, l<a<?2, (86)

eql

we reveal a new damping behavior of a fractional oscillator in Class I in that it is equivalently
dampingless for 1 <a<2atw=0.

4.2. Equivalent Oscillation System for Fractional Oscillators of Class 1l Type

4.2.1. Equivalent Oscillation Equation of Fractional Oscillators in Class II
Theorem 4 below describes the equivalent oscillator for the fractional oscillators of Class 1I

type.

Theorem 4 (Equivalent oscillator II). Denote a fractional oscillator in Class 1I by

2 B
md yzz(t) +Cd Y, (t)
dt dt?

+ky,()=0, O0<pB<L (87)

Then, its equivalent 2-order oscillation equation is given by
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[m cw“cosﬂzﬂjd;(t) [c Fs ﬂ”j Xét(t)+kxz(t)=0, 0<p<l (88)

Proof. Consider the following equation:

o d*h,, () e d’hy, (1)
dt? dt”

+kh,(t) = 5(@), 0<A<L (89)

Denote by H, ,(®) the Fourier transform ofh,(t). Then, it is its frequency transfer function.

Taking the Fourier transform on the both sides of (89) yields

[ma) +c(i ) +k] p@=1 0<p<l (90)

With the principal value of i”, (90) becomes

[ mao? +c( ) +k] yz(a))={—mw2+c(cos%+isin%)wﬁ+k}Hy2(w)

1)
:(—ma)z +co’ cos’B +k +ico” sm%j y2 (@) =1.
The above means
1
H,,(0) = .
y2
—-mw® + cw” cos = Br +k +ice” sin == Br (92)

On the other hand, we consider the equivalent oscillation equation II with the Dirac-0 excitation by

=) pr d? h,,(t) 51 Br\dh,,(t) d’ h,(t)
(m Co 0032) at? (c sin 2) ot +k it =o(t), 0<p<1l. (93)

Performing the Fourier transform on the both sides of the above produces

[—mw%cwﬂcos%ﬂcw smﬂ2 ('w)+k} 2(@)

- [—ma)z +ca’ cosZE + K +ice” sin %J w(®) =1, .
where H,, (@) the Fourier transform of h,, (t). Thus, from the above, we have
HXZ(w):—ma)ercw cosﬁz1 +k+ice’ sm%' (95)
Equations (92) and (95) imply
Hy, (@) = H,, (). (96)

Hence, (88) is the equivalent oscillation equation of the fractional oscillators of Class II. This
completes the proof. o
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4.2.2. Equivalent Mass of Fractional Oscillators of Class II

The equivalent mass of the fractional oscillators of Class II type is presented in Theorem 5.

Theorem 5 (Equivalent mass II). Let m,,, be the equivalent mass of the fractional oscillators of Class II

type. Then,

Mygz = Megp (@, B) =M —ca’ 2 cos%, 0<p<1 (97)

Proof. Consider the Newton’s second law. Then, we see that the inertia force in the equivalent

2
oscillator I is (m —caw’?cos ﬁ—zﬂj% Therefore, (97) holds. The proof completes. o

From Theorem 5, we reveal a power law phenomenon with respect to the equivalent mass II.
Remark 6. The equivalent mass m,, obeys the power law in terms of w in the form
~—co/?, 0<p<l. (98)

meq 2

Note 4.5: Equation (97) exhibits that m_, is related to the oscillation frequency w, the fractional

order B, the primary mass m, and the primary damping c.

Remark 7. For 0 < <1, we have

limm_, (@, ) = m. (99)

Figure 3 shows its plots for m = ¢ = 1 with the part of m,, (@, 8) > 0.

1 N O s e
= p T
; | {r’ ’_.{*“ |
o 0 /S,
© § 5
e L |
= o
S -
< [
S 076 —l,f B —
g- ::.!'

[ 3 T T B
0

0.6
2 4 6 8 10

omega

Figure 3. Plots of m,,(®,8) >0form=c=1.

Remark 8. For 0 < <1, we have

limm,,, (@, ) = <. (100)

Note 4.6: The equivalent mass II is negative if w is small enough.
Figure 4 exhibits the negative part of m,,(, ).
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Figure 4. lllustrating negative part of m,, (@, 8) form=c=1.(a)p=09.(b) 3=0.7.(c) f=0.5.(d) =03.

Remark 9. We restrict our research for m,,(w, ) > 0.

Note 4.7: The equivalent mass II reduces to the primary mass m for § =1 as indicated below.

My (@A), =m. (101)

In fact, a fractional oscillator in Class II reduces to the conventional oscillator below if f =1

2
m%jtcd%Jrkxz =0.
c

4.2.3. Equivalent Damping of Fractional Oscillators in Class II

Let c,, be the equivalent damping of a fractional oscillator in Class II. Then, we put forward

the expression of ¢, with Theorem 6.

Theorem 6 (Equivalent damping II). The equivalent damping of the fractional oscillators in Class II is in
the form

Cogo = ceqz(a), )= ca)ﬂflsin%, 0<p<1. (102)
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Proof. The second term on the left side of (88) is the friction force with the linear viscous damping

coefficient denoted by (102). The proof completes. o
Denote by

R., (@, ) = a)ﬁ'lsin%,
Then, we have

Ceqz (60, ﬂ) = Rcz (w! ﬁ)C

Figure 5 indicates R, (@, f).

0<p<1.

4 T T T T T T T T T
~~~
< \
=
=
S 1
(@)
] 2k —
g
S 1 >\V*-“:ﬂ»— =
' ~ N
0 I Bl welien et S S Sy N
0 1 2 3 4 5 6 7 8 9
omega

10

(103)

(104)

Figure 5. Indication of R, (w, ). Solid line: =0.9. Dot line: = 0.6. Dash line: § =0.3.

Remark 10. The equivalent damping c,, is associated with the oscillation frequency w, the primary damping

¢, and the fractional order . It follows the power law in terms of w in the form

Ceqz(a), ﬂ) ~ Cl)ﬁilc, 0< ﬂ <1.

Note 4.8: The following says that ¢

eq2

Ceqz (w! ﬁ)|ﬂ:1 =C.

Remark 11. The equivalent damping ¢

eq2

{!}ILTJC Ceqz (C(), ﬂ) = 0

reduces to the primary damping cif f=1.

has, for B (0, 1), the property given by

(105)

(106)

(107)

Note 4.9: The equivalent oscillation equation of Class II fractional oscillators reduces to

d*x, (1)

m

e +kx, (t) =0 in the two cases. One is w — =, see Remark 7 and Remark 12. The other is ¢ =0.

Note 4.10: Remark 5 for limc,, (@, f) =0 and Remark 11 just above suggest a substantial

difference between two types of fractional oscillators from the point of view of the damping at w — o°.

Remark 12. The equivalent damping ¢

eq2

limc,, (@, B) = x.
w—0

has, for B e (0, 1), the asymptotic property for w — 0 in the form

(108)
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The above property implies that a fractional oscillator in Class II does not oscillate at @ — 0
because not only it is in static status but also its equivalent damping is infinitely large.

4.3. Equivalent Oscillation System for Fractional Oscillators of Class 111

4.3.1. Equivalent Oscillation Equation of Fractional Oscillators in Class II
We present Theorem 7 below to explain the equivalent oscillation equation for the fractional

oscillators of Class III.

Theorem 7 (Equivalent oscillator III). Denote a fractional oscillation equation in Class I1I by

md“ya(t) d”y,(t)
dt” dt”?

+ky,(t)=0, 1l<a<2 0<p<l. (109)

Then, its equivalent oscillator of order 2 for 1 < a <2 and 0< B <1 is in the form

—(mco”‘2 cosa—2ﬂ+c " 2cosﬁzﬁjd %)

dt?
(110)
+(ma)“‘1 sin 2% + co’sin ﬁ”jdx (1) +kx, (t) =0.
2 dt
Proof. Let us consider the equation
d“h,(t) d’h,(t)
m dtyj +C dty; +kh,; (1) =6(), l<a<2 0<p<L (111)

Let H ,(w) be the Fourier transform of h(t). Doing the Fourier transform on the both sides of

the above results in

[m(iw)“ +c(iom)’ +k} Ha(@) =1 l<a<2 0<p<L (112)
Taking into account the principal values of i and i”, (112) becomes

[m(i)" +c(io) +k |H,q(@)

_ 9T L isin@E ) e b7 isin BT o
_{m(cos 2 +isin ) ]a) +c(cos > +1isin > ja) +k}Hy3(w) (113)

pr

mao*” cos 2% 4 co” cos’B +k+|(ma) sin?” 1 cw sin—) H,;(w) =1.
2 2 2 2 y

Consequently, we have

1

Hys (@) = o= B prY 114
ma)“cos?Jrcw cos = > +k+|(ma) sm 2 7w sinzj (114)

On the other hand, considering the equivalent oscillator III driven by the Dirac-d function, we have

—[ma)“ cos &% 5 T+ ca’” 2cos’gﬂjd s (1) [ma)“sln 5 +cw’sin ﬂzﬂjdh:;t(t) kh,5(t)

2 ) dt? (115)

=5().

When doing the Fourier transform on the both sides of the above, we obtain
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(mw" cosa—2”+cwﬂ cos%) H,, (o) +i (mw“ sina—2”+cw” sin %j H,; (@) +kH ;(®)

(116)
=1,
where H,;(®) isthe Fourier transform of h,,(t). Therefore, from the above, we get
1
Hia(@) = ar Br . . ar . prY (117)
Mme” cos—— +caw” cos—+K +i| ma” sin——+caw’ sin =~
2 2 2 2
Two expressions, (114) and (117), imply that
Hys (@) =H (). (118)

Thus, Theorem 7 holds. o

4.3.2. Equivalent Mass of Fractional Oscillators in Class III

From Section 4.3.1, we propose the equivalent mass of the fractional oscillators in Class III type
by Theorem 8.

Theorem 8 (Equivalent mass III). Let m, ; be the equivalent mass of the fractional oscillators in Class III.
Then, for1<a<2and 0<p<1,

My = My (@, @, B) = _(ma)‘“ cosa—; +ca’ 2 cos ﬂ—;] (119)

Proof. When considering the Newton's second law in the equivalent oscillator III (110), we
immediately see that Theorem 8 holds. o

Remark 13. The equivalent mass m,.; obeys the power law in terms of w.

Note 4.11: The equivalent mass My, is related to w, m, and ¢, as well as a pair of fractional

orders (a, B).
Note4.12: If =2 and =1, m,; reduces to the primary m, i.e,,

My (@0, ), =m (120)

As a matter of fact, a fractional oscillator of Class III reduces to the ordinary oscillator when a =
2and f=1.

Remark 14. In the case of w — =, we obtain

!}iﬂlmqu(a),a,ﬂ)zo, l<a<2, 0<pB<l (121)
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Therefore, we suggest that a fractional oscillator in Class III does not oscillate for w — « because its
equivalent mass disappears in that case. Figure 6 shows its positive part for a=1.5, §=0.9, m=c=1.

1 T T T T
» 08 —
% o
S / T
o= 06 i Ramatiliy
<
kY f
= L _
ERR
>
O 0.2 —
| | | |

0
0 02 04 06 08 1
omega

Figure 6. Indicating the positive part of m,,(@,a,8) fora=15,=09 m=c=1.

Remark 15. In the case of w — 0, we obtain

Em)meq3(w,a,ﬂ):—oo, l<a<2, 0<pB<l (122)

In fact, if w is small enough, meqs(a), a, ) will be negative, see Figure 7.

100 |
; 0or _ =
0 o L]
< S
E ot 7 —
c o
(3] I{ff
< -200 |, —
N
S {
5 -300 | .

-400 |

0 0.005
omega

Figure 7. Negative part of m,,(@,a,8) form=c=1and f=0.9. Solid line: @ = 1.9. Dot line: & = 1.6.
Dash line: @ = 1.3.

Remark 16. This research restricts meqs(a), a, ) € (0, ).

4.3.3. Equivalent Damping of Fractional Oscillators in Class 111

Let c,; be the equivalent damping of a fractional oscillator of Class IIl type. Then, we

propose its expression with Theorem 9.

Theorem 9 (Equivalent damping III). The equivalent damping of the fractional oscillators in Class Il is
givenby, for1<a<2and 0<f <1,
Ceqz = Cqu(w,a,ﬂ) = mwailSina_zﬂ"’ca)ﬁilsin%' (123)
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Proof. The second term on the left side of the equivalent oscillator III is the friction force with the
linear viscous damping coefficient denoted by (123). Thus, the proof completes. o

Remark 17. The equivalent damping c_, relates to w, m, ¢, and a pair of fractional orders (a, B). It obeys the

power law in terms of w. It contains two terms. The first term is hyperbolically increasing in @“™
and the second hyperbolically decayed with "™ since p<1.

asa>1

Note 4.13: From (123), we see that c,, reduces to the primary damping ¢ for & =2 and § = 1. That

is,

Remark 18. One asymptotic property of C

Ceqa(a), o, ﬂ)|a:2,/}:1 =C.

eq3

limc,,(o,a, B)=x.
@—>0

W—>0

(124)

for w — oo, dueto limw* ™ =0 for1<a<2,is given by

(125)

The above says that a fractional oscillator of Class III does not vibrate for w — .

Remark 19. Another asymptotic property of ¢

<1, is expressed by

eq3

!J[D)Ceqs (a)’ a, ﬂ) = 0.

in terms of w for w — 0, owing to Iirr(])a)ﬂ’1 = for0<p

>

(126)

A system does not vibrate obviously in the case of w — 0 but Remark 19 suggests a new view
about that. Precisely, its equivalent damping is infinitely large at w — 0. Figures 8 and 9 illustrate

Cs(@a, p) form=c=1.

1
Equivalent damping Il|
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=
S 2.8
o
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Figure 8. Plots of equivalent damping III for m = c = 1. Solid line: @ = 1.9. Dot line: a = 1.6. Dash line:
=1.3. (a) For $=0.9. (b) For =0.7. (c) For =0.5. (d) For g =0.3.
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Figure 9. Plots of C.(@,a,8) for m=c=1.Solid line: § = 0.8. Dot line: § = 0.5. Dash line: = 0.3. (a)
For a =1.8. (b) For « =1.3.

Note 4.14: The equivalent damping ¢

4.4. Summary

eq3

=0ifbotha=2and c=0:

Ceq3 (a)v a, ﬂ)|a:2£:0 =0.

We have proposed three equivalent oscillation equations with order 2 to equivalently
characterize three classes of fractional oscillators, opening a novel way of studying fractional
oscillators. The analytic expressions of equivalent mass m,; and damping c,; (j=1, 2, 3) for each

equivalent oscillator have been presented. One general thing regarding m,; and dampingc,, is that

they follow power laws. Another thing in common is that they are dependent on oscillation
frequency w and fractional order.

5. Equivalent Natural Frequencies and Damping Ratio of Three Classes of Fractional Oscillators

We have presented three equivalent oscillation equations corresponding to three classes of

fractional oscillators in the last section. Functionally, they are abstracted in a unified form

LRAOIPAO)

edj dt 2 edJ

dt

k() = F (1),

i=12,3.

(128)
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In each equivalent oscillator, either m,; or c, is not a constant in general. Instead, either is a

function of the oscillation frequency w and the fractional order « for m,, and c,,, p form,, and

eql eql’

Ceq2s (o, B) for m

s and C.,. Consequently, natural frequencies and damping ratios of fractional

oscillators should rely on w and fractional order. We shall propose their analytic expressions in this
section.
5.1. Equivalent Natural Frequency [

Definition 1. Denote by o,
takes the form

o, @ natural frequency of a fractional oscillator in the jth class (j =1, 2, 3). It

k .
Degn,j = m_l J =123, (129)

e
where My, is the equivalent mass of the fractional oscillator in the jth class.

With the above definition, we write (128) by

d’x;(t) c. dx(t d?x.(t) c, dx(t
#+ﬂA+LXJ—(t)= 12()4_& J()+a)e2qnjxj(t):m’ j=12,3. (130)
dt mgy dt my dt my; dt ' My
Note 5.1: @,, ; may take the conventional natural frequency, denoted by
k
== 131
&=y (131)

as a special case.

Corollary 1 (Equivalent natural frequency I1). The equivalent natural frequency I1, which we denote it by

@yyy, Of a fractional oscillator in Class I is given by
Oy =, 1<a<2.
_a)"’z COS% (132)
2

Proof. According to (129), we have, for 1 <a <2,

[k k N 1 k o

qn,l = - — .
_ ar _ ar
\/ Mt 4[—me*2 T 2 cos - w2 cos F (133)
2

@,

The proof finishes. o

Figure 10 shows the plots of @, -
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Figure 10. Natural frequency @,,,. Solid line: « =1.8. Dot line: @ =1.5. Dash line: a=1.2. (a) o, =1.
(b) @, =2.

Note 5.2: From Figure 10, we see that o,

.1 1S an increasing function with w. Besides, the

greater the value of a the smaller the wegn,1.
Note 5.3: o,

Ly becomes @, if a=2.In fact,

eqn,1

= =0, (134)

a—-2 ar

2 -~ " COS——
2

=2 meql

a

a=2

Corollary 2 (Equivalent natural frequency 12). The natural frequency 12, o,

wn2» Of @ fractional oscillator

in Class Il is given by

D,

a)eqn,z = '
\/1—Cco’” cos % (135)
m 2

Proof. Following (129), we have

Y \/ k | k N k B @,
eqn,2 - - -
Meq \/m—cw/“ cos% \/m(l—;co”cosﬂzﬂ) \/1—Ca)”2 cos%
m

Hence, the proof completes. o

Figure 11 indicates the curves of @, ,.
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Figure 11. Curves of o,
1.(b) e, =2.

Note 5.4: Figure 11 shows that o,
B the smaller the @

16 24 32
omega

(b)
wn2  fOr m=c=1.S5olid line: g = 0.8. Dot line: §=0.5. Dash line: =0.3. (a) o, =

eqn,2*
Note 5.5: w,,, takes , asa special case for f=1. As a matter of fact,
— a)n —
a)eqn,Z p-1 - c ﬁﬂ- = C()n,
\/1— — " cos
m 2 et

4

.2 1S @ decreasing function with w. The greater the value of

(136)

Corollary 3 (Equivalent natural frequency I3). The natural frequency I3, denoted by e,y of a

fractional oscillator in Class 111 is given by

[0}
w n

eqgn,3 = .
_ (07,4 C _ T
—| " cos==+ @’ Zcosﬁ—
2 m 2

Proof. With (129), we write

k w

— n

el

The above completes the proof. o

Figure 12 gives the illustrations of @, ,.

k _ |
Pema =7 ar pr
€3 \j —(maf"2 c037+ca)’H COSTJ \/—(a)“ cos %% . C
2

~ "% cos &j
m 2

(137)

(138)
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10 T T T T

omega_eqn, 3(omega, alpha, beta

20 T T T T

omega_eqn, 3(omega, alpha, bets

omega
(b)
Figure 12. [llustrations of @,,,, for m=c=1.Solid line: @ =1.8, §=0.9. Dot line: & = 1.5, = 0.9. Dash
line:a=12,=09.(a) w,=1.(b) w,=2.

Note 5.6: Figure 12 exhibits that a,,,
Note 5.7:

eqn, 3

is an increasing function in terms of w.

takes @, as a special case for a =2 and = 1. Indeed,

[ k \/?
=2, fim = = —_—= a)n. (139)
o \]—(ma)“ cosa—; +co’? cosﬁzﬁj m

a=2,p=1

a)eqn,3

5.2. Equivalent Damping Ratio

Definition 2. Let ¢, be the equivalent damping ratio of the equivalent system of a fractional oscillator in
Class j. It is defined by

Sy = ——> =123 (140)

Corollary 4 (Equivalent damping ratio I). The equivalent damping ratio of a fractional oscillator in Class I
is expressed by
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@
®? sin—

T
geql = geql(a)' O!) = 2 '
anr
20, , ’—cos7

Proof. Replacing m,, and ¢

l<a<?2. (141)

. N the expression below with the equivalent mass I and the

equivalent damping I described in Section 4

Ceql

Cear = (142)

2,/m,k

yields

ad - QT
maw Sln7 a) sm— a) sm—

geqlz
2\/(—mw“‘2cosaz”jk \/ cos— 2w, ’—cosﬂ

The proof finishes. o

Remark 20. The damping ratio ¢, follows the power law in terms of w.

Remark 21. The damping ratio of fractional oscillators in Class I relates to the oscillation frequency w and
the fractional order «. It is increasing with respect to w.

Sequ(0:@) = 0and g (o0, @) = o (144)

Figure 13 shows the curves of ¢, (@, ).

1 | 71 |

08 ’,,-’r _
06F — 0.6 -
04 T

04 — I.'r ..'.. —]

0.2 J‘_I- - - | 02 /'j .-I-I_I__,.... N

zeta_eql(omega, alpha)
zeta_eql(omega, alpha)
4
k)

N e A R e Sl
0 08 16 24 32 4 0 08 16 24 32 4
omega omega
(a) (b)
Figure 13. [llustrations of ¢, (®,a). Solid line: @ =1.3. Dot line: & = 1.6. Dash line: a =1.9. (a) For @, =
1. (b) For @, = 3.

Note 5.8: Figure 13 indicates that the smaller the « the greater the ¢,

Corollary 5 (Equivalent damping ratio II). The damping ratio of a fractional oscillator in Class II is given by
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4. pr
ga)ﬁlsln’g—

Seqz = Seq2 (@, B) = , 0<p<], (145)
o

“2cosEE

where ¢ =

c
2mk
Proof. When replacing the m,, and c,, in the following expression by the equivalent mass II

and the equivalent damping II proposed in Section 4, we attain

c co?tsin - Br Ca)ﬂ’lsin@
eq2
geqz = = =
2./m_ .k
\/ &2 2\/(m—cw” cosﬂ”)k 2\/(1—00)“ cosﬁ”jmk
2 m 2
co’tsin= ’37[ ga)”’lsin@
- - 2_ . 0<p<L

2\/mk\/1— 2cos 2 ﬂﬁ \/1—0501’2 cos@
m m 2

This finishes the proof. o

Remark 22. The damping ratio ¢, obeys the power law in terms of w.
Remark 23. The damping ratio g, isassociated with w and the fractional order B. It is decreasing in terms of w.

Note 5.9: ¢, takes Cas a special case for g =1. In fact,

: |

g
(0} Sin
4 2

Jl—ca)'“ cosﬁ
m 2

Figure 14 indicates the plots of ¢,,(®, ) inthecaseof m=1,c=1,and k=1.

S(@. ), = =. (146)

p=1

~ 1
© L T T T
= \ 1
<= 08 —\ | ]
s |

-
g 06 \M‘J.;, N
O -"-:-\_"‘—ﬂ—._.__\_
& - T =
o 0.4 YT
q.>| h, el
S 02 . -
S o~

L | L |

0
0 08 16 24 32 4
omega
Figure 14. Plots of ¢,,(®@,) for m=c=k=1.Solid line: § =0.9. Dot line: § = 0.6. Dash line:  =0.3.

Corollary 6 (Equivalent damping ratio IIl). Let ¢, be the damping ratio of a fractional oscillator in
Class III. Then, for 1<a<2,0<B<1,
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geq3 = geq3 (a),a,ﬁ) =

Proof. If replacing the m,, and ¢

74 o
o” 1SIn7+2ga)na)ﬁ 'sin

pr

eq3

damping III presented in Section 4, we obtain

4 . anr 1 .
ma” 1sm7+ca)ﬂ sin

pr

ZJ—(mw“‘z cosa—zﬂ +cw”?cos /)72”] k

4 . o C 1 . T
m a)‘”sln—+—a)“slnﬁ—
2 m 2

20, \/—(a;” cos a—zﬂ +2¢m,0" 7 cos ﬁzﬂj

m(a;”’l sin OC?” +2¢w,0"* sin 'Bzﬂj

2\/—((0“‘2 cos%+£a)ﬂ‘2 cos ’Bzﬂj mk 2«/mk\/—(w“‘2 cos%+ 2c0,0" cos 27
m

;)

a-1

2]

. ar -1
S|n7+2ga)na)ﬁ tsinf—

pr

2w, \/— (a)‘” cos % +2¢w,0" % cos ’Bzﬁj

Thus, we finish the proof. o

Remark 24. The damping ratio g, follows the power law in terms of w.

Remark 25. ¢, . relates to w and a pair of fractional orders (a, B).

Note 5.10: ¢, regards C as a special case for @ =2 and f = 1. As a matter of fact,

Seqs (0,21) =

Figure 15 demonstrates the figures of ¢, (o, «a, f)

zeta_eq3(omega, alpha, beta
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0.84

0.76

0.68

©
o

a4 O A
o” 1SIn7+2ga)na)ﬁ 'sin

pr

17 I I
— ./’ —
B o
e
T
| | | |
0 08 16 24 32 4
omega
(a)

2w, \/—(w“'z COS% +2¢a,0" % cos P

)

zeta_eq3(omega, alpha, beta

a=2,p=1

1 |I; T —
1 e
N .
0.8 [ 1; -
0.76 -
064 -
\
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04 | | | |
0 08 16 24 32
omega

32 of 106

(147)

below with the equivalent mass III and the equivalent

(148)

inthecaseof m=1,c=1,and k=1.
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Figure 15. Demonstrations of ¢,,(@,@,B) inm=c=k=1.Solid line: & = 1.9. Dot line: a = 1.8. Dash
line: @ =1.7. (a) For $=0.8. (b) For p=0.5. (c) For p=0.2. (d) For g=1.

5.3. Equivalent Natural Frequency 11

Now, with two parameters o,

wnj and G, presented above, we rewrite the equivalent

oscillator (130) by
dz(:tjz(t) 260 % + @l X, () = % j=123. (149)
The characteristic equation of (149) is given by
Sf + 264 Do iS; T+ a)ezqn'j =0, j=123. (150)
The characteristic roots are in the form
Si12 = e @oanj EA/Seei@hep — Poop i = —Geqj@oapj F10un 1650 1=12.3. (151)

Functionally, we utilize the symbol «, for

eqd, j

Wy § = Degn ﬂl_geij ’ J =123 (152)

Thus, the characteristic roots are

Si12 = ~Seqi Pen J_ria)eqd,j, j=123. (153)

Note that, in practice, 0< ¢, <1because 1< ¢, means no oscillation at all.
We write those above for the sake of applying the theory of linear oscillations to fractional

ones. Now, we discuss @, ;.

Corollary 7 (Equivalent natural frequency II1). Let @, be the functional damped natural frequency of

a fractional oscillator in Class I. It may be termed the equivalent natural frequency II1. Then,

,

eqd,1 = a)eqd,l(a)'a) = \/ (154)

—w* % cos
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Proof. Note that

a,

eqd 1 = weqn,l \)1_ g:dl . (155)

Using the above ¢,,, we have

S ar
w?sin——
2

w
_ 2 _ n
a)eqd,l - a)eqn,l \ll_gedl - 1-

_ ar ar
\/—a)“ ? cos 2w, [[cos—
2 2

This finishes the proof. o

The parameter @,,, functionally takes the form of damped natural frequency as in the
conventional linear oscillation theory. In this research, we do not distinguish the natural
frequencies with damped or damping free. At most, we just say that it is a functional damped one.
It relates to the oscillation frequency w and the fractional order a.

Remark 26. o

w1 1S 10t a monotonic function of w.

Note 5.11: w, isaspecial case of @,,, whena=2:

(156)

As a matter of fact, fractional oscillators of Class I are damping free for a = 2. Figure 16
illustrates the plots of @, ,(®,a).

2 2
o 15 T T 1 o 4 T T 1
] ] o~
el - ] S - ra ~, ]
S 12- S s2r g
“E-’ f-';;_:.},:\-'—"—-“: ——————— . GEJ j PR A
o 0.9 —ﬂ_.‘J . — S 24/ __.=";____,___,___th
= i \ = j-f e Y
= 06ff \ - 5 16 -
@ : D .
o 03} \ o4 < o8} ~
o> - : o
D . 5]
= 0 | | | | = 0 | | | |
© 0 08 16 24 32 4 © 0 08 16 24 32 4
omega omega
(a) (b)
Figure 16. Plots of @, ,(®,). Solid line: a = 1.8. Dot line: a = 1.5. Dash line: a = 1.2. (a) For o, = 1.
(b) For @, =2.

Corollary 8 (Equivalent natural frequency I12). Let ¢, , be the functional damped natural frequency of a
fractional oscillator in Class II. Term it with the equivalent natural frequency I12. Then, for 0< <1,
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. ngZ(ﬁ—l) sin? @
weqd,z = a)eqd,z(w’ﬁ) = \/ = 1- ﬂ . (157)

c _ T
1_£a)ﬂ’2 cos& 1——a)ﬁ 20037
m m

Proof. Consider

[0)

eqd,2 =,

eqn,2 \ll_ge‘de . (158)

Replacing @,,, and ¢, inthe above yields

o ¢’ sin ﬂ—zﬁ
Cerd,z = a)eqn,z \jl_gezdz = C = ﬂﬂ' 1- C ﬂﬂ'
\/1—a)ﬂ2 cos - 2\/1—60'“ cos -
m 2 m 2
S’V sin? b
a)n
= 1- S b
\/1_Cwﬁ_2 COS& 1-*(01}_2 COS—”
Thus, Corollary 8 holds. o
Remark 27. «,,, is related to w and the fractional order .
Note 5.12: The conventional damped natural frequency, say,
@, = 0\1-¢° (159)
is a special case of @, ,(w,f) forp=1.
Figure 17 gives the plots of @, , (@, f).
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Figure 17 lllustrating @,y ,(®,8) for m=c=1. Solid line: § = 0.8. Dot line: § = 0.5. Dash line: line: § =
0.2. (a) For @, = 1. (b) For @, = 0.3. (c) For w, = 10.

Corollary 9 (Equivalent natural frequency II3). Let @, ;=@ s(®@, ¢, B) be the functional damped

natural frequency of a fractional oscillator in Class 1II. Call it the equivalent natural frequency I13. Then, for
I<a<2and 0<B <1, we have

2 2
(a)“l sin a—zﬁ +2¢0,0" " sin ﬂzﬁj

o, [1-

4oy’ [—(a)“ cosa—zﬂ + 26w, cos '827[ ﬂ (160)

- ar C 4 7T
—| @* % cos==+ = @” zcosﬁ—
2 m 2

eqd,3 =

Proof. In the expression below
a)eqd,S = a)eqn,S \/l_gezdS ' (161)
we replace o,

was and G, by those expressed above. Then, we have

’ k
a)eqd,B = a)eqn,3 \jl_gezds = m_ \ll_gezd3
eq3

w“’lsinﬂ+2ga)nw’3’1sin pr
w, [1- 2
20, |- 0 cosZE + 2c0, 0" cos 2%
2 2
[0 cos ¥ + & w2 cos 7
2 m 2
2 2
w“’lsin%+2ga)na)ﬂ’lsin pr
2 2
o, |1

| e | N

—(a)‘” cosa—; +2¢m,0" 7 cos ﬂ;ﬂ

. ar C 4 T
—| @*?cos ==+’ Zcos'g
2 m 2
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Therefore, the corollary holds. o

Note 5.13: The conventional damped natural frequency w, is a special case of @,,, for (a, f)

= (2, 1). Indeed,

2
(ao“'l sin % +2¢w,0" " sin ﬁzﬂj

4t [—(a)“‘z cos a—zﬂ +2¢w,0" % cos ﬂzﬂﬂ

o, 1-

n

_ an C _ T
\/—(a)” z 0057+—a)” 2 cosﬂj
m

Dyg 3(0,2,2) = = w,1-¢". (162)

2

a=1,=1

Remark 28. The natural frequency w,, ,is associated with w and a pair of fractional orders (a, p).

Figures 18 and 19 indicate its plots.
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Figure 18. Demonstrations of @, ;(@,@,B) for m=c=k=1.Solid line: & = 1.9. Dot line: @ = 1.6. Dash

line: @ =1.3. (a) For $=0.9. (b) For $=0.8. (c) For $=0.3. (d) For =0.2.
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20 T T T

omega_eqd, 3(omega, alpha, beta

omega
(b)
Figure 19. @, (w,a,B) form=c=1,=0.9.Solid line: a = 1.9. Dot line: « = 1.6. Dash line: & = 1.3. (a)
For @,=3.(b)For o, =5.

5.4. There Exists Infinity of Natural Frequencies of a Fractional Oscillator

The previous discussions imply that there exists infinity of natural frequencies, for either a, ;

or ., ;, because each is dependent on w € (0, *). We functionally derived the two characteristic
roots of the frequency equation (151), namely, s;,,, actually stand for infinity of roots owing to w
€ (0, o).

Taking a fractional oscillator in Class I into account, its frequency equation is given by

s“+a =0, l<a<2. (163)

Then, it is easy to see that there exists infinitely many characteristic roots in the above, also see Li et
al. [18].

A contribution in this work in representing characteristic roots of three classes of fractional
oscillators is that they are expressed analytically. Moreover, functionally, they take the form as that
in the theory of conventional linear oscillations, making it possible to represent solutions to three
classes of fractional oscillators by using elementary functions, which are easier for use in both
engineering applications and theoretic analysis of fractional oscillators.

6. Free Responses to Three Classes of Fractional Oscillators

We put forward the free responses in this section to three classes of fractional oscillators based
on their equivalent oscillators presented in Section 4. Since the equivalent oscillators are expressed
by using second-order differential equations in form, in methodology, therefore, it is easy for us to
find the responses we concern with. Note that the equivalence explained in Section 4 says that

Y (@)= X,(@),j=1 23, (164)

where the subscript j stands for the Class I to III. Consequently,
y;0=x1,j=1 2 3. (165)
Therefore, our research implies three advances.

e First, proposing the free responses to three classes of fractional oscillators using the way of
solving conventional oscillators.

e Then, since the responses to conventional oscillators are represented by elementary functions
while those to fractional ones are expressed by special functions, such as the Mittag-Leffler
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function and its generalizations, we shall present novel representation to a certain special
functions by elementary ones.

¢ Finally, analytic expressions of the logarithmic decrements, which are useful in practice, of
three classes of fractional oscillators are proposed.

6.1. General Form of Free Responses
Consider the free response to the functional equivalent oscillator in Class j in the form
o dzxj(t)+ ' dx, (t)
Wodtt Y dt
dx; (t)
dt

+kx; (t)=0
., =123 (166)

X; (0) = X;o, =

Vi

t=0

Following the representation style in engineering, we rewrite it by

d?x; (t) dx; (t)

dtjz + geqja)eqn,j#—i_a)ezqn,jxj(t)zo
0 d, (t) » 1=123. (167)
X, (0) = X;p,——| =V,
] J dt o ]

Therefore (Timoshenko ([1], p. 34), Jin and Xia ([79], p. 11)), we have, for t 20,

o Do Vig + Cogi @ ,-X' i
X; (t) = 1" {on COS 9,4 ;t +%sm a)eqd’jt} (168)
eqd, j
The above may be rewritten in the form
~Geqj @eqn, j
X; (1) = Age o™ COS(a)eqd,jt—ﬁeqj), t>0, (169)
where the equivalent amplitude A,; is given by
v X, |
4 @ X
Ag =X +| i | (170)
weqd,j
and the equivalent phase 6, is
Vig + Cogi Pegn i X
geqj =tan71 jo geqj eqn, j JO. (171)
@eqa, i %j0

Note that, for @, ;, 6.4 Ag» and 6, each is not constant for fractional oscillators.

Instead, each is generally a function of oscillation frequency w and fractional order.

6.2. Free Response to Fractional Oscillators in Class I

We state the free response to a fractional oscillator in Class I by Theorem 10.

Theorem 10 (Free response I). Let x,(t) be the free response to a fractional oscillator in Class I. Then, for
I<a<2, x(t) isgiven by
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. an
@sin—
2

ar
2

x(t)=e

Proof. For t > 0, consider

X, (t) = @ St [xlo COS @,y ;L +

In the above, replacing @,,,, by the onein (132), ¢,

yields

a
2 i an
w? sin—
2

o,

n

. ar
@SIN—

ar

2|cos—|
2

ar
COS——|
2

X, COS

Vip F Gequ@eqn 1 %10

sin a)eqd,lt].

sin

sin

X,, COS

This completes the proof. o
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(172)

(173)

with that in (141), and @4, by the one in (154)
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Figure 20 indicates x,(t) with fixed w.
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Figure 20. Indicating free response x,(t) for x,=V;=@, =1.(a) @ =19. Solid line: w =1 (g, =
0.08). Dot line: w = 0.7 (g, =0.04). (b) & =1.6. Solid line: w =1 (g,,; =0.33). Dot line: @ =0.7 (g,y =
0.16). (c) a = 1.3. Solid line: w =1 (g, = 0.66). Dot line: @ = 0.7 (g, =0.42). (d) @ = 2. Solid line: w =1

(6eqr =0). Dot line: @ = 0.7 (G, = 0).

Note 6.1: As indicated in Figure 20, both oscillation frequency w and the fractional order «
have affects on the damping ¢,,(®,), also see Figure 10. When a = 2, x,(t) reduces to the free

response to the ordinary harmonic oscillation with damping free in the form (also see Figure 20d)

X (t) = [xm cosa,t + Y0 i a)nt], t>0.
[0

n

The free response to a fractional oscillator in Class I is presented in (172). It uses elementary

functions instead of special functions.

Since there exists infinity of natural frequencies for a fractional oscillator, as we explained in
Section 5, x(t) is actually a function of both t and w as can be seen from (172). In Figure 20, plots

are only specifically with fixed w. Its plots with varying w are viewed by Figure 21.

x1(t)
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Figure 21. Illustrating free response x, (t) with variable w (=0, 0.2, 04, ..., 10) for x,, =v,, =1. (a) For
o,=land a=1.9 (0<¢,, <0.64). (b) For @ =3 and a=1.6 (0<¢,, <0.63).

When emphasizing the point of time-frequency behavior, we view it in t-w plane as Figure 22
shows.

x1 x1
() (d)
Figure 22. Indicating free response X, (t) in t-w plane for t =0, 1, .., 30 and w = 1, 2, ..., 5, with
X0 =Vip =1, @,= 6. (2) @ = 1.9 (0.01 g, < 0.28). (b) & = 1.6 (0.05 <¢,(; < 0.72). (¢) @ = 1.3 (0.11 < <
0.89). (d) @ =2 (6., = 0).

Let ti and ti+1 be two time points where X; (t,) reaches its successive peak values of x; (t;) and

X;(t,,), respectively. Let A, be the logarithmic decrement of X;(t). Then, from (178), we

eqj
immediately obtain

_nn X; (t) ~ 27zgeqj

A= = .
e 2 174
! Xj (ti+1) 1- geij ( )

Corollary 10 (Decrement I). Let x,(t) be the free response of a fractional oscillator in Class 1. Then, its

logarithmic decrement is given in the form
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S arm
- ®? sin——
eql — , l<a<?2
S .an i o, |-cos 2%
w? sin~— n 2 (175)
e I
2w, —cos 4%
2
Proof. According to (174), we have
t 2 co% sin &%
: T
eql — n Xl(il)): geqzl = i > y l<a<?2.
%t \/1_49111 ¢ . an con\/—cosm
®? sin— 2
- 2
2w, —cos 2%
2

The proof finishes. o

Since A, isa function of w and a, we may write it with A, (@, «). Figure 23 indicates A,

- .
= =
=2 10 1 I I = 10 T T T
< = ;
S 15[ 1 S 75F .~'—
[<5] D K
e N | £
8 5 S 5 —
— - -
o o
G.JI 25 — G)I 25 Fﬂfﬂ;
s <
T 0 ' T et
- 0 1% 25 37/ 5 0O 0 1% 25 37 5

omega omega

@_ (b)

<

<

o 10 T T T

<

S 15 .

[<5]

&

S sf .

—

o

CDI 25 it

-

T 0 e

a 0 1% 25 375 5

omega

(c)
Figure 23. Plots of A,,. Solid line: @ =1.9. Dot line: a = 1.6. (a) For @, = 1. (b) For @, = 5. (c) For @, = 10.

Note 6.2: A, =0 for @ = 2. As a matter of fact, a fractional oscillator in Class I reduces to a

harmonic one if a = 2. Accordingly, A,,=0 in that case.
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6.3. Free Response to Fractional Oscillators in Class 11

We state the free response to a fractional oscillator in Class II by Theorem 11.

Theorem 11 (Free response II). Denote by X,(t) the free response to a fractional oscillator of Class II type.
Then, it is, for t 20 and 1 < < 2, in the form

2?0 sin? P7
o, |1- 2 ¢
4[m —cw”? cosﬂzﬂjk
X, COS
c
\/(1—@” oS 'Bﬁj
m 2
cw’sin pr
V,, + X
co,0P™ sinP% 20 20
DR Z(m —co’ % cos ’Hﬁj
1-—P? cos=~ 2
X(t)=e ™ + 3 (176)
c2w*# Y sin? 7”
w, [1- i
4(m —cw”? cosj k
2
c2w*# Y sin? pr
w, 1- ,6% t
4(m —co”? coszﬂjk
sin
c
(1—@”2 cosﬂ”)
m 2
Proof. Note that, for t >0,
. Voo +Co @, X
Xz (t) —e Geq2@eqn 2t [Xzo coS weqd,zt + %Sm weqd,zl}' (177)
eqd,2

In the above expression, we replaceg,,, @, ,, and @,

egn,2
have (176). Thus, Theorem 11 holds. o
Note 6.3: If § = 1,X,(t) degenerates to the ordinary free response to an oscillator with the

by those expressed in Section 5. Then, we

viscous damper c. In fact,
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_ . T
c2w*? P sin? pr

o |1- t

4(m —co’? cosﬁzﬂjk

X, COS
C _ /4
1- S o2 cos P7
m 2
4. PBr
co” 1sm'g—
g’ smﬂ—zﬂ V20 + 52 ﬂﬂ- XZO
DV 2| m—cw” " cos—
(‘[)| e I_Ew cos=> N 2
X2 =
= 2 2(B-1) i 2 P
Cw SIn® ——
o (1-

4(m cw’ 2cosﬂzﬂj

1y - T
2P gin? B

o [1- t

4(m —co”? cosﬁzﬂj k

\/(1—0) cosﬂ”j
m 2
Vo + 2 x
2 20 T, "0 2
=e | x,, COS a)M/l— C ]+ 21N a)mll—c—t
4mk \/1 2 4mk
a)n

sin

4mk

V, + G0, X
=g 5! XZOCOS(a)n l—gzt) ORI ') sm( 1—g2t).
o f1-¢°

Note 6.4: As far as a fractional oscillator in Class II was concerned, its free response in the
closed form is rarely reported. Theorem 11 gives it by using elementary functions.
Letm=c=k= x,=V,=1 and w=30. We use Figure 24 to illustrate x,(t).

2 T T 2 T T
1.25
=
N—r
N 0.5
X
-0.25
-2 | | -1
0 10 20 30
t t
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1.25

0.5

x2(t)

-0.25

I I
Hilte —
I
!
_'[ll -
[k S —
Y -
I I
0 10 20
t
()

30

1.25

0.5

x2(t)

-0.25

47 of 106

(d)

30

Figure 24. [llustrating free response X, (t) with fixed @ whenm=c=k=x,=v,; =1. (a) f=0.3. Solid
line: w =30 (G, = 0.02). Dot line: w =10 (6., =0.05). (b) =0.6. Solid line: @ =30 (5,, =0.10). Dot
line: w =10 (g, = 0.16). (c) f=0.9 Solid line: w =30 (5., =0.35). Dot line: w =10 (g,,,=0.40). (d) f=1.
Solid line: w =30 (6,4, = 0.50). Dot line: @ =10 (g,,, =0.50).

Similar to X (t), X,(t) is also with the argument w. Its plots with variable w are demonstrated

in Figure 25. Figure 26 shows its plots in t-w plane.

x2(t)

1.25

0.5

x2(t)

-0.25

225

(c)

30

1.25

0.5

x2(t)

-0.25

1.25

x2(t)

0.5

-0.25

Figure 25. Plots of free response x,(t) withw (=1,2,..,5), m=c=k=1= x,=Vv,,=1. (a)For=02
(0.04< ¢, <0.70). (b) For §=0.4(0.12< ¢,,, <0.67).(c) For =0.6 (0.22< ¢,,, <0.63).(d) For §=0.8

(035< ¢, <0.57).

X2

X2

(b)
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20
10
'Elj

X2 X2
(©) (d)
Figure 26. Plots of free response x,(t) in t-w plane withm=k=x,=v,; =1,¢=0.5,fort=0,1, ..., 30; w
=1,2,..,5.(a) =03 (0.04< ¢,,, <0.15). (b) f=0.6 (0.11< g, <024).(c) =09 (021< g,,, <0.26).

(d) =1 (g, =0.25).

Corollary 11 (Decrement II). Denote by X, (t) the free response to a fractional oscillator in Class 11. Then, for

0 < B <1, its logarithmic decrement A, is in the form

eq2?

5 ¢’ sin sz
Ay, = i 2
eq2 2 c . b :
co’sin —ﬁz i \/1_m“’ cos™- (178)

1—

\/1—Ca)'“ cos P
m 2

Proof. According to (174), we have

Xz(ti) _ Zﬁgeqz

%) g2, (179)

Replacing the above ¢,,, with that in (145) produces

A, . =1In

eq2

pgin BT
A 276 0r ) o cw” 7 sin )
eq2 2 - 2
\/1_geq2 wﬂflsin@ \/1—Ca)ﬂ2 COS%
. q 2 m
\/1—Ca)'“ cos&
m 2

This finishes the proof. o

Similar to A, we may write A, with A,,(w,f). Figure 27 indicates its plots.
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Figure 27. Logarithmic decrement A, of fractional oscillator in Class II for m = ¢ = 1. Solid line: § =

0.9. Dot line: g =0.6. (a) For w,= 1. (b) For @, = 5. (c) For @, = 10.

Note 6.5: A, reduces to the conventional logarithmic decrement if § =1, because
2mce” ™ sin pr
2
\/l—ca)/” cos P
A _ m 2 __2xg
eq2 p-1 - D - 5" (180)
. pr 1-¢
¢’ sint =
1— 2
\/ — £ a)/j—Z COS&
m 2

6.4. Free Response to Fractional Oscillators in Class 111

We now present the free response to a fractional oscillator in Class III by Theorem 12.

Theorem 12 (Free response III). Let X, (t) be the free response to a fractional oscillator in Class I11. Then, for
t20,1<a<2,0<B<1,itis given by
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2
4 . QT 1 - T
me® ™ sin—— + caw” 15|nﬂ—
2 2
w, 11— t

4{—(mw“‘2 cosa—;Z +cw’? cos ﬂzﬂ) k}

X4 COS
_ an C _ T
—| @* % cos ==+ — P2 cosﬁ—
2 m 2
4 .. arn 1 - T
mo* 1sm7+ cw’tsin %
mo™ Lsin %% e LsinPZ Va + ar ﬁﬂ' X3
2 2 + -2 -2
ZEmm"’z cos 2| _cwP? cosﬂ—”] l 2 ( Ma)™™ cos 7 Bl Ca)ﬁ cos Zj
2
X (t)=e + : (181)
wn
_ an C _ T
®® % |cos = |-~ & zcosﬁ—
2 m 2

2

a p 2
mo®*sin&" e’ tsin X
2 2
]__
4{

o ar _ /4
—[mw 2 cos7+cwﬂ 2 cosﬂjk}

2

(mw“ sin &% 4 co’sin ﬂ”)
— 2 2 1t
4{—(mw“ cos% +cw” % cos ﬂzﬂj k}

o an C _ T
—| @ Zcos—+—a/”cos’6—
2 m 2

sin

Proof. Note that, for t > 0,

Vio 1 Ceq3@e

weqd 3

X
—Geq3@eqn 3t qn,37°30 -
X, (1) = g "ostne (Xm cos a)eqd,st + sin a)equStJ. (182)

In (182), when substituting Soqar Wead3, and wens with those explained in Section 5, we have

(181). The proof finishes. o

Note 6.6: If (a, f) = (2, 1), x,(t) returns to be the free response to an ordinary oscillator with the

viscous damping. As a matter of fact,

V. + )
X, (t)|a:2ﬁ:1 =gt (xgo oS @, t +%wnx3°sm a)dt], (183)
d

where @, = a,/1-¢°.
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Figure 28 indicates x,(t) form=c=k= x,=V,, =1.

15 T T T 15 T T T
113 .
= E .- |
R < oR
0.38 .
_ | | |
05 0
0 25 5 75 10 10
t t
(a) (b)
1 T T T 2 T T T
0.63 [ - 125 ?\ .
N} : R A
— o™ 5F ) —
-013 |- - . -
05 | l l . | l |
0 25 5 75 10 0 25 5 75 10
t t
(0) (d)

Figure 28. Plots of free response x,(t) form=c=k= x,=V,=1. Solid line: w =1.1. Dot line: w = 1.5.
(@) a=18, =08 (gps =0.78). (b) a =15, =08 (5,05 =1.33).(c) ¥=18, =03 (5,5 =091).(d) =2,

B=1(6es =0.50).

Note that the plots regarding with x,(t) in Figure 28 are with fixed w. However, actual x,(t)
is frequency varying. Figure 29 shows its frequency varying pictures in time domain and Figure 30

in t-w plane.

2 T T T 15 T T T
1.25 — 1.13 —
— ~
= =)
& 05 4 & on -
< X
-0.25 - ] 0.38 =
-1 | | | 0 | |
0 5 10 15 20 0 5 10 15 20
t
(b)
1 2 T T T
0.63 1.5 .
g 05 g 05 .
-0.13 -0.25 [ -
-05 -1 | | |
0 5 10 15 20
t t
(c) (d)

Figure 29. Free response X,(t) with variable w (=1, 2, ..., 10) form=c=k=1.(a) a=1.9, =08 (5,3 =
0.66). (b) a=1.5,=0.8 (Gps =1.33).(c)a=1.8,=03 (6,3 =0.91). (d) @=2, =1 (5,3 =0.50).
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X3 X3
() (d)
Figure 30. Free response X,(t) in t-w plane withm=k= x,=v,;=landc=0.1fort=0,1, ..,30; w =
1,2,..,5 (@a=18=08(021< ¢, <0.72).(b)a=18,=05(0.20< ¢,; <0.70).(c)a=1.55=0.8
(049< ¢, <1.49).(d) @=2,B=1(5,3 =0.05).

Corollary 12 (Decrement III). Denote by x,(t) the free response to a fractional oscillator in Class I1I.

Then, for 1 <a <2 and 0 < B <1, its logarithmic decrement, denoted by A, is given by
ﬂ(a)‘“ sin 2% 26m,0"*sin ﬂ”)
2 2
o, \/—(m“ cosa—; +2¢,0" % cos ﬂzﬂj
Aeq3 = 2 (184)

pr

L.oan o
" ls|n7+2ga)na)ﬁ 1sm7

1—
20, \/—[a}“ cosa—; +2¢m,0" % cos ﬁzﬂj

Proof. Note that

—In X3(ti) _ Zﬁgm

Ay = = .
) et (185)

Replacing the above ¢, with that in (147) yields (184). This completes the proof. o

When a =2and g =1, A=A (@, f) becomes the conventional logarithmic decrement. In

fact,
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ﬁ(a)"l sin a—zﬁ +2¢0,0" sin ﬂzﬁj

, \/—(a)a'z cos % +2¢0,0" % cos ﬁzﬂj
Accs|p g por = = : (186)
pr

. ar 1 s
o 1sm7+2gwna)/’ 1sm7

20, \/—(a)‘” cos a—zﬂ +2¢w,0" 7 cos ﬂzﬂj

1—

a=1,p=1

As Ay is a function of w and (a, ), we write it by Ay (w,a, p). Figures 31 and 32 show its

plots.
o
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<
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Figure 31. A,;(w,a,f): Logarithmic decrement of fractional oscillator in Class III for m = c =k =1. (a)
Solid line: « =1.7, =0.8. Dot line: « =1.7, f=0.5. (b) Solid line: « =1.8, =0.8. Dot line: « =1.8, f=0.5.
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Figure 32. A, (w,a,p)for m=c=1, k=25. (a) Solid line: @ = 1.7, = 0.8. Dot line: a = 1.7, $ = 0.5. (b)
Solid line: # =1.8, $=0.8. Dot line: # =1.8, =0.5.

6.5. Application to Representing Generalized Mittag-Leffler Function (1)

The previous research (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7)) presented
the free response to fractional oscillators of Class I type by using a kind of special function, called
the generalized Mittag-Leffler function, see (32). The novelty of our result presented in Theorem 10
is in that Equation (172) or (173) is consistent with the representation style in engineering by using
elementary functions. Thus, we obtain novel representations of the generalized Mittag-Leffler
functions as follows.

Corollary 13. The generalized Mittag-Leffler function in the form

X() = XoE, o[ (@) [+WlE, ;| (@) |, 1<a=<2t>0, (187)

is the solution to fractional oscillators in Class I (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter
7)). It can be expressed by the one in (172). That is, for 1<a <2,t >0,
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Xl(t) = XiOEa,l [_(wnt)a]+vlotEa,z [_(wnt)aJ

X,o COS

e | (188)

sin
-2 ar
@ COS—
2
The proof of Corollary 13 is straightforward from (172).
Whenv,,=0in (187), we obtain a corollary below.
Corollary 14. The generalized Mittag-Leffler function given by
%, (t) = X,E, . [—(a)nt)a] l<a<2,t>0, (189)

can be expressed by the elementary functions, for 1 <a <2, t >0, in the form

X(0) =B, ~(art)" | =e (190)

2
4,

ar
COS ——
2

Proof. If v,;= 0 in (187), (188) becomes (189). The proof completes. O
If x,,= 0 in (187), we obtain another corollary as follows.

Corollary 15. The generalized Mittag-Leffler function expressed by
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X () =VilE, ;[ (1) | 1<a<2t>0, (191)

can be represented, for 1 <a <2, t 2 0, by the elementary functions in the form

_wsina—zﬂt
a 2cosa—” vV, )
X, () =thEa,z[—(wnt) J=e 2 = sin (192)
w” sin? %
1 2
4y cosm‘
2

Proof. When x,,= 0 in (187), (188) becomes (192). The proof finishes. o

7. Impulse Responses to Three Classes of Fractional Oscillators

In this section, we shall present the impulse responses to three classes of fractional oscillators
using elementary functions.
In Section 4, we have proved that

H(@w)=H,(®), j=1 2, 3,

where H (@) is the frequency response function solved directly from a jth fractional oscillator
while H,(®) is the one derived from its equivalent oscillator. Doing the inverse Fourier transform

on the both sides above, therefore, we have

hy®=h,®),j=12 3

where h,(t) is the impulse response obtained directly from the jth fractional oscillator but h,(t)

is the one solved from its equivalent one. In that way, therefore, we may establish the theoretic
foundation for representing the impulse responses to three classes of fractional oscillators by using
elementary functions.

The main highlight presented in this section is to propose the impulse responses to three
classes of fractional oscillators in the closed analytic form expressed by elementary functions. As a
by product, we shall represent a certain generalized Mittag-Leffler functions using elementary
functions.

7.1. General Form of Impulse Responses

Given a following functional form of equivalent oscillators for finding their impulse responses,
we denote by h;(t) the impulse response to the equivalent oscillator in Class j in the form

thj(t) dh, (t) i
Mg e + Coq o +kh; (1) =o(t), j=123 (193)

Rewrite the above in the form

d*h (@) c. dh(t) K s©) .

eqj eqj eqj

According to the results in the previous sections, we have
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d’h, (1) dh, (1) 50
dtJZ + 2g9qj Wegn, j (;t + a)ezqn,j hj (t) = qu’ =123 (195)
Therefore, functionally, we have
—Geqj Peqn, jt
hy(t)=———sina,, t, t=0. (196)
ogj Peqa, |

Equation (196) is a general form of the impulse response to fractional oscillators for Class j (j =
1,2, 3). Its specific form for each Class is discussed as follows.

7.2. Impulse Response to Fractional Oscillators in Class |

Theorem 13 (Impulse response I). Let h (t) be the impulse response to a fractional oscillator in Class I.

Then, for t 20 and 1 < a <2, we have

B (usinw—zﬁt
ZCOSal .
e sin
h() = as7)
mao,
Proof. From (196), we have
—Geq1@eqnat
h(t)=———sinw,.t, t>0. (198)
eqla)eqd 1

aswell as w

When replacing m wna  With those in Section 5,

by that in Section 4, ¢, and @

eql eqd,1

respectively, we obtain

sin
—Geq1@eqn 1t
h(t) = ———sin@,,,t=
eql“Yeqd 1 an
_ ar [0}
"’ cosz‘m n - 2
[0%/2
a)a—Z Cosﬂ 4(0n2 COS——
2 2
0 sin2 2%
w, 1= 2 ¢
wsin®® 40} cosﬂ‘
2 tsin 2
2 cosa—; \/wa*Z cosﬂ‘
e 2
. ar
o ®* sin? ==
ma,  |o*|cos ‘ 1-

2
4]

arn
Ccos ‘
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This finishes the proof. o

58 of 106

Figure 33 shows the plots of hi(t), where the oscillation frequency w is fixed. Note that w is an
argument of hi(t). Therefore, its pictures in time domain are indicated in Figure 34. Figure 35

indicates its figures in t-w plane.
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Figure 33. Plots of impulse response h, (t) with @, = 1. (a) a = 1.9, solid line: w =1 (g,,, = 0.08); dot line:
@ = 0.7 (6o = 0.04). (b) @ = 1.6, solid line: w =1 (g, = 0.33); dot line: @ = 0.7 (G, = 0.19). (c) a =1.3,
solid line: w =1 ( 6,y = 0.66); dot line: @ = 0.7 (g, = 0.42). (d) a =2, solid line: w =1 (g, = 0); dot line:

=0.7 (G = 0).
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Figure 34. Plots of impulse response h,(t) for w,= 5, w =0, 1, .., 5. (a) For & = 1.8 (0 <¢,,, < 0.57).
(b) For a=1.5 (0<¢,,, £0.94). (c) For a =1.3 (0 <, <1.07). (d) For a@ =2 (5, =0).

hl hl
(a) (b)
Figure 35. Impulse response h,(t) in t-w plane withm=1, »,=03fort=0,1,..,30;w=1,2,..,5. (a)a
=19 (0.26 <, £5.58). (b) @ =2 (g, = 0).

Note 7.1: The impulse response h(t) reduces to the conventional one if @ = 2. In fact,

. an
wsin—
2

t

ar
2|cos—|

2

e sin

1 .
= sina,t. (199)

h),, =

7.3. Impulse Response to Fractional Oscillators in Class 11

Theorem 14 (Impulse response II). Denote by h,(t) the impulse response to a fractional oscillator in
Class 1I. For t 2 0 and 1 < < 2, therefore, it is given by
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Proof. From (196), we have

_ 1 .
h,(t) =e == — = sing,,,t, t=0.
meqza)qd 2

By replacing m,, with thatin Section4, ¢,,, @

s’ 5|nﬁ o,
1-C - zcosﬁ” 1-C P Zcosﬂ”
e sinam, t e = = 2 sina,, ,t
h (t) — q — qd,
h
Meqo Vs 2 [m —co’? cosﬂ”ja)e 6.2
2 qd,
. T
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=€
(m co’ 2cos 0?7 sin? = pr
c -z pr
\/1— — cos cos—-
m 2
2P gjn2 P Br
. o 2
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1-C o2 cosPZ 2
=g M m
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2
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This is (200). Hence, the proof completes. o
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(200)

(201)

on2» and @, , by those in Section 5, we obtain

Figure 36 illustrates h,(t) with fixed w. Its plots with variable w are shown in Figure 37. Its

pictures in t-w plane are indicated in Figure 38.
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Figure 36. [llustrating impulse response h,(t) for m=c=k=1. Solid line: w = 30. Dot line: w = 10. (a)
B=0.3, solid line: @ =30 (¢, =0.02); dot line: w =10 (5, =0.05). (b) f=0.6, solid line: w =30 (5, =
0.10); dot line: w =10 (g, =0.16). (c) f =0.9, solid line: w =30 (g, =0.35); dot line: w =10 (g, =
0.40). (d) g =1, solid line: @ =30 (5,4, =0.50); dot line: @ =10 (g, =0.50).

0.63

0.25

h2(t)

-0.13

-0.5

(a) (b)

(©) (d)
Figure 37. Plots of impulse response h,(t) with variable w for m=c=k=1 in time domain. (a) For =
063, w=1,2,.,5(024< ¢, <£0.62). (b) For f=0.63, w=1,2,..,10(0.18 < 5., <0.62). (c) For g =
083, w=1,2,..,5(037< ¢, <0.56).(d) For =0.83, w=1,2,..,10(0.33< ¢, <0.56).
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h2 h2
(c) (d)
Figure 38. [llustrating impulse response h,(t) in t-c plane form=c=k=1witht=0,1,..,50;,w=1, 2,
. 5.(a) =03 (0.08< ¢, <0.69).(b)B=06(022< ¢, <0.63).(c) =09 (043< ¢,,, <054).(d)B=
1 (6o, =0.50).

Note 7.2: The impulse response h,(t) reduces to the conventional one if § = 1. As a matter of

fact,
i gmna)ﬂ’lsinﬁ—” i
_ 2 2 2p-)) oi2 P
1730)”’%05&t . s ¥ Psin 7
e m 2 sinw, [1- c ﬂ;;t
1-—w??cos 2>
m
hz (t)|ﬂ:1 =
¢*0*P P sin’ pr 202
C 4 T
a)nm\/l—a)ﬂ 2cos 71— . g (202)
_ T
m 1-— @’ % cos ==
m 2
L dp=1
efgwnt .
=————sinm,\1-¢’t.

mao, \1-¢*

7.4. Impulse Response to Fractional Oscillators in Class 111

We present the impulse response to fractional oscillators in Class III with Theorem 15.

Theorem 15 (Impulse response IIl). Let h,(t) be the impulse response to a fractional oscillator in Class
Il Fort>=0,1<a<2,0<p<1,itisin the form

m(u"’lsinO’—Z”Jrcwﬁ’lsin/1—2’r

2\/—(mw”’2 cos%rﬂwﬂ’z cosﬂ—zﬂ)k .
(1) = e SIN @,gq 5t , (203)

_ (07,4 _ T
—[ma)a 2cos——+ca’ 2cosﬂ)a)eda
2 2 qa,

eqn,(it
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where

a,

eqn,3 =
_ an Cc _ T
—| @ ?cos "=+~ & Zcosﬁ—
2 m 2

and

2
wd - QT 4 . B
1) 1sm—+0a)‘”smﬁ—
2 2
w, 11—

4{—[ma)“ cos% +cw” % cos ﬁzﬂj k}
a)eqd,S =
—[a)“ c0s %% + & w2 cos ’B”J
2 m 2

Proof. With (196), we get

h3(t) — e’geqsweqngt ;S'n a)eqd,3t’ t> 0 (204)

eq3a)eqd 3

In the above expression, substitute m,, with the one in Section 4, ¢,.;; @g3) D

by those in
Section 5, respectively, we have, for ¢ >0,
me®Lsin%E o LsinBE
2 2

ZJ—(mw“’z cos“—;wwﬂ’z cosﬁ]k

@gqn 3t

SIN @4 5t

€
hs (t) =
Meo™ 2 ar p-2 pr
—| mo*? cos—+Cca’ ? c0S— | @,y 5
2 2 qd,

The right side on the above is (203). Thus, the proof completes. o

The plots of hy(t) with fixed w are shown in Figure 39, with variable w in Figure 40, and in t-w

plane by Figure 41.
2 | | | T | T
~—~ l B ]
@
e
| |
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Figure 39. Impulse response h,(t) for m=c=1, k=25 (w,=5). (a) (o, p) = (1.8, 0.3), solid line: w =2
(Gegs =0.03); dot line: w =1 (6,3 =0.02). (b) (@, p) = (1.5, 0.8), solid line: w =2 (g,,; =0.20); dot line: @
=1 (6us =0.10). (¢) (a, B) = (1.8, 0.5), solid line: w =2 (5., =0.05); dot line: w =1 (¢,,; =0.02). (d) (a,
B) =(2, 1), solid line: w =2 (g,,; =0); dotline: w =1 (g3 =0).

1 T T T
0.63 —
=
& 025 -
e
-0.13 -
05 | | |
0 1 2 3 4
t t
(a) (b)
1 T T T
0.63 -
S o .
e
-0.13 | -
05 | | |

(c)

Figure 40. Impulse response h,(t) to a fractional oscillator in Class IIl for m=c=1, k=25 (@, =5).

(@) (a, p)=(18,08), w=1,2,..,5(0.09< ¢, <0.45).(b) (a, f)=(15,08), w=1,2,..,5(009< ¢, <

0.20). (¢) (@ p)=(1.3,0.8), w=1,2, .., 5 (048 < G,i; <0.67).
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Figure 41. Impulse response to a fractional oscillator in Class III in t-w plane form=c=1, k=25 (@, =
5 witht=0,1,..,30;w=1,2,..,5 (a)a=1.8, =08 (0.09< ¢,; <0.45). (b)a=1.8,5=04(0.07<g,;
<0.15). (c)a=15,6=08(033< g,y <091).(d)@=2,=1(G,; =0).

Note 7.3: The impulse response h,(t) degenerates to the conventional one when o =2 and g =
1. Indeed,

. ar .
mo® 1sm7+cw/’ Lsin

2. Mo 2 c0s % 1cah? cosPZ |k
e 2 2

br
2
st

eqn,
sin a)eqd,3t g ot
h3(t)|a:2,[f:1 = = Sin a)dt. (205)
a-2 ar p-2 pr Ma,
—| Mo cos 7 + Cw Ccos 7 Ct)eqd 3

L da=2,p-1

7.5. Application to Represetenting Generalized Mittag-Leffler Function (2)

The impulse response to fractional oscillators in Class I by using the generalized Mittag-Leffler
function is in the form (Uchaikin ([38], Chapter 7))

h(t) =t*E,, [_(a;nt)“], l<a<2t>0. (206)
In this section, we propose the representation of (206) by elementary functions.

Corollary 16. The generalized Mittag-Leffler function in the form (206) can be expressed by the elementary
functions in Theorem 13, for 1 <a <2 and t 2 0, in the form

(207)

The proof is straightforward from Theorem 13 and (206).
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8. Step Responses to Three Classes of Fractional Oscillators
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In this section, we shall put forward the unit step responses to three classes of fractional
oscillators in the analytic closed forms with elementary functions. Besides, we shall suggest a novel
expression of a certain generalized Mittag-Leffler function by using elementary functions.

8.1. General Form of Step Responses

Denote by g,(t) (j=1, 2, 3) the step response to a fractional oscillator in the jth Class. Then, it

is also the step response to the jth equivalent oscillator. Precisely, g;(t) is the solution to the jth

equivalent oscillator expressed by

{mem»g',» (t)+C,y 0, (1) + kg, (t) =u(t)

i=12,3.
0,0-0g0=-0 ° J7+?3

The solution to the above equation is given by

~Geqj Veqn, j

t
1
9, = [ (D)dr = | 1-

cos(m t—¢;) |, J=123,

where

8.2. Step Response to a Fractional Oscillator in Class I

(208)

(209)

(210)

Theorem 16 (Step response I). Let g,(t) be the unit step response to a fractional oscillator in Class 1. For t

>0and 1<a <2, itis given by

1
t)==|1- ,
9,(t) " -
D i ar
- SIin—
2

ar
2w, |—C0s >

where

(11)
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¢ =tan* —geqlz =
1_geq1

Proof. Note that
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1—
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2 o orn
®?sin
2
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20, cosz‘
tan™* :
2
a
5 i AT
®?% sin—
_ 2
ar
2w, ||cos——
~Geq1@eqn it
— 05 (0,1~ ;) |
1_geq1

Substituting ¢, with the one in (141) into the above produces

e’geql”)eqn,lt Cos(a)eqd,lt _ ¢1) ~

1
t)==|1-
g,(t) ”

\/1_ gequ

and @

Replacing O a1

finishes. o

|
|~

€
1-

a
2 ain O
@< SIN—

72,%"'1[
2w, —cos%
v COS(@yq L — ¢, )

2

a
> i ar
®?sin—
o 2
arn
2w, —cos7
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12)

(213)

(214)

with those in Section 5 in the above yields (211) and (212). The proof

Figure 42 shows the unit step response g¢,(t) with fixed oscillation frequency w. Note that

0,(t) takes w as an argument. Thus, we use Figure 43 to indicate ¢,(t) with variable w in time

domain. Its plots in t-w plane are shown in Figure 44.

15 —
12
€ 0.9
—
D 06
0.3
L
0 0 12 24
(a)
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16 —
e 1.2 —
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H .
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g S
(@)] (@)]
t t
(c) (d)

Figure 42. Unit step response g,(t) to a fractional oscillator in Class I with fixed w form=k=1. (a) a
=1.3, solid line: w =1 (g, =0.66); dot line: w = 0.7 (5., =0.52). (b) a = 1.6, solid line: w =1 (g,, =
0.33); dot line: w = 0.7 (g, =0.25). (c) a = 1.9, solid line: w =1 (¢, = 0.08); dot line: @ = 0.7 (6., =
0.06). (d) a=2 (g, =0).

2 T T 1 2 T T 1

1.6 — 1.6 —
€ 1.2 — 8 1.2 —
— I — —

D 08 — o 08 ]

0.4 — 0.4 —

0 [ R 0 L1
0 12 24 36 48 60 0 12 24 36 48 60
t
(a) (b)
2 R — 2 I . —

1.6 — 1.4 —
= 12 - &= o8 -
N p—

— - —
(S 0.8 — o 0.2 —

0.4 — 04 .

0 (I I 1 L1 1
0 12 24 36 48 60 0 12 24 36 48 60
(0) (d)

Figure 43. Step response g, (t) to a fractional oscillator in Class I with variable w for m=k=1. (a) a =
13, 0=1,12,14,.,5(0.66< ¢ <188).(b)a=15w=1,1214,.,10(0.66< ¢, <2.95).(c)a=
17, 0=1,12,14,..,10 0.08< ¢, <0.36).(d)a=19,w=1,1.12, 1.14,..,10 (0.08< g, <0.70).
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Figure 44. Step response g, (t) to a fractional oscillator in Class Iin t-w plane form=k=1, =0, 1, ...,
5.(@a=190< ¢, <036).(b)a=16(0< ¢,, <1.18).

Note 8.1: If =2, ¢,(t) reduces to the conventional step response with damping free. In fact,

x|+
[E=Y
|
|~

o), _, = (1-cosapt), (215)

and

¢1|a:1 =tan™

(216)

a=2

8.3. Step Response to a Fractional Oscillator in Class 11

Theorem 17 (Step response II). Denote by g, (t) the unit step response to a fractional oscillator in Class
II. It is in the form, for t 20 and 0< <1,
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Proof. Substituting ¢, with thatin Section 5 into the following expression

1
t)=—|1-
g,(t) ”

yields

—Geq2@eqn 2t

co”sin

1 of2 cos 7
m 2

T 2 COS( Deqq, Zt ¢2)
1 gqu

pr

@egn 2t

1 e
QZ(t):E 1- COS( eqdzt ¢2) :
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1- € o2 cos P
L 2 J

On the other side, replacing o

eqn,2

by the one in (135) in the above results in
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Finally, substituting @,,, by that in (157) in the above produces (217) and (218). Hence, we finish

the proof. o

We use Figure 45 to indicate ¢,(t) with fixed w. When considering variable w, we show

g,(t) in Figure 46 in time domain and Figure 47 in t-w plane.

2 T T
15+ o
—
o 1 —
)
0.5 —
0 | |
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t
(a)
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113 =
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~ 075 n
(@]
0.38 —
0 | |
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t
(0)

2 T T
15+ —
=
N 1+
(@]
0.5 —
0 | |
0 10 20 30
t
(b)
15 | |
113 —
e
N 075+ —
o
0.38 —
0 | |
0 10 20 30
t
(d)

Figure 45. Step response g,(t) to a fractional oscillator in Class II with fixed w form=c=k=1. (a) f =
0.3, solid line: w =20 (g,,; = 0.03); dot line: w =5 (g, =0.08). (b) f =0.6, solid line: w =20 (g, =
0.12); dot line: w =5 (G, =0.22). (c) $=0.9, solid line: w =20 (g,,, =0.37); dotline: w =5 (g,,, =0.43).
(d) =1, solid line: w =20 (g, =0.50); dot line: w =5 (,, =0.50).
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Figure 46. Step response ¢, (t) to a fractional oscillator in Class II with variable w for m=c=k=1. (a)
=03 0=1,2,.,5(0.08< ¢, 0.69).(b) =03, w=1,2,..10(0225¢,,<0.63).(c) =09, w=1,2,
. 5(043< ¢, <054).(d)p=09,w=1,2,..,10(040< ¢, <0.54).

(a) (b)

l}'}?“i’ o

4 ,ﬂ'fff i

EGEY: l,’;(é"k/
“y

o X

8

92 92
(© (d)
Figure 47. Step response g,(t) in t-w plane for m=c=1and @,=0.3 (k=0.09), with{=0,1, ..., 30, w =
1,2,3,4.(a) =03 (0.09< ¢, <0.69). (b) =06 (024< 5, <0.63). (c) f=0.9(0.44< ¢, <0.54).
(d) B=1(6, =0.50).

Note 8.2: When =1, 0,(t) turns to be the ordinary step response. As a matter of fact,

efgweqr\zt

1
gz(t)|ﬂ_l=E{l— - cos(con 1—g2t—¢2)},

(221)

where
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8.4. Step Response to a Fractional Oscillator in Class 111

Theorem 18 (Step response III). Let Q,(t) be the unit step response to a fractional oscillator in Class III.

It is in the form, for t 20, 1<a <2, and 0<f <1,
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(222)

(223)

(224)
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Proof. Replacing ¢, by that in (147) on the left side of the following produces the right side in the
form

1 o3 ot
95 (t) ZE l_ﬁcos( eqa 3t~ ¢3)

1 .. an 1 .
mo® 1S|n7+cw/’ Lsin
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2
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2

4 . ar 1. T
mo® 1sm7+cwﬂ 1smﬂ—

1_
2\/—(ma)“ cosa—;+c " 2cosﬂ”j

Further, replacing a,,,; with the one in (137) in the above yields
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2 t
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T
mew® Lsin 2 5 7 vcol” 15|nﬂ—

Z(m(u“’2 cos 22| 2 —co’” 2cosﬂ”]

1 1- € ? COS( Wpgq st = ¢3)

= |
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4 ... arn 1 -
ma*“ 1SIn7+Cwﬂ sin

2\/—(ma)‘”‘2 cos% +cw” % cos '82”) k

pr
1 2

Finally, considering a,,, expressed by (160), we have (223) and (224). Hence, the proof finishes. o

Figure 48 illustrates g,(t) in time with fixed w while Figure 49 is with variable w. Its
illustrations in t- plane are shown in Figure 50.
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Figure 48. Illustrating step response ¢,(t) with fixed w form=c=1, k=25 (®,=5). (a) (a, ) = (1.8,
0.8), solid line: w =1 (g3 = 0.13), dot line: @ =2 (6,3 = 0.05). (b) (&, B) = (1.5, 0.8), solid line: w =1
(Geqs =0.33), dot line: w =2 (g.4s =0.15). (c) (a, B) = (1.3, 0.8), solid line: w =1 (5,3 =0.49), dot line: w
=2 (Gos =0.24). (d) (@, B) = (1.8, 0.5), solid line: w =1 (g, =0.09), dot line: w =2 (g,,; =0.03). (e) (a,
B)=(2, 1), solid line: w =1 (g,; =0), dotline: w =2 (g3 =0).
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1.13 [l —

0.75 - —

g3(t)

0.38 I -

0 2.5 5 7.5 10

(c)
Figure 49. Demonstrating step response g,(t) with variable w (=1,2,..,5)form=c=1,k=25(w,=

5). @) (@, B) = (1.8,0.8) (0.13< ¢,;; <1.22).(b) (&, f)=(1.5,0.8) (034 < ¢,,; <0.91).(c) (&, ) =(1.3,0.8)
(049 ¢,y <1.14).

(0) (d)

Figure 50. Illustrating step response g,(t) in t-w plane form=c=k=1, witht=0,1,..,30,w=1,2, ..,
5.(a) (a, B)=(1.8,0.3) (0.05< g3 <0.10). (b) (a, p)=(1.8,0.5) (0.09 < ¢,; <0.20). (¢c) (&, ) =(1.5,0.6)
(0.25< ¢, <0.55).(d) (@, B)=(2,1) (049 < G5 <0.96).

Note 8.3: For (a, f)=(2, 1), g,(t) reduces to the conventional step response. Indeed,

()| L e cos( @, y1-gt— 4| )
9s a2p1" \/]? (a)n st=¢, a=2,p-1] | (227)

where
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1 . QT 1.
ma® ™ sin —— + cw”*sin

2 —(ma)“‘2 cos 2% 1+ cw’? cos 'Bﬁjk
o 2 2
¢3|a:2,ﬁ:1 =tan >

pr

pr
2

(228)

4 .- ar 1 -
me® 1sm7+Cw” sin

2\/—(ma)“2 cosa—; +cw’? cos’Bzﬂ) k

1—

a=2,p=1

8.5. Application to Represetenting Mittag-Leffler Function (3)

The step response to fractional oscillators in Class I by using the generalized Mittag-Leffler
function is in the form (Uchaikin ([38], Chapter 7))

0,(t) =t"E, ,.s [—(a)nt)a ] l<a<2,t=0. (229)

In the following corollary, we propose the representation of (229) by elementary functions.

Corollary 17. The generalized Mittag-Leffler function expressed by (229) can be represented by using the
elementary functions described in Theorem 16. Precisely, for t > 0 and 1 < a <2, we have

tE, . [—(a)nt)“] :% 1- , (230)

where ¢, is given by (212).

Proof. The left side of (230) equals to g,(t) following Theorem 16. According to (229), therefore,
(230) holds. This completes the proof. o

9. Frequency Responses to Three Classes of Fractional Oscillators

We put forward frequency responses to three classes of fractional oscillators in this section.
They are expressed by elementary functions based on the theory of three equivalent oscillators
addressed in Section 4.
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9.1. General Form of Frequency Responses to Three Classes of Fractional Oscillators

Denote by H;(w) the Fourier transform of the impulse response h;(t) to a fractional
oscillator in Class j (j = 1, 2, 3), where h;(t) is given by (196). Then, it is the frequency response

function to a fractional oscillator in Class j (j =1, 2, 3).
In fact, doing the Fourier transform on the both sides of (195) produces

. 1
(—a)2 F126, Oy jO+ a)ezqn’j ) H(0)=—. (231)
meqj
Thus, we have
1 1
Hj(a)):m (a;z -0’ +i26,,0 a)): * o | (232)
eqj eqn, j eqj “eqn, j 2 .
qj \ Pean, j qj Peqn j mequeqn’j[l_z-Hzgeqj J
ean, j ean, j
Note that
) k
meqj Oenj = meqj m_ =K. (233)

eqj

Therefore, by letting y,, be the equivalent frequency ratio of a fractional oscillator in Class j,

H;(w) may be expressed by

Hy(@)= k(1-72, +1i2gem-yeqj)' j=h2s (234)
The amplitude of H,(w) is
|Hj(a))|:% 21 =, j=123. (235)
\/(1—7;,-) +(267)
Its phase frequency response is given by
o (@)=tan 2% 123 (236)

T Veq

9.2. Frequency Response to a Fractional Oscillator in Class I

Theorem 19 (Frequency response I). Let H,(w) be the frequency response to a fractional oscillator in
Class 1. Then, for 1 <a <2, it is in the form

H,(w) = L

a)a

ar
COS ——
2

w . O
w® sin—
+i 2

2 2

@,

el (237)

@,

Proof. In the equation below,
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H, (o) =

when replacing ., by

1

K (l_ 7ezq1 + idequeql) |

_ ar
o, |o* ?|cos——
2
7eq1 = 7/eq1(a)' a) = - ’
eqn,1 a)n
and 2¢.,7. by
a
S . ar a-2 a . a
®?sin— @,|®" |COS ‘ ®” sin—
dequeql = 2 = 2
(07,4 @, @,
2w, [|cos—

we have (237). This completes the proof. o

From Theorem 19, we have the amplitude of H, (@) given by

1/k
|H1(a))| = > )
ar
” |cos—— o sin %
1- +
2 2
a)n a)n
and the phase in the form
. a
®” sin—
o i O
2 w S|n7
¢ (w)=tan™ o =tan™ :
(3 a 2 a arn
1- 2
a)n

79 of 106

(238)

(239)

(240)

(241)

(242)

Note 9.1 (Equivalent frequency ratio I): The equivalent frequency ratio y,, is a function of

oscillation frequency w and the fractional order . It may be denoted by ., (@, @).

Figure 51 shows the plot of y,,. Figure 52 indicates the illustrations of H,(®).

gammal(omega)

10

7.5

25

| | |
/,A
e -
s
e
o e T
A5
| | |
25 5 7.5 10
omega

Figure 51. Equivalent frequency ratio y,, (®, @) for fractional oscillators in Class I with m =k = 1. Solid

line: & =1.8. Dot line: & = 1.5. Dash line: a =1.2.
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4 T T T
=
(@]
(5}
e _
o
=
L
0 e |
0 2 4 6 8
gammal(omega, alpha)
(a)
10
G =
% 1 Tl \.,‘
= = =
o - -
= T
S o1 ==
= T
E -
001y 7 1 10
gammal(omega, alpha) (log)
(b)
2 T T T
/(-U\ —]
(@]
(3}
e _
o
=
= |
o —
| | |
20 2 4 6 8
gammal(omega, alpha)
()
10
=)
o Tt
= 1 =
«
o —
S o1 e .
—
=
o
0017 )
gammal(omega, alpha) (log)
(d)

Figure 52. Frequency response H,(w) to fractional oscillators in Class I with m =k =1. Solid line: a =
1.8(0.04< ¢, <0.06). Dotline: a=1.5(0.13< ¢, <0.19). Dashline:a=1.2(0.33< ¢, <0.46). (a)
Amplitude |H,(®)| in ordinary coordinate. (b) |H,(®)| in log-log. (c) Phase ¢ (w) in ordinary
coordinate. (d) ¢,(w) inlog-log.
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Note 9.2: If o« = 2, H,(w) » «~ at w =@,. In that case, H,;(w) turns to be the ordinary

frequency response with damping free in the form

1/k 1/k 1/k
Hl(a))|a:2 = ar ST 1-,7 (243)
o”|cos—|  o%sin %% 1-=5
1- 2 +i 2 @n
2 2
@, @, a=2

9.3. Frequency Response to a Fractional Oscillator in Class 11

Theorem 20 (Frequency response II). Denote by H,(w) the frequency response to a fractional oscillator
in Class 11. Then, for 0 < p <1, it is given by

1/k
H2 (a)) = ,Bﬂ' !
c Br 2¢0” sin©— (244)
1-y? (1—0)” cosj i 2
m 2 o,
where y = 2 s the ordinary frequency ratio.
a)ﬂ
Proof. Consider
H, () :
2\0) = - : 245
k(l_yezqz +|2geq27/eq2) ( )
Note that
o w C 4 pr C 4 pr
- o, ) = =— [1-=0’?cos == = \/1——60” 2cos ==, 24
7/qu 7eq2( ﬁ) a2 ] \/ m 2 Y m 2 ( 6)
Besides,
Zgwﬁ'lsin& 260" Sin&
2 = 2 @ 1_£ ﬁiZCOS& :—2
Seq/eq2 o 1z m @ 5 p : (247)
\/1—0)/” cosZ— N !
m 2
Therefore, (245) becomes
1
H,(w) = -
k (1_ 792q2 + Izgeqzyeqz)
3 1/k
o c B 2 2¢0” sin pr
1—{\/1—50“ cos] i 2
w, m 2 o,
3 1/k
2¢0” sin ﬁ—zﬂ

1-5° [1—;1@”‘2 cosﬁzﬂjﬂ
a)ﬂ

This finishes the proof. o
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From Theorem 20, we have the amplitude of H,(w) in the form

IH, (o) = 1/k .
L— s (1— € w2 cosP” ﬂz + 72@)/} o % (248)
m 2 @,
and its phase given by
2¢0” sin pr
9,(w) =tan™ h , (249)

1-y2 (l—ccoﬂ2 003’327[)
m

Note 9.3 (Equivalent frequency ratio II): The equivalent frequency ratio y,, is dependenton

oscillation frequency w and the fractional order § as can be seen from (9.16). We denote it by
yeqz(a)!ﬂ)-
Figure 53 indicates the plot of y,,(®,f). H,(®) isshown in Figure 54.

10
S 75k
(D)
e
=)
N 5r
(4o}
=
€ 251
()]

05

omega

Figure 53. Equivalent frequency ratio y,,(®, ) of fractional oscillators in Class I withm=c=k=1.

Solid line: = 0.8. Dot line: § =0.5. Dash line: §=0.2.

3 T T T T
I
|
= /'\
S 2r [\ N
@ |
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% 1r };/\x 7]
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(a)



Symmetry 2017, 9, 40 83 of 106

10
S 7

= 1 pab,

o) = 0y

z b
S o1 A
AN \\\

L ‘\\
S
0.0% o1 0.1 1 10
gamma2(omega, beta) (log)
(b)
2 T T T T
= |

o

5]

E sl="" 9 | |
S i
o
e
o —]

2 | | | |
0 05 1 15 2 25
gamma2(omega, beta)
(0)
10

=)

i)

TU\ - ¥

8 1 - T _r"{

\g’ o e mp— = - ",f;":-. T
N i T
E _’_‘.’.- T

o bk

0-%o1 0.1 1
gamma2(omega, beta) (log)
(d)

Figure 54. Frequency response H,(w) to fractional oscillators of Class II type with m=c=1 and k =
4. Solid line: =0.8 (0.15< ¢, <0.29). Dot line: $=0.5(0.06 < ¢,,, <0.33). Dash line: $=0.2 (0.01 <
Ceqe $0.35). (@) Amplitude |H,(@)| in ordinary coordinate. (b) |H,(@)| inlog-log. (c) Phase ¢,(w)

in ordinary coordinate. (d) ¢,(w) inlog-log.

Note 9.4: When $ =1, H,(w) reduces to that of an ordinary oscillator’s in the form (also see
Figure 55).
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1/k
Hz(a’)|ﬁ=l = Br
c pr 2¢c0” sin==
1-y? [1—@’” cosj+i2 (250)
m 2 10)
n p=1
. 1/k 1k
- -
1—72+i2g£ 1-y"+i2gy
0.6 | | |
=
o> 04 —
(B}
S
S
N — —]
N 0.2
0 |
0 1 2 3 4
gamma2(omega, beta)
(a)
1
(@]
2
g
S 0.1 S
=) 1\\
N
g >,
0.0% o1 0.1 1 10
gamma2(omega, beta) (log)
(b)
10
=)
=
= 1
[4+] —
(@)} ——
[<5]
= ————
S o1
o
=
o
0.0% 01 0.1 1
gamma2(omega, beta) (log)
(c)

Figure 55. H,(w) for p=1withm=c=1andk=4 (C=0.25). (a) |H,(®)|in ordinary coordinate. (b)

|H,(@)| inlog-log. (c) Phase ¢,(w) inlog-log.

9.4. Frequency Response to a Fractional Oscillator in Class 111

Theorem 21 (Frequency response III). Let H,(w) be the frequency response to a fractional oscillator of

Class Il type. Then, for 1<a<2and 0<p <1, H,(w) isin the form
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1/k
H;(w) = pom i
Ca)ﬂ*Z COS@ }/(a)al Sin7+2ga)na)ﬂfl Sln 2)
1-9%| 0™ ? cosazﬂ‘ - +i (251)
m o,| 0™ 2|cos 7| - 2c0, 0 cos A%
2 2
Proof. In the equation below
Hy(0) !
= - ’ 252
k (1— 7e2q3 + |2geq3}/eq3) (252)
we notice
0] (4] a—2 (044 C B-2 ﬂﬂ'
Veqs = Vegs (@, @, B) = =—,|-| @ coOs—+—w" ° cos—
a)eqn,3 a)n 2 m 2
(253)
=y —[a)“ cosZZ L & 2 cos& .
2 m 2
In addition,
(a)”’l sin 2% 4 2c,0"* sin 'Bﬂj
2 2
y —(a)“ cos % 4+ € w2 cos ’Bﬂj
2 m 2
2geq37/eq3 = 2
20, \/—(a)‘” cosa—zﬁ +2¢m,0" 7 cos ﬂzﬁj (254)

}/(a)”‘l sin a—zﬁ +2¢,0"* sin ’Bzﬂj

a-2
), [a)

Thus, (252) becomes

cos 0[2”‘ —2¢0,0" % cos ﬂzﬂj

1/k

Hs(a)) =
co’? cosP% 4 waflsinai+2gwnw/”lsin@
om‘ . 2 2
COS—|— +i
2 m 0 (a)“

1— }/2 a)a—z

cos azﬁ‘ —2¢w,0" % cos ’Bzﬁj

Therefore, the proof completes. o

From Theorem 21, we obtain |H,()| in the form
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1/k

2
{1— i (w“ —%wﬂ’z cos ﬁzﬂﬂ

}/(w”l sin (Z?” +2¢w,0" " sin '82”)

a2
@, (a)

|H3(a))| =

ar
COS——

2 (255)

+

cos 0[2”‘ - 2¢w,0" % cos ’Bzﬂj

The phase ¢,(w) is given by

)/(a)"l sin % +2¢m,0" " sin ﬁzﬂJ

o, [a)“ cos 0!27[‘ - 2¢m,0" % cos ﬂzﬂj (256)
@,(w) =tan™ .
1-° (w“‘z cos 77|~ © w2 cos ’Bﬂj
2| m 2

Note 9.5 (Equivalent frequency ratio Ill): y,,, relates to w and a pair of fractional orders (a, f).

Figure 56 indicates its plots. Figure 57 demonstrates H,(w).

3 ' ' l .2 I I I
S >
(@]
o 25F 4 @ 15F ]
o 15F — P~ 1k _
‘3 T . 2 o
58] - [ [
o o> ’
0 | | | 0 | | |
0 25 5 75 10 0 25 5 75 10
omega omega
(@) (b)

Figure 56. Plots of equivalent frequency ratio . (@,a, ) for m=c=k=1.(a) Solid line: (&, ) = (1.8,
0.8). Dot line: (a, ) = (1.5, 0.8). (b) Solid line: (a, f) = (1.5, 0.8). Dot line: (a, p) = (1.5, 0.6).
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(c)
Figure 57. Illustrations of frequency response H,(w) to fractional oscillators of Class IIl with m=c=
1,k=25.(a) |H;(w) and ¢,(w). Solid line: (a, B) = (1.8,0.9) (023< ¢,,, <0.54). Dot line: (a, ) = (1.5,
0.9) (036 < G5 < 1.04). (b) |H,(e)| and ¢, (). Solid line: (a, B) = (1.8, 0.7) (027 < .5, < 0.50). Dot
line: (a, B) = (1.5,0.7) (0.50 < ¢, <0.95). (c) ‘H3(a))‘ and ¢,(w). Solid line: (a, ) = (1.8, 0.55) (0.31 <
Geqs <0.46). Dot line: (a, ) = (1.5, 0.55) (0.86 < ¢, <0.97).

Note 9.6: If (o, f) = (2, 1), H,(w) reduces to the ordinary one given by

1/k

Hs(a’)|(a,p):(2,1) = 1y +i2ey (257)

10. Sinusoidal Responses of Three Classes of Fractional Oscillators

When the excitation force takes the sinusoidal one in the form of coswt or sinwt, the response is
termed sinusoidal response, which plays a role in the field of oscillations.

10.1. Stating Problem

Note that the sinusoidal response to fractional oscillators attracts research interests but it is yet
a problem that has not been solved satisfactorily. In fact, the existence of the sinusoidal response to
fractional oscillators remains a problem. In mathematics, it is regarded as a problem of periodic
solution to fractional oscillators. Kaslik and Sivasundaram stated that the exact periodic solution
does not exist ([81], p. 1495, Remark 5). The view of Kaslik and Sivasundaram’s in [81] is also
implied in other works of researchers. Taking fractional oscillators in Class I as an example,
Mainardi noticed that the solution to fractional oscillators for 1 < a < 2, when driven by sinusoidal
function, does not exhibit permanent oscillations but asymptotically algebraic decayed ([25], p.
1469), also see Achar et al. ([33], lines above Equation (14)), Duan et al. ([39], p. 49).

As a matter of fact, when considering a fractional oscillator of Class I type for 1 < a <2 without
the case of @ =2 in the form
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d“y,(®)
dt”

m +ky, () =cosat, l<a<2, (258)

it is obvious that y, (t) must contain steady-state component that is not equal to 0 for ¢t — e no

matter what value of a € (1, 2) is. Otherwise, the conservation law of energy would be violated. The
problem is what the complete solution of y1(t) should be.
The actual solution y, (t) should, in reality, consist of two parts. One is the steady-state part,

denoted by y,, (t), where the subscript s stands for steady-state, which is not equal to 0 for ¢+ — < and
for any value of a € (1, 2). The other is the transient part, denoted by y,, (t), where the subscript tr

means transient. Thus, the complete solution should, qualitatively, be in the form
Y1(0) = Yoo () + Y3 (0)- (259)

We contribute the complete solutions to three classes of fractional oscillators regarding their
sinusoidal responses in this section. Our results will show that there exist steady-state components
for fractional oscillators in either class with any value of a € (1, 2) for those in Class I, or € (0, 1) in
Class II, or any combination of & € (1, 2) with 8 € (0, 1) for those in Class III.

10.2. Stating Research Thought

Consider the sinusoidal responses to three classes fractional oscillators based on the equivalent
oscillation equation in the form

d2x () dx, ()

m,,, +Cyy
d Y dt
dx; (t) '

x.(O): X0, =V.
] jo jo
at |,

+kx; (t) = Acos wt
j=12,3. (260)

The complete response X;(t) consists of the zero state response, denoted by x;,(t), and zero

input response denoted by x.,(t), according to the theory of differential equations. Therefore,

jzi
X (6) = X5 (8) + X (1), (261)
where X, (t) issolved from

d 2iji (t) diji (t)
m,. +C.;
U odt Y dt

+kx, (t)=0

, 1=123. 262
dx, (1) J (262)
KO =X =] Ve
On the other hand, x;,(t) is the solution to
d?x.(t dx.(t
" ‘Z;()+c . JZS()+kx. (t) = Acos wt
B 4 dt e .
., j=123 (263)
dx; (t)
x,(0) =0, =0
at |,

Note that X, (t) is actually the free response to the fractional oscillators in Class j. It has been

solved in Section 6. Thus, the focus of this section is on (263).

10.3. General Form of Sinusoidal Responses to Three Classes of Fractional Oscillators

The solution to (263) in the general form, for t >0, j=1, 2, 3, is given by
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(a)ezqn,j -’ )COS Ot + 264 Oy, ;01N
A

+e el (of |~ )cos e i+ @ Jsin 0t

ead. i (264)

t geqj (a)eqn,j
ean,j -

eqd, j 2
1 V=S
2

Xizs (t) = 2\2 2
eqja)eqd,j (a)eqnyj — @ ) +(2geqja)eqnyja))

10.4. Sinusoidal Response to Fractional Oscillators in Class 1

Theorem 22 (Sinusoidal response I). Let X, (t) be the zero state sinusoidal response to a fractional
oscillator in Class I. Then, for t >0 and 1 <a <2, it is in the form

XiZS (t) =

(265)
Proof. Consider the expression below
(a):qnvl -’ ) COS 0t + 26,1, ,0SIN 2t
A
g et (a)ezqn.l — )cos Dag ,1t — le ( a)EanYl g )sin O i (266)
1 \ /1— Seqt
Xizs (t) = o - — .
eql“eqd 1 (a)eqny1 - ) + (deqla)eqnyla))

In the above, replacing m,, by the one in Section 4, ¢, @

waa and @, by those in Section 5,

eql

respectively, produces (265). This finishes the proof. o
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Denote by x, (t) and x,,(t) the steady component and the instantaneous one,

respectively. Then, we have

1 A
Xlzs,s(t) = @ 2
. T R an
o”sin®* =~ 2 w*sin® ==
mo, |-o" % cos &% - 4 @n 1 2
n o -1+ 2 (267)
2 an p an ar
4w, |cOs—— —®" COS—— cos =~
2
2 .
2
2 . QT
wz @ SIN——
o — P 1| cosewt+——2 sinat |.
an [0%/4
—®% COS—— CcoS——
2 2
And
Xizs,tr (t) =
ma, ,[-0“°
(268)
CU4
wsinﬂ
B (Z/T1
e 20057 T
2
ar
2a)n,/—cos7
2 CO4
T
a a-2
> . Or -
1— — £
ar
Za)M/—cos7

Figure 58 shows the plots of x,,(t).
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Figure 58. Illustrating x,,(t) for m =1, k=9 (@, =3), w = 1. Solid line: & = 1.9 (¢, = 0.03). Dot line: a =
1.6 (Guy =0.11). (a) £=0, 1, ..., 20. (b) £ =0, 1, ..., 100.

Note 10.1: x1=5(t) is not a pure harmonic function as can be seen from Figure 58.

Remark 29. We found that the sinusoidal response to fractional oscillators in Class I for any value of a € (1,
2) does have steady-state component X, ((t) expressed by (267), also see Figure 59.

0.05 T T T T
0.03
0.01

-0.01

x1zs, s(t)

-0.03

0.05 L1 1

Figure 59. Steady-state component, X, (t), of sinusoidal response to a fractional oscillator in Class
Iform=1,k=9 (@, =3), w=1.5olid line: a =1.9 (g,, =0.03). Dot line: @ =1.6 (g,,, =0.11). Dash dot
line: a =13 (g, =0.22).

The illustration of X, (t) isindicated in Figure 60.

0.05 T T T T
0.03
0.01

001 W1 31

x1zs, tr(t)

-0.03

-0.05 F—L—~L—1—

Figure 60. Instantaneous component X, (t) form=1,k=9 (@,=3), w=1.Solid line: =19 (¢, =

0.03). Dot line: @ =1.6 (6., =0.11). Dash dot line: « =1.3 (5., =0.22).

Note 10.2: For a =2, we have
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Xizs (t) =

= i(cos wt+cosat).

Ma,

1 A -
ma, PREEA o
o' —=-1
2

n

2

602 2 COZ
——1] coswt+a)4( n

2
— —1] cos a)nt]
(0]

2

93 of 106

(269)

10.5. Sinusoidal Response to Fractional Oscillators in Class 11

Theorem 23 (Sinusoidal response II). Denote by X,,,(t) the zero state sinusoidal response to a fractional

2128

oscillator in Class II. Then, for t > 0 and 0 < <1, it is expressed by

1
XZZS(t): 2
., pr
i g2a)2(ﬁ—1) sin2 P~
maon\/l—a)“cos2 i i
_ T
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Proof. In the following expression,

1 A
XZzs (t) = . 2 2)\? 2
eq2%eqd,2 (a)eqnyz - ) +(2geq2weqn,2w)
2 2 i
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oSt (wezqn,z _ a)Z)COSa) t— Seq2 ( ezqn,2 +o° )Sin a)eqd,Zt

eqd 2t T T
\'1_ gezqz

replacing m,, with the one in Section 4, ¢,,,, @4, and @

.2 Dy those in Section 5, results in

(270). The proof completes. o

The stead-state part of X, (t) is represented by
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On the other side, the transient part x,,, . (t) is given by
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Figures 61-63 show the plots of x,,(t), x,
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95 of 106

(273)

Figure 61. Sinusoidal response X, (t) to a fractional oscillator in Class Il with 8= 0.9 (solid line) (,,,=

0.14), = 0.6 (dot line) (¢4, =0.07), § = 0.3 (dash dot line) (¢,,,=0.03) withm=c=1,0,=3 and w = 1.



Symmetry 2017, 9, 40 96 of 106

0.2 T T T T
0.12
0.04 <

-0.04

X2zs, s(t)

-0.12

Figure 62. Steady-state sinusoidal part of X, (t) with §=0.9 (solid line) (g,,,=0.14), 3 =0.6 (dot line)
(6eg2=0.07), $=0.3 (dash dot line) (¢,,,=0.03) withm=c=1,,=3 and w =1.

0.11

0.07

X2zs, tr(t)

0.03 |

-0.01

0.05 I R

Figure 63. Transient part of X, (t) with g =0.9 (solid line) (g, = 0.14), f = 0.6 (dot line) (., =0.07), =
0.3 (dash dot line) (., =0.03) withm=c=1,@,=3 and w = 1.

Note 10.3: If § = 1, we obtain the zero-state response of the conventional sinusoidal response to
a 2-order oscillator in the form

et (a)z—a)z)COSa) 1_g2t_§(a)f+a;2)sina)n 1—g2t

G pp— e @7
e M@, 1-¢* (a)nz—a)z)2+(2ga)na))2 .

Remark 30. We discovered that the sinusoidal response to fractional oscillators in Class Il for any value of
€ (0, 1) does have steady-state component X,,,  (t) described by (272), also see Figure 62.

25,5

10.6. Sinusoidal Response to Fractional Oscillators in Class 111

Theorem 24 (Sinusoidal response III). Let X,, (t) be the zero state sinusoidal response to a fractional
oscillator of Class 111 type. Then, for t >0, 1 <a <2, and 0 < B <1, it is written in the form
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where Megs and weqd, 3 are given by (119) and (160), respectively.

Proof. In the following expression,

%)
2
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Substituting ¢,.;, @y, ; and @,y with those in Section 5 yields the Theorem 24. That completes
the proof. o

Figure 64 illustrates X, (t).

0.01 T T T

0.0063 -

0.0025

x3zs(t)

-0.0013

-0.005

Figure 64. Indicating the sinusoidal response x,, (t) to a fractional oscillator in Class Il with (a, ) =
(1.8, 0.8) (solid line) (.,3=0.13), (a, B) = (1.5, 0.8) (dot line) ( 5,43 =0.22), (a, B) = (1.3, 0.8) (dash dot line)
(Geqs=0.40) withm=c=1,k=36 (w»=6)and w = 1.

The steady-state part of X, (t) is in the form
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Its transient part, taking into account (160), is given by

99 of 106

(277)



Symmetry 2017, 9, 40

. ar C 4 T
- @ cos==+ = ” zcosﬂ—
2 m 2

2
4 . anr 1. T
(ma)“ 1sm7+cw" sin ’sz

om . |1-

neqd ar Br
4{—[mw“‘2 cos7+cw”‘2 cosz)k}

Xst,tr (t) =

. ar 1 -
wa Sln7+2ga)na)ﬂ 1S|n7

pr

+
a)a—Q

pr

1 . am 1 .
" 1S|n7+2§(unw/] 1sm7

ar
Cos——
2

- 2¢0,0" cos =~

pr

CcOos

t

—2¢w, "2 cos=

2( @2 pr
e

ar
COS——|
2

)

2
41 .- ar 1 . T
me® ™ sin —— + cw” 1S|nﬂ—
2 2 )

4{—(ma)“ cos% +cw” % cos ’827[) k}

pr

L. af s
o” 1SIn7+2ga)na)ﬂ 1SIHT

20, \/—(a)‘“ cos% +2¢m,0" % cos ﬁzﬁj

sin

pr

L. arn .
o sin——+ 2c, 0" lSln—2

1—
20, \/—(a}“ cos%[ +26m,0" % cos ﬂzﬁj

2
@, 2

7 +w
_ [2%/4 C _ T
—| ®* % cos ==+ = @w? 2 cos =

2 m 2

2
4 ... ar 1 - T
meo®*sin == + cw” lsln—ﬂ
2 2 )

w, |1- t
4{—[ma)“2 0050[7”+Ca)”’2 cos’i’rjk}

. ar C 4 T
-l @ cos==+ = ” ZCOSﬂ—
2 m 2

100 of 106

(278)



Symmetry 2017, 9, 40 101 of 106

The steady-state component and the transient one of X, (t) are shown in Figures 65 and 66,

s

respectively.

0.0025

x3zs, s(t)

-0.0025

-0.005 ' ' '

Figure 65. Indicating the steady-state component of x,,(t) with (a, ) = (1.8, 0.8) (solid line) (¢.,; =
0.13), (a, p) = (1.5, 0.8) (dot line) (5., =0.22), (a, B) = (1.3, 0.8) (dash dot line) (5., =0.40) withm=c=
1, k=36 (w, =6)and w=1.

0.004 | | |

0.002

x3zs, tr(t)

-0.002

-0.004 | I |

Figure 66. Transient component of X, (t) with (a, f) = (1.8, 0.8) (solid line) (s.,; =0.13), (a, f) = (1.5, 0.8)
(dotline) (g5 =0.22), (a, f) = (1.3, 0.8) (dash dot line) (5,43 =0.40) withm=c=1,k=36 (@, =6)and w=1.

Note 10.4: When (a, f) = (2, 1), X, (t) reduces to the ordinary zero-state sinusoidal response

to a 2-order oscillator in the form

A . g(a)nz+a)2)sina)n 1-c%t
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A ot 2 _ 2 t—
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Remark 31. We revealed that the sinusoidal response to fractional oscillators in Class III for any value of a €
(1,2) and B € (0, 1) does have steady-state component X,  (t) described by (277), also see Figure 65.

Remark 32. The results presented above show that the exact periodic solutions to three classes of fractional
oscillators exist.
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11. Discussions

Three classes of fractional oscillators previously studied are usually characterized by
constant-coefficient fractional differential equations. The basic theory and key point I presented in
Section 4 is to equivalently represent them by the second-order differential equations with
variable-coefficients. In this way, three classes of fractional oscillators, which are nonlinear in
nature, all reduce to linear oscillators with variable-coefficients. In methodology, that may open a
new way of the linearization to describe and research fractional oscillators.

In addition to keep fractional properties of fractional oscillators with its equivalences, for
instance, the characteristic roots of a fractional oscillator being infinitely large as explained by Li et
al. [18] and Duan et al. [39], based on the proposed equivalent oscillators, we also reveal other
properties of fractional oscillators, which may be very difficult, if not impossible, to be described
directly from the point of view of fractional differential equations, such as the equivalent, i.e.,
intrinsic, masses m,;, equivalent dampingsc,;,
1, 2, 3) of fractional oscillators, which are nonlinear with the power laws in terms of oscillation
frequency w as stated in Sections 4 and 5.

The significance of the presented theory with respect to three classes of fractional oscillators in
both theory and practice is about the closed form analytic formulas of the responses to fractional
oscillators explained in Sections 6-10 by using elementary functions, making the matters much
better in engineering.

Note that power laws plays a role in understanding the nature in general, see, e.g., Gabaix et
al. [82], Stanley [83]. As a matter of fact, the fractional order « relates to the fractal dimension, see
Lim et al. [20-22]. Thus, my study of the power laws previously stated is quite beginning in the
aspect of fractional oscillations. Further research is needed in future. In addition to that, our future

equivalent natural frequencies a@,,; and @, ; (=

work will consider the applications of the present equivalent theory of the fractional oscillators to
fractional noise in communication systems (Levy and Pinchas [84], Pinchas [85]), partial differential
equations, such as transient phenomena of complex systems or fractional diffusion equations (Toma
[86], Bakhoum and Toma [87], Cattani [88], Mardani et al. [89]).

12. Conclusions

We have established a theory of equivalent oscillators with respect to three classes of fractional
oscillation systems. Its principle is to represent a fractional oscillator with constant coefficients
(mass and damping) by a 2-order oscillator equivalently with variable mass and damping. The
analytic expressions of equivalent masses, equivalent dampings, equivalent damping ratios,
equivalent natural frequencies, and equivalent frequency ratios have been presented. We have
revealed that the equivalent masses and dampings of three classes of fractional oscillators follow
power laws in terms of oscillation frequency. By using elementary functions, we have put forward
the closed form representations of responses (free, impulse, step, frequency, sinusoidal) to three
classes of fractional oscillators. Additionally, analytic expressions of the logarithmic decrements of
three classes of fractional oscillators have been proposed. As by products, we have stated the
representations of four types of the generalized Mittag-Leffler functions in the closed form with
elementary functions.
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