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Abstract: This article addresses three classes of fractional oscillators named Class I, IT and III. It is
known that the solutions to fractional oscillators of Class I type are represented by the Mittag-Leffler
functions. However, closed form solutions to fractional oscillators in Classes II and IIT are unknown.
In this article, we present a theory of equivalent systems with respect to three classes of fractional
oscillators. In methodology, we first transform fractional oscillators with constant coefficients to
be linear 2-order oscillators with variable coefficients (variable mass and damping). Then, we
derive the closed form solutions to three classes of fractional oscillators using elementary functions.
The present theory of equivalent oscillators consists of the main highlights as follows. (1) Proposing
three equivalent 2-order oscillation equations corresponding to three classes of fractional oscillators;
(2) Presenting the closed form expressions of equivalent mass, equivalent damping, equivalent natural
frequencies, equivalent damping ratio for each class of fractional oscillators; (3) Putting forward the
closed form formulas of responses (free, impulse, unit step, frequency, sinusoidal) to each class of
fractional oscillators; (4) Revealing the power laws of equivalent mass and equivalent damping for
each class of fractional oscillators in terms of oscillation frequency; (5) Giving analytic expressions
of the logarithmic decrements of three classes of fractional oscillators; (6) Representing the closed
form representations of some of the generalized Mittag-Leffler functions with elementary functions.
The present results suggest a novel theory of fractional oscillators. This may facilitate the application
of the theory of fractional oscillators to practice.

Keywords: fractional differential equations; fractional oscillations (vibrations); fractional dynamical
systems; nonlinear dynamical systems

1. Introduction

Any systems that consist of three elements, namely, inertia, restoration, and damping, may
oscillate. Therefore, oscillations are common phenomena encountered in various fields, ranging from
physics to mechanical engineering, see, e.g., [1-17].

Fractional oscillators and their processes attract the interests of researchers, see, e.g., [18-53].
There are problems worth studying with respect to fractional oscillators. On the one hand, the
analytical expressions in the closed forms of responses to certain fractional oscillators, e.g., those
described by (42) and (43) in Section 2, remain unknown. In addition, closed form representations of
some physical quantities in fractional oscillators, such as mass, damping, natural frequencies, in the
intrinsic sense, are lacking. On the other hand, technology and analysis methods, based on 2-order
linear oscillations, almost dominate the preference of engineers although nonlinear oscillations have
been paid attention to. Therefore, from a view of engineering, it is meaningful to establish a theory
to deal with fractional oscillators with equivalent linear oscillation systems of order 2. This article
contributes my results in this aspect.

This research studies three classes of fractional oscillators.
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Class I: The first class contains oscillators with fractional inertia force m® d’;{ ) 1l<a<2)

only. Its oscillation equation is in the form of (31), see, e.g., Duan ([24], Equation (3)),
Mainardi ([25], Equation (27)), Zurigat ([26], Equation (16)), Blaszczyk and Ciesielski ([27], Equation (1)),
Blaszczyk et al. ([28], Equation (10)), Al-rabtah et al. ([29], Equation (3.1)), Drozdov ([30], Equation (9)),
Stanislavsky [31], Achar et al. ([32], Equation (1), [33], Equation (9), [34], Equation (2)), Tofighi ([35],
Equation (2)), Ryabov and Puzenko ([36], Equation (1)), Ahmad and Elwakil ([37], Equation (1)),
Uchaikin ([38], Chapter 7), Duan et al. ([39], Equation (4.2)).

Class II: The second consists of oscillators only with fractional damping term el ( (0<p<1),
see, e.g., Lin et al. ([40], Equation (2)), Duan ([41], Equation (31)), Alkhaldi et al. ([42] Equatlon (1a)),
Dai et al. ([43], Equation (1)], Ren et al. ([44], Equation (1)), Xu et al. ([45], Equation (1)), He et al. ([46],
Equation (4)), Leung et al. ([47], Equation (2)), Chen et al. ([48], Equation (1)), Deti and Matignon ([49],
Equation (1)), Draganescu et al. ([50], Equation (4)), Rossikhin and Shitikova ([51], Equation (3)),
Xie and Lin ([52], Equation (1)), Chung and Jung [53]. That takes the form of (42) in the next Section.

Class III: The th1rd mcludes the oscillators with both fractional inertia force m dt,g ) (1<a<2)

and fractional friction c2 (O < B <1),see, e.g., Liu et al. ([54], Equation (1)), Gomez-Aguilar ([53],
Equation (10)), Leung et al ([50], Equation (3)). This class of oscillators is expressed by (43).

By fractional oscillating in this research, we mean that either the inertia term (31) or the damping
(42) or both (43) are described by fractional derivative. Thus, this article studies all described
above from Class I to III except those fractional nonlinear ones, such as fractional van der Pol
oscillators (Leung et al. [47,55], Xie and Lin [52], Kavyanpoor and Shokrollahi [56], Xiao et al. [57]),
fractional Duffing ones (Xu et al. [45], Liu et al. [54], Chen et al. [58], Wen et al. [59], Liao [60]).
Besides, the meaning of fractional oscillation in this research neither implies those with fractional
displacement such as Abu-Gurra et al. [61] discussed nor those in the sense of subharmonic oscillations
as stated by Den Hartog ([3], Sections 8-10, Chapter 4), Ikeda [62], Fudan Univ. ([63], pp. 96-97),
Andronov et al. ([64], Section 5.1).

Fractional differential equations represented by (31), (42), and (43) are designated as fractional
oscillators in Class I, I, and III, respectively, in what follows. Note that closed form analytic expressions

for the responses (free, impulse, step, frequency, and sinusoidal) to fractional oscillators in Class II and
III are rarely reported. For oscillators in Class I, analytic expressions for the responses (free, impulse,
step) are only represented by a type of special functions called the Mittag-Leffler functions but lack
in representing the intrinsic properties, such as damping. This article aims at presenting a unified
approach to deal with three classes of fractional oscillators.

The present highlights are as follows.

e  Establishing three equivalent 2-order differential equations respectively corresponding to three
classes of fractional oscillators.

e Presenting the analytical representations, in the closed form, of equivalent masses, equivalent
dampings, equivalent damping ratios, equivalent natural frequencies, and equivalent frequency
ratios, for each class of fractional oscillators.

e Proposing the analytic expressions, in the closed form by using elementary functions, of the free,
impulse, step, frequency, and sinusoidal responses to three classes of fractional oscillators.

e Revealing the power laws of equivalent mass and equivalent damping for each class of
fractional oscillators.

e  Representing some of the generalized Mittag-Leffler functions by using elementary functions.

Note that this article studies fractional oscillators by the way of dealing with fractional inertia
force and or fractional friction equivalently using inertia force and or fractional friction of integer order.
In doing so, methodologically speaking, the key point is about three equivalent oscillation models,
which transform fractional inertia force and or fractional friction equivalently into inertia force and
or fractional friction of integer order, which we establish with Theorems 1-7. Though they may yet
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imply a novel way to study fractional derivatives from the point of view of mathematics, my focus in
this research is on treating fractional oscillators from a view of physical or engineering oscillations
(vibrations).

The rest of the article is organized as follows. Section 2 is about preliminaries. The problem
statement and research thoughts are described in Section 3. We establish three equivalent 2-order
oscillation equations respectively corresponding to three classes of fractional oscillators in Section 4.
The analytical representations of equivalent masses, equivalent dampings, equivalent damping ratios,
equivalent natural frequencies for three classes of fractional oscillators are proposed in Section 5.
We present the analytic expressions of the free responses to three classes of fractional oscillators in
Section 6, the impulse responses to three classes of fractional oscillators in Section 7, the step responses
in Section 8, the frequency responses in Section 9, and the sinusoidal ones in Section 10. Discussions
are in Section 11, which is followed by conclusions.

2. Preliminaries

This Section consists of two parts. One is to describe the basic of linear oscillations and fractional
ones related to the next sections. The other the solutions to fractional oscillators in Class I based on the
generalized Mittag-Leffler functions.

2.1. Brief of Linear Oscillations of Order 2

2.1.1. Simple Oscillation Model

The simplest model of an oscillator of order 2 is with single degree of freedom (SDOF). It consists
of a constant mass m and a massless damper with a linear viscous damping constant c. The stiffness of
spring is denoted by spring constant k. That SDOF mass-spring system is described by

2
m 00 4 0 4 kg () = e(t)

dt (1)
7(0) = q0,4'(0) = vy,

where e(t) is the forcing function. The solution q(f) may be the displacement in mechanical
engineering [1-7] or current in electronics engineering [8].
In physics and engineering, for facilitating the analysis, one usually rewrites (1) by

" @

and further rewrites it by

2
THD + 260, P+ w2q () = 5 )

q(0) = q0,4'(0) = oo,

where w;, is called the natural angular frequency (natural frequency for short) with damping free given by

wy = \/z 4)

and the parameter ¢ is the damping ratio expressed by

©)
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The characteristic equation of (3) is in the form
2 2
p° +2¢wnp +wy, =0, (6)

which is usually called the frequency equation in engineering [1-7]. The solution to the above is given by

P12 = —Cwn T iwny/1—¢%, @)

where i = v/ —1. Taking into account damping, one uses the term damped natural frequency denoted

by wy. It is given by
wg = wpy\/1—¢c2. (8)

Note 2.1: All parameters above, namely, m, ¢, k, {, wy, and wy, are constants.

2.1.2. Responses

The free response, meaning that the response with e(t) = 0, is driven by initial conditions only.
It is given by
00 + GWndo

i t),t>0.
g sinwy >, >0 )

q(t) = e cwnt (qo cos wyt +

If e(t) = 6(t), where J(f) is the Dirac-delta function, the response with zero initial conditions is
called the impulse response. In the theory of linear systems (Gabel and Roberts [65], Zheng et al. [66]),
the symbol k(t) is used for the impulse response. Thus, consider the equation

d?h(t) dh(t) | 5, ... (1)
One has
G >0 11
h(t) = = sinwyt, £ > 0. (11)

Let u(t) be the Heaviside unit step (unit step for short) function. Then, the response to (3) with
zero initial conditions is called the unit step response. As usual, it is denoted by g(t) in practice.
Thus, consider

d2g(t dg(t t
Iig ) +2gwn% +wig(t) = # 12)
One has
b= (e = 1|1 5 t 13
g()—o/ (= | 1= =g coslwat =), )
where
b—tanl & (14

1-¢2
Denote by H(w) the Fourier transform of h(t). Then, H(w) is usually called the frequency response
to the oscillator described by (3). It is in the form
1 1

H(w) = : = . (15)
m(w? — w? + 2cwyw) mw%(l— %+i2g%)

With the parameter y defined by



Symmetry 2018, 10, 40 50f 91

which is called frequency ratio, H(w) may be rewritten by

1
H(w) = . 17
() mw?(1 —y% 4+ i2¢7) 17)
The amplitude of H(w) is called the amplitude frequency response. It is in the form
1
H(w)| = — )
mw%\/(l =7%)"+ (267)
Its phase is termed the phase frequency response given by
¢(w) = tan"! 26 (19)

1—2

When the oscillator is excited by a sinusoidal function, the solution to (3) is termed the sinusoidal
or simple harmonic response. Suppose the sinusoidal excitation function is Acoswt, where A is a
constant. Then, the solution to

dr2 m (20)

{ d2q(t) +2gw"d717(tt) + wlq(t) = Acoswt
q(0) = q0,9'(0) = o,

is the sinusoidal response in the form

B (w2 — w?) cos wt + 2gwyw sin wt
g = —— RN 5)
(@3 —w?)*+(26w0nw)? | f—cewnt [(w% — w?) cos wyt — \/1977 (w3 + w?) sinwgyt
The responses mentioned above are essential to linear oscillators. We shall give our results for
three classes of fractional oscillators with respect to those responses in this research.

2.1.3. Spectra of Three Excitations

The spectrum of J(t) below means that 4(t) contains the equal frequency components for w € (0, o).
f S(t)e @idr = 1. (22)

The spectrum of u(t) is in the form

f u(t)e “tdt = mo(w) + % (23)

The Fourier transform of cos wyt is given by

f cos wite dt = 7t[6(w + wy) + 6(w — w1)]. (24)

—00

Three functions or signals above, namely, 6(¢), u(t), and sinusoidal functions, are essential to the
excitation forms in oscillations. However, their spectra do not exist in the domain of ordinary functions
but they exist in the domain of generalized functions. Due to the importance of generalized functions
in oscillations, for example, 4(f) and u(t), either theory or technology of oscillations nowadays is in the
domain of generalized functions. In the domain of generalized functions, any function is differentiable
of any times. The Fourier transform of any function exists (Gelfand and Vilenkin [67], Griffel [68]).
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2.1.4. Generalization of Linear Oscillators

Let us be beyond the scope of the conventionally physical quantities, such as displacement,
velocity, acceleration in mechanics, or current, voltage in electronics. Then, we consider the
response of the quantity q(")(t), where # is a positive integer. Precisely, we consider the following

oscillation equation
a2 [d"q(t) d"q(t) 2d"q(t) __ et
{ dt2[ z:lt*(1 ]"’2’5“’”4#[ e ]+wn d?"s) = 87(7)

g™ (0) = g0,V (0) = vp.

The above may be taken as a generalization of the conventional oscillator described by (3). Another

(25)

expression of the above may be given by

an [d n [ dg(t d'q e
{ dtn[ dqtg)] +2’5“’n;t"[ q”] + WA T = <)
q"(0) = g0, 4"+1(0) = vo.

Alternatively, we have a linear oscillation system described by

{ 200 | o, a0 | 2 d"a) _ elt)

(26)

An+2 den+1 Wy dm m (27)
4"(0) = 0,4+ (0) = vg.

Physically, the above item with q("*+2)(¢) corresponds to inertia, the one with q(") (t) to restoration,
and the one with g("+1) () damping.

Note that (27) remains a linear oscillator after all. Nevertheless, when generalizing n to be
fractions, for instance, considering —1 <&; < 0and —1 < &, < 0, we may generalize (27) to be

dE1124 (¢ d2+
m dtslzg) +c dt£2+§) +kq( ) (t) (28)
9(0) = 90,9'(0) = vo.
Then, we go into the scope of fractional oscillations.
2.2. Three Classes of Fractional Oscillators
Denote by ;TVV = _D} the Weyl fractional derivative of order v > 0. Then (Uchaikin [38],
Miller and Ross [69], Klafter et al. [70]),
t
1 f(u)du
D/ f(t) = 2
—o0o tf( ) F(*V)_L (t—u)l—H/’ ( 9)

where I'(v) is the Gamma function. The Weyl fractional derivative is used in this research because it is
suitable for the Fourier transform in the domain of fractional calculus (Lavoie et al. ([71], p. 247)).

The Fourier transform of dvdle(,t) , following Uchaikin ([72], Section 4.5.3), is given by

f) o =
J T e 't = (iw)"F(w), (30)
where F(w) is the Fourier transform of f(t).
This article relates to three classes of fractional oscillators as follow. We denote the following

oscillation equation as a fractional oscillator in Class I.

{ R + k() = e()
Y

L ol<a<2 (31)
()-]/10#1( ):ylo
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The free response to (31) is in the form (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7))

va(t) = y10Ean [—(wnt)"] + ¥ 1otEap[—(wnt)"], 1 < <2, >0, (32)
where E, () is the generalized Mittag-Leffler function given by

00 k

z
E,p(z) = k;:) m,a,b € C,Re(a) > 0,Re(b) > 0. (33)

The Mittag-Leffler function denoted by E,(t) is in the form

Z k+1 ,a € C,Re(a) >0, (34)

referring Mathai and Haubold [73], or Gorenflo et al. [74], or Erdelyi et al. [75] for the Mittag-
Leffler functions.
Denote by k1 (t) the impulse response to a fractional oscillator in Class I. Then (Uchaikin ([38],
Chapter 7)),
hyr(£) = 9 Eg[—(wat)*], 1 <a < 2,t > 0. (35)

Let g,1(t) be the step response to a fractional oscillator of Class I type. Then,
gy1(t) = t*Eq o1 [—(wnt)"], 1 <a < 2,6 >0. (36)

For a fractional oscillator in Class I, its sinusoidal response driven by sinwt is expressed by

[e9)
. _ . Tt _
y1(t) = Aj sin(wt — 6;) 4+ Aze P cos [wntsm i 92} + je Ky (s)ds, (37)
0
where
A1 - 1 Tl
V0F + w0 +2ww cos
Ay — 2w (38)
a1 \/w% +w+2whw? cos 22 ’
7T
B = —wy cos 2 (39)
_ —1 w"sin%%
01 = tan wh4w® cos &7
6, = tan! w? sin UHOT_ 2 i (=07 (40)
2 w? cos (Hw) 42 cos 1707 )
w sin( 7t
Ka(s) = (a) (41)

71(s2 + w?) (s + 25%w?2 cos(ma) + w2¥)’
An oscillator that follows the oscillation equation below is called a fractional oscillator in Class IL

dPys(t)
datb

yz( )
a2

+c +kya(t) =0,0< B <1 (42)

The equation below is called an oscillation equation of a fractional oscillator in Class III.

dys(t) | dPys(t)
m T +c T

+kys(f) =0,1<a<2,0<p<1 (43)
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2.3. Equivalence of Functions in the Sense of Fourier Transform

Denote by F;(w) and F,(w) the Fourier transforms of f1(t) and f»(t), respectively. Then, if
F(w) = h(w), (44)

one says that
fi(t) = falt), (45)

in the sense of Fourier transform (Gelfand and Vilenkin [67], Papoulis [76]), implying

| 1A®) = falh)e "t = . (46)

The above implies that a null function as a difference between fi(t) and f,(t) is allowed for (45).
An example relating to oscillation theory is the unit step function.
Denote by u1(t) in the form

1,t>0
t) = = 47
uq(t) {0,t<0 (47)
Let us(t) be
1,t>0
t) = ¢ . 4
us(t) {o,tgo (48)

Clearly, either u () or uy(t) is a unit step function. The difference between two is a null function
given by
1, t=1

up(t) —ua(t) = { 0 (49)

elsewhere °

Thus, uq(t) = up(t). In fact, the Fourier transform of either u1 (t) or u,(t) equals to the right side on (23).
Similarly, if f1(t) = f2(t), we say that (44) holds in the sense of

j [F(w) — B (w)]e“ dw = 0. (50)

3. Problem Statement and Research Thoughts

We have mentioned three classes of fractional oscillators in Section 2. This section contains two
parts. One is the problem statement and the other research thoughts.

3.1. Problem Statement

We first take fractional oscillators in Class I as a case to state the problems this research
concerns with.

The analytical expressions with respect to the responses of free, impulse, step, to the oscillators
of Class I are mathematically obtained (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7)),
also see Section 2.2 in this article. All noticed that a fractional oscillator of Class I is damping free in
form but it is damped in nature due to fractional if 1 < « < 2. However, there are problems unsolved in
this regard.

Problem 1. How to analytically represent the damping of Class I oscillators?

In this article, we call the damping of fractional oscillators in Class I equivalent damping denoted
by ngl.
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It is known that damping relates to mass. Therefore, if we find ¢, in a fractional oscillator in
Class I, its intrinsic mass must be different from the primary one m unless a = 2. We call it equivalent
mass and denote it by 11,1 .

Problem 2. How to analytically represent e ?

Because a fractional oscillator in Class I is damped in nature for a # 2, there must exist a damped
natural frequency. We call it equivalent damped natural frequency, denoted by wegg,1- Then, comes the
problem below.

Problem 3. What is the representation of wegq1?

As there exists 1, that differs from m if a # 2, the equivalent damping free natural frequency,

we denote it by wegp 1, is different from the primary damping free natural frequency w;, = %

Consequently, the following problem appears.
Problem 4. What is the expression of Wegn,1?
If we find the solutions to the above four, a consequent problem is as follows.

Problem 5. How to represent response (free, or impulse, or step, or sinusoidal) with meq, Ceq1, Wegn,1, and
Weqd,1 to a fractional oscillator in Class I?

If we solve the above problems, the solution to the following problem is ready.
Problem 6. What is the physical mechanism of a fractional oscillator in Class I?

Note that the intrinsic damping for a Class II fractional oscillator must differ from its primary
damping ¢ owing to the fractional friction c% for B # 1. We call it the equivalent damping
denoted by cep. Because cep# c if B # 1, the equivalent mass of a fractional oscillator in Class 1I,
denoted by .y, is not equal to the primary m for B # 1. Thus, the six stated above are also unsolved
problems for fractional oscillators in Class II. They are, consequently, the problems unsolved for Class
III fractional oscillators.

Note that there are other problems regarding with three classes of fractional oscillators. For example,

the explicit expression of the sinusoidal response (37) in closed form needs investigation because of
the difficulty in finding the solution to [ ¢ 5'K,(s)ds. We shall deal with them in separate sections.
0

The solutions to the problems described above constitute main highlights of this research.

We note that the damping nature of a fractional oscillator in Class I was also observed by
other researchers, not explicitly stated though, as can be seen from, e.g., Zurigat ([26], Figure 1),
Blaszczyk et al. ([28], Figure 2), Al-rabtah et al. ([29], Figure 2), Ryabov and Puzenko ([36],
Equation (5)), Uchaikin ([38], Chapter 7), Duan et al. ([39], Equation (4.3), Figure 2), Gomez-Aguilar
et al. ([53], Equation (15), Figures 2 and 3), Chung and Jung ([77], Figure 1). One thing remarkable is
by Tofighi, who explored the intrinsic damping of an oscillator in Class I, see ([35], pp. 32-33). That
was an advance regarding with the damping implied in (31) but it may be unsatisfactory if one desires
its closed form of analytic expression.

3.2. Research Thoughts

Let us qualitatively consider possible performances of equivalent mass and damping. In engineering,
people may purposely connect an auxiliary mass 1, to the primary mass m so that the equivalent mass
of the total system is related to the oscillation frequency w (Harris ([4], p. 6.4)). In the field of ship hull
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vibrations, added mass has to be taken into account in the equivalent mass (i.e., total mass) of a ship hull
(Korotkin [78]) so that the equivalent mass is w-varying. In fact, the three dimensional fluid coefficient
with respect to the added mass to a ship hull relates to the oscillation frequency, see, e.g., Jin and Xia ([79],
pp. 135-136), Nakagawa et al. [80].

In addition, damping may be also w-varying. A well-known case of w-varying damping is the
Coulomb damping (Timoshenko ([2], Chapter 1), Harris ([4], Equation (30.4))). Frequency varying
damping is a technique used in damping treatments, see, e.g., Harris ([4], Equation (37.8)). Besides,
commonly used damping assumptions in ship hull vibrations, such as the Copoknh’s, the Voigt’s, the
Rayleigh'’s, are all w-varying (Jin and Xia ([79], pp. 157-158)). Therefore, with the concept of w-varying
mass and damping, I purposely generalize the simple oscillation model expressed by (1) in the form

{ Mg () T+ ceg () S +ka () = e(t) -
q(0) = q0,9'(0) = vo.

The above second-order equation may not be equivalent to a fractional oscillator unless 1., and
or cg; are appropriately expressed and properly related to the fractional order « for Class I oscillators,
or f3 for Class Il oscillators, or («, B) for oscillators in Class III. For those reasons, we further generalize
(51) by

{ Megq1 (w, o) i dtz( ) + Ceql (w, ) i dt(t) +kxq(t) = e(t) (52)
x1(0) = x10, ¥1(0) = vy,
for Class I oscillators. As for Class Il oscillators, (51) should be generalized by
{ megp(0, B) Y + copp(, )% () =e(t) )
x2(0) = x19, x2(0) = 0.
Similarly, for Class III oscillators, we generalize (51) to be the form
2
{ mega (w2, B) 55 + ceqa (o, o, B) 5 + ks (1) = e(t) )
x3(0) = x30, ¥3(0) = v30.
Three generalized oscillation Equations (52)—(54), can be unified in the form
dx;(t) dx;(t)
Megj—giz— + Cegj—qr~ + kx;(t) = e(t) ,i=1,2,3. (55)
x;(0) = xjo, x;(0) = v30

By introducing the symbols wg, j = | /%ﬂ and ¢,y = \/7 forj=1, 2, 3, we rewrite the above by

d2x;(t) dx;(t)
{ di{z +2g“l]wﬁqn] dr +weqn,] ](t) = TMegj ]': 123 (56)

xj(0) = xjo, x;(0) = v3p

Let Yj(w) be the Fourier transform of y;(t), where y;(t)(j = 1, 2, 3) respectively corresponds to the
one in (31), (42), and (43). Denote by X;(w) the Fourier transform of x;(t). Then, if we find proper m,,;
and ¢, such that

Y]

(w) = X]-(w), i=1,273, (57)
the second-order equation (52), or (53), or (54) is equal to the fractional oscillation Equation (31), or
(42), or (43), respectively.

Obviously, once we discover the equivalent equations of the fractional oscillation Equations (52),

or (53), and (54), all problems stated previously can be readily solved.
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4. Equivalent Systems of Three Classes of Fractional Oscillators

In this section, we first present an equivalent system and then its equivalent mass and damping
in Sections 4.1-4.3, respectively for each class of fractional oscillators.

4.1. Equivalent System for Fractional Oscillators in Class I

4.1.1. Equivalent Oscillation Equation of Fractional Oscillators in Class I

Theorem 1 gives the equivalent oscillator with the integer order for the fractional oscillators in
Class L

Theorem 1 (Equivalent oscillator I). Denote a fractional oscillator in Class I by

d*yy(t)
=g

+ky1(£) =0,1 < <2, (58)
Then, its equivalent oscillator with the equation of order 2 is in the form

7T d%xq (¢ d
— mw* 2 cos % ;C;Z( ) + mw* sin “2 x;l( )

+kxi(H) =0,1<a<2. (59)

Proof. Consider the frequency response of (58) with the excitation of the Dirac-delta function 4(t).
In doing so, we study
dlxhyl (t)
dt«

Doing the Fourier transform on the both sides of (60) produces

m

+ Ky (F) = 6(5),1 < a < 2. (60)

[m(iw)* +k|Hp(w) =1,1 <a <2, (61)

where H,1(w) is the Fourier transform of k1 (t). Using the principal value of i, we have

i* = cos % +isin %. (62)
Thus, (61) implies
[m(iw)" + k| Hy (w) = {m(cos 4 +isin G')w" +k} H,
(63)
= (mw" cos 4F + imw" sin 4 + k) Hyq (w) = 1.
Therefore, we have the frequency response of (60) in the form
Hy () = ! (64)
YT et cos 5+ imew® sin °F + k-
On the other hand, for 1 <« < 2, we consider (59) by
o armd®h(t) _1 . amdhy(t)
— maw" s>~ djjfz + mw™ ™" sin — 5 ’Zit + khyy (t) = 6(t). (65)
Performing the Fourier transform on the both sides of (65) yields
[—mw* 2 cos G (—w?) + mw" 1 sin 4 (iw) + k| Hy (w) (©6)

= (mw" cos 4§ + imw"sin *ff + k)Hy (w) =1,
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where Hyq(w) is the Fourier transform of /1 (t). Therefore, we have

1
Ha (w) = mw® cos ¢ + imw® sin ¢ + k' (67)
By comparing (64) with (67), we see that
Hy1(w) = Hy (w). (68)

Thus, (59) is the equivalent equation of (58). The proof completes. [

4.1.2. Equivalent Mass of Fractional Oscillators in Class I

From the first item on the left side of (59), we obtain the equivalent mass for the fractional
oscillators of Class I type.

Theorem 2 (Equivalent mass I). The equivalent mass of the fractional generators in Class 1, denoted by meq,
is expressed by

Megt = Meq1 (w, &) = — (w"“z cos %)m,l <a <2 (69)

Proof. According to the Newton’s second law, the inertia force in the system of the fractional

oscillator (58) corresponds to the first item on the left side of its equivalent system (59). That is,

a2 am d2xi(t) d*x; (¢)
mw"™ = cos 5t —p T

the proof finishes. [

. Thus, the coefficient of

is an equivalent mass expressed by (69). Hence,

From Theorem 2, we reveal a power law phenomenon with respect to 1,1 in terms of w.
Remark 1. The equivalent mass I, meq1, follows the power law in terms of oscillation frequency w in the form
Meg1 (W, &) ~ W %m,1 < a<2. (70)

The equivalent mass 1, relates to the oscillation frequency w, the fractional order &, and the
primary mass m. Denote by

Ry (w, o) = —w" 2 cos %,1 <a<2. (71)
Then, we have
Meg1 = Meg1 (W, &) = Ryp (w,a)m, 1T <o < 2. (72)
Note 4.1: Since
Rm(w,2) =1, (73)

Meq1 (w, &) reduces to the primary mass m when « = 2. That is,
Meg1 (w,2) = m. (74)

In the case of a = 2, therefore, both (58) and (59) reach the conventional harmonic oscillation with
damping free in the form

d*x (1)
m T2 + kxy(t) = 0.
Note 4.2: If x — 1, we have
limmeq (w,a) =0 forw # 0. (75)

a—1
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The above implies that m,; vanishes if « — 1. Consequently, any oscillation disappears in
that case.
Note 4.3: When 1 < « < 2, we attain

0 < Ryi(w,a) <lforw > 1. (76)
Thus, we reveal an interesting phenomenon expressed by
me,ﬂ(w,zx) <mforl < a <2, w > 1. (77)

The coefficient R, (w, &) is plotted in Figure 1.

4

Rm1l(omega, alpha)

Figure 1. Plots of R, (w, «). Solid line: & = 1.2. Dot line: & = 1.5. Dash line: « = 1.8.

Remark 2. For « € (0, 2), we have
(ji_rgomeql (w,a) =0. (78)

The interesting and novel behavior, described above, implies that a fractional oscillator in Class I
does not oscillate for w — oo because it is equivalently massless in that case.

Remark 3. For « € (0, 2), we have
lim me,ﬂ(w,tx) = oo. (79)
w—0

The interesting behavior, revealed above, says that a fractional oscillator of Class I type does not
oscillate at w = 0 because its mass is equivalently infinity in addition to the explanation of static status
conventionally described by w = 0.

4.1.3. Equivalent Damping of Fractional Oscillators of Class I

We now propose the equivalent damping.

Theorem 3 (Equivalent damping I). The equivalent damping of a fractional oscillator in Class I, denoted by
Ceq1, 1S expressed by

Ceql = Ceq1(w, ) = (w"‘_l sin %)m,l < <2 (80)

Proof. The second term on the left side of (59) is the friction with the linear viscous damping coefficient
denoted by (80). The proof completes. [
Denote
Ry (w,a) = w* Lsin %,l <a <2 (81)
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Then, we have
Ceq1 (W, &) = Req (w, a)m. (82)

The coefficient R.1 (w, «) is indicated in Figure 2.

3

2.25

1.5

0.75

Rcl(omega, alpha)

omega

Figure 2. R (w, w). Solid line: & = 1.2. Dot line: a = 1.5. Dash line: « = 1.8.

Remark 4. The equivalent damping I relies on w, m, and . It obeys the power law in terms of w in the form
Ceq1 (W, &) ~ W lm,1 < a <2 (83)

Note 4.4: Because
Coq1 (w, )], _, =0, (84)

we see again that a fractional oscillator of Class I type reduces to the conventional harmonic one when
o =2

Remark 5. An interesting behavior of c.q1, we found, is expressed by
(gi_lgocgql (w,a) =00,1 < <2. (85)
The above says that the equivalent oscillator (59), as well as the fractional oscillator (58), never
oscillates at w — oo for 1 < « < 2 because its damping is infinitely large in that case. Due to

lim cpg1(w,0) = 0,1 <a <2, (86)
w—0

we reveal a new damping behavior of a fractional oscillator in Class I in that it is equivalently
dampingless for 1 <a <2 atw =0.

4.2. Equivalent Oscillation System for Fractional Oscillators of Class II Type

4.2.1. Equivalent Oscillation Equation of Fractional Oscillators in Class II

Theorem 4 below describes the equivalent oscillator for the fractional oscillators of Class II type.

Theorem 4 (Equivalent oscillator II). Denote a fractional oscillator in Class II by

d*ya(t)
KT

dPy,(t)
datb

+e +hya(t) =0,0<B<1. (87)
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Then, its equivalent 2-order oscillation equation is given by

(m —cwP?co ﬁ;) d ;:2( ) + (cwﬂ1 sin 'an) dx;ift) +kxp(t) =0,0< B < 1. (88)

Proof. Consider the following equation:

dzhyz(f) dﬁhyz(f)

Lo te dth

+ Ky () = 5(1),0 < < 1. (89)

Denote by Hy(w) the Fourier transform of /,,(t). Then, it is its frequency transfer function.
Taking the Fourier transform on the both sides of (89) yields

[—mwz + c(iw)? +k} Hp(w) =1,0 << 1. (90)
With the principal value of i#, (90) becomes

[—mw2+c(iw)ﬁ+k}H2(w):{ mw Jrc(cos/5 +1smﬁ )wﬁ+k} 2(w)

1)
= ( mw 4—cw/3cos'S +k—|—zcwﬁs1nﬁ2 )Hyz(a)) =1

The above means

1

—mw? + cwP cos 5 + k + icwP sin /52

HyZ (w) (92)

On the other hand, we consider the equivalent oscillation equation II with the Dirac-5 excitation by

2 2
g2 BT\ dheo(t) p1 . BT\ dhxo(t)  dho(t) <
(m cwP™"cos = ) preml sin > i +k 2 o0(),0<p <1 (93)

Performing the Fourier transform on the both sides of the above produces

[ mw —i—cculgcos’/3 —chﬁsm’8 (zw)+k} 2(w)

(94)

= ( maw? + cwP cos ’3 +k + icwP sin X )sz(w) =1,

where H,,(w) the Fourier transform of hy;(t). Thus, from the above, we have

1
HxZ(w) = (95)
—mw? + cwb cos BX + k + icwP sin BX
Equations (92) and (95) imply

Hya(w) = Hao(w) (%6)

Hence, (88) is the equivalent oscillation equation of the fractional oscillators of Class II. This completes
the proof. O
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4.2.2. Equivalent Mass of Fractional Oscillators of Class II
The equivalent mass of the fractional oscillators of Class II type is presented in Theorem 5.

Theorem 5 (Equivalent mass II). Let m.g be the equivalent mass of the fractional oscillators of Class II
type. Then,

Megp = Mega(w, B) = m — cwP? cos ,3771,0 <p<1. 97)

Proof. Consider the Newton’s second law. Then, we see that the inertia force in the equivalent oscillator
ITis (m — cwP2cos ’%”) cic} Therefore, (97) holds. The proof completes. []

dar?

From Theorem 5, we reveal a power law phenomenon with respect to the equivalent mass IL.
Remark 6. The equivalent mass meqp obeys the power law in terms of w in the form

Mega ~ —cwP2,0 < g <1 (98)

Note 4.5: Equation (97) exhibits that .y is related to the oscillation frequency w, the fractional
order B, the primary mass m, and the primary damping c.

Remark 7. For 0 < 8 < 1, we have

Ji_rgomeﬂ(w,ﬁ) =m. (99)

Figure 3 shows its plots for m = ¢ = 1 with the part of m.p(w, B)> 0.

1

0.92

0.84

0.76

Equivalent mass II

0.68

1
2 4 6 8 10

omega

0.6
0

Figure 3. Plots of mep(w, B) >0 form=c=1.

Remark 8. For 0 < B < 1, we have
lim e (w, B) = —oo. (100)
w—0

Note 4.6: The equivalent mass II is negative if w is small enough.
Figure 4 exhibits the negative part of .5 (w, ).
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Figure 4. Tllustrating negative part of 71,4 (w, B) form=c=1. (a) B=09. (b) B=0.7. (c) B=0.5. (d) =0.3.

Remark 9. We restrict our research for meg(w, ) > 0.
Note 4.7: The equivalent mass II reduces to the primary mass m for = 1 as indicated below.
Megp(w, )] 5y = m. (101)
In fact, a fractional oscillator in Class II reduces to the conventional oscillator below if g =1

d2X2 de
mﬁ +C7+k3€2 = 0.

4.2.3. Equivalent Damping of Fractional Oscillators in Class II
Let ceqo be the equivalent damping of a fractional oscillator in Class II. Then, we put forward the

expression of ¢, with Theorem 6.

Theorem 6 (Equivalent damping II). The equivalent damping of the fractional oscillators in Class 1l is in
the form

Ceqz = Coq2(w, B) = cwP 1 sin %”,o <p<1 (102)

Proof. The second term on the left side of (88) is the friction force with the linear viscous damping
coefficient denoted by (102). The proof completes. [J
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Denote by

Then, we have

Reo(w,B) = wP~1sin %”,0 <B<1.

ce2(w, B) = Rea(w, B)c.

Figure 5 indicates Rez(w, B).

Rc2(omega, alpha)

4

18 of 91

(103)

(104)

Figure 5. Indication of R (w, B) Solid line: = 0.9. Dot line: B = 0.6. Dash line: g = 0.3.

Remark 10. The equivalent damping ceqp is associated with the oscillation frequency w, the primary damping c,

and the fractional order B. It follows the power law in terms of w in the form

Ceqp(w, B) ~wPle,0<p<1.

(105)

Note 4.8: The following says that c,;» reduces to the primary damping c if § = 1.

Ceq2(w, B) ‘5:1 =c

(106)

Remark 11. The equivalent damping ceg has, for B € (0, 1), the property given by

Jigloceqz(w,ﬁ) =0.

(107)

d%xy(t)

Note 4.9: The equivalent oscillation equation of Class II fractional oscillators reduces to m=—35= +
kx;(t) = 0 in the two cases. One is w — oo, see Remark 7 and Remark 12. The other is ¢ = 0.
Note 4.10: Remark 5 for u%1_r)r;o Ceq1(w, B) = co and Remark 11 just above suggest a substantial

difference between two types of fractional oscillators from the point of view of the damping at w — co.

Remark 12. The equivalent damping ceq has, for B€ (0, 1), the asymptotic property for w — 0 in the form

li ,B) = oo.
wlg})cqu(w B) =00

(108)

The above property implies that a fractional oscillator in Class II does not oscillate at w — 0
because not only it is in static status but also its equivalent damping is infinitely large.
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4.3. Equivalent Oscillation System for Fractional Oscillators of Class 111

4.3.1. Equivalent Oscillation Equation of Fractional Oscillators in Class III

We present Theorem 7 below to explain the equivalent oscillation equation for the fractional
oscillators of Class IIL

Theorem 7 (Equivalent oscillator III). Denote a fractional oscillation equation in Class 111 by

o P
Iy BV | =01 <a<2,0<p<1 (£09)

Then, its equivalent oscillator of order 2 for 1 <« < 2 and 0 < B < 1 is in the form

a—2 ar -2 B\ d*xs(t)
— (mw cos %= + cwP=2 cos 7) —an

(110)
+ (mw”‘_l sin 4 + cwPLsin ﬁzn) dx3(t) + kxs(t) = 0.
Proof. Let us consider the equation
d*hys(t)  dPhys(t
dyti( ) +c dytf;( ) +khya(t) =6(t),1<a<2,0<B<1. 111)

Let Hy3(w) be the Fourier transform of /1y3(t). Doing the Fourier transform on the both sides of the
above results in
i) + c(iw)® + k[ Hys(w) = 1,1 <2 <2,0< p <1, (112)

Taking into account the principal values of i* and i, (112) becomes
[m(iw)“ + cliw)P + k} Hys(w)
= {m(cos 4L 4 isin &) w" +C(cos BT 4 isin BT )wﬁ —I—k} Hy3(w) (113)
= {mw cos - + cwh cos & Er +k+z(mw sin 4 + cwP sin br )}Hﬁ,( w)=1.

Consequently, we have

1

mw® cos 4 + cwh cos /5 —I—k—i—z(mw”‘ sin 2% + cwP sin 52 )

Hy3(w) = (114)

On the other hand, considering the equivalent oscillator III driven by the Dirac-0 function, we have

- (mw”“2 cos 4L + cwP2 cos %”) dz’;xfi(t) + (mw"“l sin 4 + cwhP 1 sin ﬁzn) Msll) 4 khea(H)=6(t).  (115)
When doing the Fourier transform on the both sides of the above, we obtain

(mw c0s % + cwP cos BI >Hx3( ) +z<mw sin &2 + cwP sin BX )ng,( )+ kHy3(w)=1, (116)

where Hy3(w) is the Fourier transform of h1,3(t). Therefore, from the above, we get

1

Hys(w) = (117)

mw* cos 4 —l—cwﬁcosﬁ +k+1<mw"‘sm +cwﬁsmﬁz)
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Two expressions, (114) and (117), imply that
Hys(w) = Hys(w). (118)
Thus, Theorem 7 holds. [

4.3.2. Equivalent Mass of Fractional Oscillators in Class III

From Section 4.3.1, we propose the equivalent mass of the fractional oscillators in Class III type
by Theorem 8.

Theorem 8 (Equivalent mass III). Let m.,3 be the equivalent mass of the fractional oscillators in Class III.
Then, for1<a <2and 0< B <1,

Mgz = Megz(w, &, B) = — (mw”‘_z cos % + cwP2 cos ﬂ;) . (119)
Proof. When considering the Newton’s second law in the equivalent oscillator III (110), we immediately
see that Theorem 8 holds. [J
Remark 13. The equivalent mass meg3 obeys the power law in terms of w.
Note 4.11: The equivalent mass 1,4 is related to w, m, and c, as well as a pair of fractional
orders («, B).

Note4.12: Ifa =2and B =1, Meg3 reduces to the primary m, i.e.,

Meg3 ((U, «, :B) |1x:2,ﬁ:1 =m. (120)

As a matter of fact, a fractional oscillator of Class III reduces to the ordinary oscillator when « = 2
and f=1.

Remark 14. In the case of w — oo, we obtain

Ji_r)rgomqu(w,a,ﬁ):0,l<a<2, 0<p<l. (121)

Therefore, we suggest that a fractional oscillator in Class III does not oscillate for v — oo because its
equivalent mass disappears in that case. Figure 6 shows its positive part fora =1.5, =09, m=c=1.

1
=
08 -
wn
<
g 0.6 ™ -
+—
[
L
< 04 .
2
5
S L —
m 0.2
| | | |

0
0 02 04 06 08 1
omega

Figure 6. Indicating the positive part of m,43(w,a, B) fora =15, =09, m=c=1.
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Remark 15. In the case of w — 0, we obtain

lim meg3(w,a,B) = —00,1 < <2,0<p <1 (122)
w—0

In fact, if w is small enough, Meg3 (w, a, B) will be negative, see Figure 7.

100

100 [~

—200 [~

=300 [~

Equivalent mass III

I
0.005

=400
0
omega

Figure 7. Negative part of me3(w, «, ) for m =c=1and g = 0.9. Solid line: a = 1.9. Dot line: a = 1.6.
Dash line: & = 1.3.

Remark 16. This research restricts meg3(w, a, B) € (0, 0o).

4.3.3. Equivalent Damping of Fractional Oscillators in Class III
Let c¢q3 be the equivalent damping of a fractional oscillator of Class III type. Then, we propose its

expression with Theorem 9.

Theorem 9 (Equivalent damping III). The equivalent damping of the fractional oscillators in Class 111 is given
by for1<a<2and 0<p <1,

1

Ceqs = Cegz(w, &, B) = mw™ ™" sin % + cwP 1 sin ﬁg (123)

Proof. The second term on the left side of the equivalent oscillator III is the friction force with the
linear viscous damping coefficient denoted by (123). Thus, the proof completes. [J

Remark 17. The equivalent damping c.,3 relates to w, m, ¢, and a pair of fractional orders («, ). It obeys the
power law in terms of w. It contains two terms. The first term is hyperbolically increasing in w* ' as « > 1 and
the second hyperbolically decayed with wP~" since p < 1.

Note 4.13: From (123), we see that c.;3 reduces to the primary damping ¢ fora =2 and g = 1.
That is,
Ceq3(w, a, B) |a:2’ﬁ:1 =c. (124)

Remark 18. One asymptotic property of ceqs for w — oo, due to li_1>n w* 1 = oo for 1 <a < 2, is given by
w—0

Ji_rgoceqS (w,a,B) = . (125)

The above says that a fractional oscillator of Class III does not vibrate for w — co.
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Remark 19. Another asymptotic property of ceqs in terms of w for w — 0, owing to lirr}) WPl =
w—

for 0 < B <1, is expressed by

(}}iin[)cqu(w, a,B) = .

(126)

A system does not vibrate obviously in the case of w — 0 but Remark 19 suggests a new view
about that. Precisely, its equivalent damping is infinitely large at w — 0. Figures 8 and 9 illustrate

ceg3(w, a, B) form=c=1.

Equivalent damping III

Equivalent damping IIT

4

3.4

2.8

L4
Equivalent damping III

26

Equivalent damping III

4 6

omega

(©)

4 6 8 10

omega
(d)

Figure 8. Plots of equivalent damping III for m = ¢ = 1. Solid line: & = 1.9. Dot line: « = 1.6. Dash line:
«=1.3. (a) For =0.9. (b) For  =0.7. (c) For § =0.5. (d) For  =0.3.

Equivalent damping II1

Equivalent damping III

4 6

omega

(a)

8 10 0

4 6 8 10
omega

(b)

Figure 9. Plots of c.p3(w, a, B) for m = ¢ = 1. Solid line: g = 0.8. Dot line: = 0.5. Dash line: g =0.3.

(a) For « = 1.8. (b) For « = 1.3.
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Note 4.14: The equivalent damping c43= 0 if both & =2 and ¢ = 0:

Ceqa(w, &, B)|,_p .o = O. (127)

4.4. Summary

We have proposed three equivalent oscillation equations with order 2 to equivalently characterize
three classes of fractional oscillators, opening a novel way of studying fractional oscillators. The analytic
expressions of equivalent mass 1,,; and damping c.q; (j = 1, 2, 3) for each equivalent oscillator have
been presented. One general thing regarding m,.,;; and damping c,,; is that they follow power laws.
Another thing in common is that they are dependent on oscillation frequency w and fractional order.

5. Equivalent Natural Frequencies and Damping Ratio of Three Classes of Fractional Oscillators

We have presented three equivalent oscillation equations corresponding to three classes of
fractional oscillators in the last section. Functionally, they are abstracted in a unified form

d?x;(t) dx;(t)

In each equivalent oscillator, either m,,; or c,y; is not a constant in general. Instead, either is a
function of the oscillation frequency w and the fractional order a for 1,1 and ceq1, B for meg and cey2,
(&, B) for meg3 and c,p3. Consequently, natural frequencies and damping ratios of fractional oscillators
should rely on w and fractional order. We shall propose their analytic expressions in this section.

5.1. Equivalent Natural Frequency I

Definition 1. Denote by wegy,j a natural frequency of a fractional oscillator in the jth class (j =1, 2, 3). It takes
the form

k

7 j - 1/2/ 3/ (129)
Megj J

Weqn,j =

where meg; is the equivalent mass of the fractional oscillator in the jth class.

With the above definition, we write (128) by

?xi(t)  cogi dx;j(t) k A?xi(t)  cogi dx;(t) f(t)
] eq] 7] ] eq] J 2 ;
(F) = xi(t) = =123 (1
T eyl ey x;(t) i T Wean % (1) mgqj,] ,2,3. (130)
Note 5.1: w,g;, j may take the conventional natural frequency, denoted by
k
wn =4[ (131)

as a special case.

Corollary 1 (Equivalent natural frequency I1). The equivalent natural frequency I1, which we denote it by
Wegn,1, of a fractional oscillator in Class I is given by

Wy

weqn,l =
\/ —w* 2 cos 4L

d<a<2. (132)
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Proof. According to (129), we have, for 1 <a <2,

1 k wy,
= = = = ——— 133
Wegn,1 \/meql \/ mw*—2 cos 7 \/_waZ cos % m /77(’()&_2 cos % ( )
The proof finishes. [J

Figure 10 shows the plots of wegp,1-

~ ~~
sy g g
= =

< <

s 32 oS 64 -]
S ~"1 & -
) ,,.-—"/ g f/

§ 24r - 1 § 43 - .
p— —

- 16 — / o= gn 32 — / I e
g 167 7 ) /o

o r!"/ﬁ_/— o, r{,‘/‘—_/—
< 0.8 I < 1.6 N
&0 ,f e f

2 2 R B

g 0 N g o

0 08 16 24 32 4 0 08 16 24 32 4

omega omega

(a) (b)

Figure 10. Natural frequency cwyy;, 1. Solid line: & = 1.8. Dot line: & = 1.5. Dash line: « = 1.2. (a) wy = 1.
(b) wy, =2.

Note 5.2: From Figure 10, we see that w1 is an increasing function with w. Besides, the greater
the value of a the smaller the wegp,1.
Note 5.3: weqn,1 becomes wy, if & = 2. In fact,
= = wy. (134)

[k
weqn,1|“:2 =
meql =2 /_wleZ cos % )
K=

Corollary 2 (Equivalent natural frequency 12). The natural frequency 12, wegn 2, of a fractional oscillator in
Class II is given by

Wn

Wy
Wegn,2 =
\/1 — £whP2cos ﬁTn

(135)

Proof. Following (129), we have

w k k k Wn
2= = = -
“an Meg2 m — cwP=2 cos %ﬂ m (1 — Lwh=2cos %n) \/1 — £whP2cos X

Hence, the proof completes. [J

Figure 11 indicates the curves of w2
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Figure 11. Curves of w2 for m = ¢ = 1. Solid line: = 0.8. Dot line: g = 0.5. Dash line: g = 0.3.
(@) wy =1. (b) wy, =2.

Note 5.4: Figure 11 shows that w2 is a decreasing function with w. The greater the value of g
the smaller the wegy 2.

Note 5.5: weqn 2 takes wy, as a special case for = 1. As a matter of fact,

Wy

weqn,Z! 1=
P \/1 — Lwhb2 cosﬁTH

= wy. (136)
p=1

Corollary 3 (Equivalent natural frequency I3). The natural frequency I3, denoted by wegn 3, of a fractional
oscillator in Class Ill is given by

Wy

Wegn,3 = .
\/— (a}"‘—z cos 4 + £whP2 cos ﬁ%)

(137)

Proof. With (129), we write

— k — k — Wy

w =/ = = . 138

eqn,3 Meg3 \/7 (mw"‘*z cos 4 +cwbP=2 cos /ST”) \/, (wa—Z cos 2+ £ wh~2 cos ﬂf) ( )
m

2

The above completes the proof. [

Figure 12 gives the illustrations of wegy 3.
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10 T

omega_eqn, 3(omega, alpha, beta)

20 T T

omega_eqn, 3(omega, alpha, beta)

omega

(b)

Figure 12. Illustrations of wegp3 for m = ¢ = 1. Solid line: a = 1.8, = 0.9. Dot line: a = 1.5, § = 0.9.
Dash line: « =1.2, =0.9. (a) wy = 1. (b) wy =2.

Note 5.6: Figure 12 exhibits that w3 is an increasing function in terms of w.
Note 5.7: weqn 3 takes wy, as a special case for « =2 and B = 1. Indeed,

3 k
o N . (139)
=2,=0 — (mwﬂt*Z cos & + cwbP=2cos EX " '

Weqn,3

7> 0=2,p=1

5.2. Equivalent Damping Ratio

Definition 2. Let ¢.4; be the equivalent damping ratio of the equivalent system of a fractional oscillator in
Class j. It is defined by

o
A i=1,23. (140)

Geq]’ =
2, /mgq]‘k
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Corollary 4 (Equivalent damping ratio I). The equivalent damping ratio of a fractional oscillator in Class I is

expressed by

Geql = geql(w/ &) =

x .,
w? sin &%

2wy — cos 55F

Sl <a <2,

(141)

Proof. Replacing 11,41 and ¢,y in the expression below with the equivalent mass I and the equivalent
damping I described in Section 4

yields

mw

Ceql

Gogl = —F—
24 /me,ﬂk

a—1
Sln2

Geql =

The proof finishes. [

2\/( mw*=2 cos 4 )k

w 2 sm /
— cos 4%

(UZ sin &%

Wiy — cos@

Remark 20. The damping ratio . follows the power law in terms of w.

I <a <2

(142)

(143)

Remark 21. The damping ratio of fractional oscillators in Class I relates to the oscillation frequency w and the
fractional order w. It is increasing with respect to w.

Geq1 (0,6) = 0and geg1(o0,a) = co.

Figure 13 shows the curves of ¢.q1(w, ).
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08 1.6 24 32
omega
(b)

4

(144)

Figure 13. lllustrations of ¢, (w, a). Solid line: & = 1.3. Dot line: & = 1.6. Dash line: « = 1.9. (a) For w;, = 1.

(b) For wy, =3.

Note 5.8: Figure 13 indicates that the smaller the a the greater the ¢.;1.

Corollary 5 (Equivalent damping ratio II). The damping ratio of a fractional oscillator in Class Il is given by

where ¢ = —%

cwP™

1aiy BT
SIHT

Geq2 = Qeqz(w/ ﬁ) =
V1

0<p<,

€ B2 s BT
£ whP=2cos &5

(145)



Symmetry 2018, 10, 40 28 of 91

Proof. When replacing the ., and ceq in the following expression by the equivalent mass Il and the
equivalent damping Il proposed in Section 4, we attain

c _ Ceq2 _ cwP~Lsin b o cwP=1sin ﬁTﬂ
eq2 — - -
2y/megpk 2\/(m7cw/3’2 cos ﬁZ—n)k 2\/(17%@3’2 cos ﬁZ—n)mk
. cwP~1sin /577[ o cwP~1sin /377[ 0 <1
= = = =,0< B <1
2\/mk\/17%w5_2 cos% \/17%w5_2 cos%

This finishes the proof. [
Remark 22. The damping ratio g, obeys the power law in terms of w.

Remark 23. The damping ratio g.q is associated with w and the fractional order B. It is decreasing in terms

of w.

Note 5.9: ¢, takes { as a special case for § = 1. In fact,

cwP~1sin 57”

\/1 — £wP2cos BT

Qqu(w/ ,B)|’3:1 = =G (146)

p=1

Figure 14 indicates the plots of ¢eg(w, B) in the case of m=1,c=1,and k= 1.

1

0.8

0.6

0.4

0.2

zeta_eq2(omega, beta)

0
0 08 16 24 32 4

omega

Figure 14. Plots of e (w, B) for m = ¢ =k = 1. Solid line: B = 0.9. Dot line: 8 = 0.6. Dash line: = 0.3.

Corollary 6 (Equivalent damping ratio III). Let Geq3 be the damping ratio of a fractional oscillator in Class
III. Then, for1<a <2,0< B <1,

w* 1sin 82 + 2cw,wP~1sin ﬁTH

20y \/— (w“*z cos 4% + 2¢cwywhP=2 cos ﬁ%)

Qeq3 - geq3 (CU, &, ,3) = (147)

Proof. If replacing the 11,3 and c,;3 below with the equivalent mass IIl and the equivalent damping I1T
presented in Section 4, we obtain
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Cors = Ceq3 B mw* ! sin %+cw5*1 sin ﬁz—"
el] - -
2y/megsk 2\/— (mw"‘*z cos - +cwb=2 cos Ef ) k

m (w“’l sin %-ﬁ-%wﬁ*l sin ’BTN) _ m (w“’l sin %-}-Zgwnwﬁ*l sin ﬁ%)

2\/— (w“*z cos %-&-%wﬁ’z cos %n) mk 2/ mk\/— (w“*z cos %“!‘2{;(&)1‘1(«0‘372 cos ’ST’T)

w* lgin %+2gwnwﬁ’1 sin /37”

2wy, \/— (w‘"*z cos Y +2¢wpwP =2 cos ﬁTn)

Thus, we finish the proof.
Remark 24. The damping ratio Geq3 follows the power law in terms of w.
Remark 25. g3 relates to w and a pair of fractional orders («, B).

Note 5.10: g3 regards  as a special case for =2 and = 1. As a matter of fact,

1 Br

ia ATT —1
sin 55 + 2¢w,wP 1 sin 5

2n \/— (w”‘—Z cos 4% + 2cwywh =2 cos %")

w*~

Geg3(w,2,1) = =c. (148)
a=2,8=1

Figure 15 demonstrates the figures of ggq3(w, a,B) inthecaseof m=1,c=1,and k=1.

~~ ~
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° 1 5] 1
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o] <
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g 0.76 = g 0.64
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gl 0.68 [~ gl 0.52
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] 1 © 1
O O
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08 0.8
£ £
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< 06 < 06
& &
g 041 g 0.4
& &
gl 02 - gl 02 -
<
g L1 1 g L1
N 0 08 16 24 32 4 N 0 08 1.6 24 32 4
omega omega
(c) (d)

Figure 15. Demonstrations of geq3(w, a,B) inm=c=k=1. Solid line: « = 1.9. Dot line: a = 1.8. Dash
line: « = 1.7. (a) For g =0.8. (b) For § =0.5. (c) For § =0.2. (d) For g =1.
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5.3. Equivalent Natural Frequency II

Now, with two parameters w,,;, ; and ¢.4; presented above, we rewrite the equivalent oscillator
(130) by

@2x;(t) dxi(t) 5 £t .
T +2€eq] eqn,j BT +weqn,jxj(t) = @r] =123 (149)
The characteristic equation of (149) is given by
s + 2GeqjWeqn,jSj + weqn/ 0,j=1,23. (150)

The characteristic roots are in the form

S U S S I CRND B
Sji12 = geﬂ]weq”/]:t\/gequeqn,j Wogn,j = ~GeqjWeqn,j £ iWeqnjy/1 — Copij = 1,2,3. (151)

Functionally, we utilize the symbol w,gq ; for

Wegdj = Wegn,jy/1 — ggqj,j =1,2,3. (152)

Thus, the characteristic roots are

5,12 = —GeqjWeqn,j + iweqd,j/j =1,23. (153)

Note that, in practice, 0 < Gegj <1 because 1 < Geqj IN€ANS NO oscillation at all.
We write those above for the sake of applying the theory of linear oscillations to fractional ones.
Now, we discuss wyyg,;.-

Corollary 7 (Equivalent natural frequency II1). Let wegq,1 be the functional damped natural frequency of a
fractional oscillator in Class 1. It may be termed the equivalent natural frequency 111. Then,

sm2 %4
i
Wegd,1 = Wegd,1 (W, &) 4w2|cos M| 1 <a <2, (154)
,/—w"‘ 2cos n 2
Proof. Note that
Wegd,l = Weqn,1 1-— g%dl' (155)
Using the above ¢,41, we have
. 2
w? sin 8¢

2 Wn
Wegd,1 = Weqn,1 1- Codl — 57— 1- | ——F———
\/ —w* 2 cos &% 2wy, ’cos %‘
This finishes the proof. [
The parameter Wegd,1 functionally takes the form of damped natural frequency as in the
conventional linear oscillation theory. In this research, we do not distinguish the natural frequencies
with damped or damping free. At most, we just say that it is a functional damped one. It relates to the

oscillation frequency w and the fractional order «.

Remark 26. w1 is not a monotonic function of w.
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Note 5.11: wy, is a special case of w41 when a = 2:

w® sin?

w w,?2 2
eqa (0,2) = [0t =2 cos & \/ 4w |cos 4 X
K=

As a matter of fact, fractional oscillators of Class I are damping free for & = 2. Figure 16 illustrates
the plots of weyq,1 (w, &).

= wy. (156)

0

= =
1.5 <
:& T T 1 = 4 T T 1
< [a+]
< 121 — CG“
o > &
g 09 g
e - S
] —
s 06 =
2 oof S
o L q)l
< 03 | .
o - B
g
5 g

0 08 16 24 32 4
omega omega

(a) (b)

0 08 16 24 32 4

Figure 16. Plots of w1 (w, ). Solid line: & = 1.8. Dot line: a = 1.5. Dash line: a = 1.2. (a) For w;, = 1.
(b) For w;, =2.

Corollary 8 (Equivalent natural frequency I12). Let wegq 2 be the functional damped natural frequency of a
fractional oscillator in Class 1I. Term it with the equivalent natural frequency I12. Then, for 0 < <1,

2,,,2(B—1) qin2 BT
w crw sin
Wegd2 = Wegap(w, B) = n 1— v /52”. (157)
\/1_%(0,3—2(:08% 1— S wP™?cos 5

Proof. Consider

Wegd2 = Weqn,2\/ 1- Q?dg (158)

Replacing wegy,2 and ¢,qo in the above yields

2
B s Wy cwh~ 1sm—
Wegd2 = We n,2\/1_9 = 1-
g 1 ed2 \/1—%w5*2cosﬁ7" 2¢/1- Lwb zcosﬁ%
g 2,2(B-1) gin2 /37I

\/1 7(4)5 2cos BF P2 cos ﬁz .

Thus, Corollary 8 holds. [J

Remark 27. w5 is related to w and the fractional order B.

Note 5.12: The conventional damped natural frequency, say,

wd:wn,/l—gz (159)

is a special case of wWe,q2(w, B) for p=1.
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Figure 17 gives the plots of w2 (w, B).

247 .

|
asf | —
0.8 [ = ‘

1.6~ 32 0 -

04 -

omega_eqd, 2(omega, beta)
omega_eqd, 2(omega, beta)
f
|'
I
J
omega_eqd, 2(omega, beta)

0 08 1.6 24 32 4 1 1.6 22 28 34 4 0 08 1.6 24 32 4
omega omega omega

() (b) (©)

Figure 17. Tllustrating wegq2 (w, B) for m = ¢ = 1. Solid line: B = 0.8. Dot line: B = 0.5. Dash line: § =0.2.
(a) For wy, = 1. (b) For w, =0.3. (c) For w,, = 10.

Corollary 9 (Equivalent natural frequency 113). Let w3 = Wega3(w, a, B) be the functional damped
natural frequency of a fractional oscillator in Class II1. Call it the equivalent natural frequency I13. Then, for
1<a<2and0<p <1, wehave

2
(a}"‘*l sin 4 +2¢wywP 1 sin /5771)

2
Wyl l— l4w% {7 (‘U“*Z cos %JFZGOJW‘U’B_Z cos ﬁTﬂ)] ‘|

(=2 cog BT L € B2 cog BT
\/(w COSZ+m(Uﬁ cosz)

(160)

Weqd,3 =

Proof. In the expression below

Wegd3 = Weqn,34/ 1- Q?dg/ (161)

we replace wegq 3 and ¢q3 by those expressed above. Then, we have

_ 2 _ [k 12
Weqd,3 = Weqn,3 1 Ced3 = Megs 1 Sed3
- 2

w*1sin %Jngwnwﬁ_l sin ﬁTTf

2wp \/7 (w”‘*z cos % +2gwnwﬁ72 cos ﬁTﬂ)

wy [1-

(0% 2 cos X 1 € (B2 cos BT
\/ (w“ Cosermwﬁ COSZ)

2 12
(w“*l sin %JngwnwlB_l sin ﬁTTI)

wy | 1—

402 {— (w”"Z cos % +2¢wnwP~2 cos ﬁTﬂ )}

\/— (w‘"*z cos 4+ £ wP=2 cos 57")
Therefore, the corollary holds. UJ

Note 5.13: The conventional damped natural frequency wy is a special case of wegq3 for
(«, B) =(2,1). Indeed,
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Weqd,3 (w,2,1) =

Remark 28. The natural frequency wegq 3 is associated with w and a pair of fractional orders (, p).

<w"‘*1 sin 4 +2¢wywP 1 sin

\2
2

wyrl|l— [4“’%{

- (a}‘"*z €08 4 426w, whP=2 cos EF

|

Figures 18 and 19 indicate its plots.
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(162)

Figure 18. Demonstrations of w,3(w, &, B) for m = c =k =1. Solid line: « = 1.9. Dot line: a = 1.6. Dash
line: « = 1.3. (a) For p = 0.9. (b) For p=0.8. (c) For § =0.3. (d) For § =0.2.

omega_eqd, 3(omega, alpha, beta)

Figure 19. wyi3(w, a, B) form=c=1,4=0.9.
(a) For wy, = 3. (b) For w, =5.

B
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Solid line: « = 1.9. Dot line: « = 1.6.
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Dash line: « =1.3.
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5.4. There Exists Infinity of Natural Frequencies of a Fractional Oscillator

The previous discussions imply that there exists infinity of natural frequencies, for either w,g, ; or
Weqq,j, because each is dependent on w € (0, o). We functionally derived the two characteristic roots of
the frequency equation (151), namely, s; 1 5, actually stand for infinity of roots owing to w € (0, o).

Taking a fractional oscillator in Class I into account, its frequency equation is given by

s“+w?=01<a<2 (163)

Then, it is easy to see that there exists infinitely many characteristic roots in the above, also see
Lietal. [18].

A contribution in this work in representing characteristic roots of three classes of fractional
oscillators is that they are expressed analytically. Moreover, functionally, they take the form as that in
the theory of conventional linear oscillations, making it possible to represent solutions to three classes
of fractional oscillators by using elementary functions, which are easier for use in both engineering
applications and theoretic analysis of fractional oscillators.

6. Free Responses to Three Classes of Fractional Oscillators

We put forward the free responses in this section to three classes of fractional oscillators based on
their equivalent oscillators presented in Section 4. Since the equivalent oscillators are expressed by
using second-order differential equations in form, in methodology, therefore, it is easy for us to find
the responses we concern with. Note that the equivalence explained in Section 4 says that

j(w) =Xj(w), j=1,2,3, (164)
where the subscript j stands for the Class I to III. Consequently,

yi(t) =x;(t), j= 1,23 (165)
Therefore, our research implies three advances.

e  First, proposing the free responses to three classes of fractional oscillators using the way of solving
conventional oscillators.

e  Then, since the responses to conventional oscillators are represented by elementary functions while
those to fractional ones are expressed by special functions, such as the Mittag-Leffler function
and its generalizations, we shall present novel representation to a certain special functions by
elementary ones.

e  Finally, analytic expressions of the logarithmic decrements, which are useful in practice, of three
classes of fractional oscillators are proposed.

6.1. General Form of Free Responses

Consider the free response to the functional equivalent oscillator in Class j in the form

d?x;(t) dx;(t)
Megj—giz— + Cegj—gr~ + kxj(£) =0
dx;(t)
%j(0) = xjo, =g

,i=1,2,3. (166)

= U;
=0 1

Following the representation style in engineering, we rewrite it by

d?x;(t) dx;i(t)

iz 260 Weqn i~ + woy, () =0
dx;i(t)

xj(0) = xjo, —g

,i=1,2,3. (167)

= V;
=0 1
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Therefore (Timoshenko ([1], p. 34), Jin and Xia ([79], p. 11)), we have, for t > 0,

e o Ujo t GeqjWeqn,jXjo .
xj(t) =e CeqjWeqn,jt (x]-o COS Weyqjt + / st L smweqd,jt) (168)
Weqd,j
The above may be rewritten in the form
—GeqjWeqn,jt
x]*(t) = Aeq]'e Seqj@eqnjt cos (weqd,jt — Qeq]‘),t >0, (169)
where the equivalent amplitude A, is given by
Vio + GegiWegn iX 2
= |42 JO T beqj®eqn,j*j0
Acgj = | Xjo + e ] , (170)
eqd,j
and the equivalent phase 6,; is
0 - —tan—1 Yjo + GeqjWeqn,jXj0 171)
eqi = .
K Weqa %0
Note that, for Wegn,js Gegjs Aeqj, and Gequ each is not constant for fractional oscillators. Instead, each

is generally a function of oscillation frequency w and fractional order.
6.2. Free Response to Fractional Oscillators in Class I

We state the free response to a fractional oscillator in Class I by Theorem 10.

Theorem 10 (Free response I). Let x1(t) be the free response to a fractional oscillator in Class 1. Then, for
1< <2, x1(t) is given by

W sin? &%
X10 COS L 1— —5—2t
\/w“—2|cos | 4w |cos 4
Qa7

- t
x(t)=e 2=H0] 0 oBaney . an)
2wnp |cos % | w WX Sin2 %4
n _ 2
* _ wtsin? 8F s \/w"‘*z |cos ar | 4wj |COS %| g
L 4w% |cos % | i

Proof. For t > 0, consider

010 + GeqlWeqn,1X10

x1(t) = e Sen@ernit | x10 cos Wega, t +
weqd,l

SIN Wegd 1 t> . (173)
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In the above, replacing weq,,1 by the one in (132), ¢eq with that in (141), and wegg,1 by the one in
(154) yields

B B w! sin2 %
n 4wy |cos % |
X10 COS t
o w2 ‘cos %|
w 2 sin % wn ¢
xl(t) —e an\/\cos%I \/w"‘*z\cos%\ S
v+ w?2 sin 55+ wp 10 W gin2 %
2u77/,\/ cos%| \/w”‘—z‘cos%| X W 4w%|cos%|
+ sin t
wn -~ W% sin? % w"‘*2|cos % |
L \/w"‘*z |cos ot 4wy |COS e | ]
& oin2 Q7T w%sin% K oin2 A7T
SIN“ =5~ w" sIn- —{—
_ wsin % wny 1= waﬁt oot 2w cos &L o Wy [1= 2!’7&
3 %4 4wn|coz> 7 | n | ] | . 4w,,|cos vl ’
=e 2% | xq0cos + sin| ——————=—¢
\/wa—z |cos u ‘ _ w¥sin? 4 w2 |cos e
40.7% |cos %
This completes the proof. [
Figure 20 indicates x1 (t) with fixed w.
2 2
1.2 .
= 04 -
p—
®-04 . =
-1.2 .
- | | | | -1 | | | |
0 12 24 36 48 60 0 12 24 36 48 60
t t
(a) (b)
2 I T 2 | I I
14 7] 1.2
8 0.8 . S 0.4
— —
02, 1 % -04
-0.4 - -1.2 -
-1 | | | | - | | | |
0 12 24 36 48 60 12 24 36 48 60
t
(c) (d)

Figure 20. Indicating free response x1(t) for x;9 = vyg = wy = 1. (a) « = 1.9. Solid line: w =1
(Geq1 =0.08). Dot line: w = 0.7 (Geq1 = 0.04). (b) & = 1.6. Solid line: w =1 (g¢q1 = 0.33). Dot line: w = 0.7
(Geq1 = 0.16). (c) & = 1.3. Solid line: w =1 (geq = 0.66). Dot line: w = 0.7 (g1 = 0.42). (d) & = 2. Solid
line: w =1 (Geq1 = 0). Dot line: w = 0.7 (g¢q1 = 0).
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Note 6.1: As indicated in Figure 20, both oscillation frequency w and the fractional order « have
affects on the damping ¢41(w, &), also see Figure 10. When & = 2, x1(#) reduces to the free response to
the ordinary harmonic oscillation with damping free in the form (also see Figure 20d)

x(f) = (xm cos wyt + %10 sinwnt>,t > 0.
Wn
The free response to a fractional oscillator in Class I is presented in (172). It uses elementary
functions instead of special functions.
Since there exists infinity of natural frequencies for a fractional oscillator, as we explained in
Section 5, x1(t) is actually a function of both t and w as can be seen from (172). In Figure 20, plots are
only specifically with fixed w. Its plots with varying w are viewed by Figure 21.

1.2

0.4

x1(t)

—0.4

-1.2

-2

Figure 21. Tllustrating free response x1(t) with variable w (=0, 0.2, 04, ..., 10) for xj9 = vy = 1.
(@) Forwy =land a =1.9 (0 < gep1 < 0.64). (b) For wy, =3 and a =1.6 (0 < g1 < 0.63).

When emphasizing the point of time-frequency behavior, we view it in t-w plane as
Figure 22 shows.

x1 x1
(a) (b)

Figure 22. Cont.
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x1 x1
(0) (d)

Figure 22. Indicating free response xi(t) in t-w plane for t =0, 1, ..., 30 and w =1, 2, ..., 5,
with x19 = v10 = 1, wp = 6. (a) « = 1.9 (0.01 < g,p1 < 0.28). (b) =16 (0.05 < gpp1 <0.72). () x =13
01n< Geql < 0.89). (d) a =2 (Qeql =0).

Let t; and t; ;1 be two time points where x;(t;) reaches its successive peak values of x;(t;)
and x;(tiy1), respectively. Let A, be the logarithmic decrement of x;(t;). Then, from (178),
we immediately obtain

—1n xj(ti) _ aneqj
eqj x]-(ti+1) /1 — ngj

Corollary 10 (Decrement I). Let x1(t) be the free response of a fractional oscillator in Class 1. Then, its
logarithmic decrement is given in the form

A (174)

w? sin 4%
Aeg1 = Al 2 _1<a<2 (175)
1_ (UZSII‘IT wn\/_cosan
2wy 4/ — cos 7
Proof. According to (174), we have
t; 27 wz
Aejt = In x1fl ) ge”; - d Y 1ca<2
xl( Z+1) \/1_g€ql 1 w2511’1 2 wn\/_cos
2w,/ cos 7

The proof finishes. [J

Since A1 is a function of w and &, we may write it with A.gp (w, «). Figure 23 indicates Deg-
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Figure 23. Plots of Degr- Solid line: « = 1.9. Dot line: « = 1.6. (a) For w;, = 1. (b) For w;; = 5. (c) For

wy = 10.

Note 6.2: A.;1=0 for a = 2. As a matter of fact, a fractional oscillator in Class I reduces to a
harmonic one if & = 2. Accordingly, A.;1= 0 in that case.

6.3. Free Response to Fractional Oscillators in Class 11

We state the free response to a fractional oscillator in Class II by Theorem 11.

Theorem 11 (Free response II). Denote by x,(t) the free response to a fractional oscillator of Class II type.

Then, it is, for t > 0and 1 < B < 2, in the form

gwmuﬁfl sin

XZ(t) —e 1—%&7/372“)5

B
B
2

Wn -

02w2<ﬁ_1) sin? ﬁTTI

cos e

4(7n—cw/572 ﬁ7T>kt

X0 COS 5
2 s
\/(17 £ wP=2 cos 7)
+ cwbP1 sin r
V0t 7~ g\ X20
2(m—cw572 cos E;)
+
202(B-1) gin2 BT
wy | 1——rree——Z
4(771—6&)/372 cos [’Tn)k
202(B-1) gin2 BT
wy |12t
i 4<m—cw/372 cos ’BTn)k
S

\/(17%@3‘2 cos 57")

(176)
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Proof. Note that, for t > 0,

020 + Geq2Weqn,2X20
weqd,z

(177)

x(f) = e~ Seq2Weqn 2t <xZ0 COS Wepd ot + sin wqu,2t> .

In the above expression, we replace Geg, Wegd 2, and Wegn,2 by those expressed in Section 5. Then,
we have (176). Thus, Theorem 11 holds. [J

Note 6.3: If B =1, x,(t) degenerates to the ordinary free response to an oscillator with the viscous
damper c. In fact,

fzwz(ﬁfl) sin? ﬁTﬂ

wp | 1—-—————2
4(m—cw/372 cos 'BTn)k

Xp0 COS
\/<17 %wﬂ"z cos ﬁTn)

B cwbP1 sin ﬁTﬂ

cwnwP~1sin 7” U0+ —2[;7{9520
B Z(Wr—cwlsf cos T)

0ty =e TRSTOT | 4

2,2(=1) gin2 BT
wp | 1— - 2
4<m—cwﬁ_2 cos ,B%)k

62w2(/371) sin? EQE

wy |1—

T 2 4
4(m—cwﬁ72 cos ’BTn)k

\/(1,%wﬁ—2 cos ﬂ%)

sin

- 2 +o0 . 2
= g~ 6wnt lxzo cos (wn 1- £ t) + 272w gin <wn 1- 54 t)]
wp/1— 57
n 4mk

__ ,—Cwpt — 2 U0 +gWnX: : — 2
= W [xzo cos (a)n 1—g t) + 7521@0 sin (wn 1—g t)] .
Note 6.4: As far as a fractional oscillator in Class II was concerned, its free response in the closed
form is rarely reported. Theorem 11 gives it by using elementary functions.
Let m=c=k=x19 = v19 = 1, and w = 30. We use Figure 24 to illustrate x,(f).

2 T T 2
1.25
~~
Nl
(;l< 0.5
—0.25
- | | -1
0 10 20 30
t t
(a) (b)

Figure 24. Cont.
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2 2
1.25 125 .
e e
g 05 S 05f .
> >
-0.25 =025 [~ _
. | | . | |
0 10 20 30 0 10 20 30
t t
() (d)

Figure 24. Illustrating free response x,(t) with fixed w whenm =c =k = x19 = vy9g = 1. (a) = 0.3.
Solid line: w = 30 (g¢42 = 0.02). Dot line: w =10 (g¢42 = 0.05). (b) B = 0.6. Solid line: w = 30 (geq2 = 0.10).
Dot line: w =10 (geg2 = 0.16). (c) B = 0.9 Solid line: w = 30 (Geq2 = 0.35). Dot line: w =10 (geq2 = 0.40).
(d) B =1. Solid line: w =30 (Geq2 = 0.50). Dot line: w =10 (G40 = 0.50).

Similar to x1(t), x2(t) is also with the argument w. Its plots with variable w are demonstrated in
Figure 25. Figure 26 shows its plots in t-w plane.

2
1.25
~ ~
N N
N
N (;l< 0.5
—0.25
-1
0 7.5 15 225 30 0 7.5 15 225 30
t t
(a) (b)
2 T | 2 T T
1.25 1.25
e 0s e
N .
N g 0.5
—0.25 —0.25
-1 | | | -1 | | |
0 7.5 15 22,5 30 0 7.5 15 225 30
t t
(0) (d)

Figure 25. Plots of free response x(t) withw (=1, 2, ..., 5), m=c=k=1=x79 = v19 = 1. (a) For f =0.2
(0.04 < Gpgp < 0.70). (b) For p = 0.4 (0.12 < ¢gp < 0.67). (c) For f = 0.6 (0.22 < gogp < 0.63). (d) For
$=08(0.35< Geq2 <0.57).
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x2
(b)
1
0s
30 ~ 00
, 1d ; iuj
X2 X2
() (d)

Figure 26. Plots of free response x;(f) in t-w plane with m =k =x19 = v19 = 1,¢=0.5,fort =0, 1, ..., 30;
w=1,2,..,5.(a) =03 (0.04 < gopp < 0.15). (b) f=0.6 (0.11 < gppp < 0.24). (¢) = 0.9 (021 < g < 0.26).
(d) B=1(geg2 = 0.25).

Corollary 11 (Decrement II). Denote by x,(t) the free response to a fractional oscillator in Class II. Then,
for 0 < B <1, its logarithmic decrement Aeg, is in the form

27 cwP~1sin br
Begp = 2 (178)
T 2\/1—£a)/3_2cosﬁ—n
1— cwP1sin b m 2
( 1—£wh2 cos ‘57” )
Proof. According to (174), we have
X2 (ti) 27796:72
Ny = In = . (179)
“ 0(tiv)  1- gg‘ﬁ
Replacing the above ¢ with that in (145) produces
27TGeq2 . 27 gwﬁ_l sin ‘BTH

Aeqz =

1—£wP~2cos ISTN

_ 2 - 2 _ n‘
\/1 Ceq2 1_( cob~1sin BT )\/1—&@5 2cos%

This finishes the proof. [

Similar to Agy1, we may write Agg with Agg (w, B). Figure 27 indicates its plots.
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Figure 27. Logarithmic decrement A, of fractional oscillator in Class Il for m = ¢ = 1. Solid line: = 0.9.
Dot line: 8 = 0.6. (a) For w, = 1. (b) For w; = 5. (c) For w;, = 10.

Note 6.5: A,;» reduces to the conventional logarithmic decrement if 8 = 1, because

27cwP~1sin ‘%ﬂ
17%wﬁ‘2 cos BX 271'g
Aoy = : = : (180)

2 s
\/1-£wP2cos %

6.4. Free Response to Fractional Oscillators in Class 111

2 J1—¢2
1_< cwb—1sin BF > 6

p=1

We now present the free response to a fractional oscillator in Class III by Theorem 12.

Theorem 12 (Free response III). Let x3(t) be the free response to a fractional oscillator in Class III. Then,
fort>0,1<a <2,0< B <1,itis given by
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(mw"‘ 1gin &2 +cuﬂB 1s /ST)
“n 1_4{< w2 p—2 ﬁﬂ)]
mw' cos 2 T 4 cew cos
X30 COS
30 ( a—2 am ¢ ,p-2 B
—(w €os 5+ w cosT)
w1 am . B—1g BT
_ maw* 1 si ﬁ;ﬂ:w/s 1sméf U30+ mwi sin AZHJFCW :m zﬁr[ 30
a2 B—2 o5 BT £ Z(mw”‘ 2|c057‘76w/3 cos )
X3(t) —¢ 2(mw \cos T | —cw! cos - ) + o (181)
\/(w”‘*z‘cos 4| — L wh=2 cos ﬁ”)
1 (mw"‘ Lsin & +cwP =1 sin ﬁﬂ)
B 4{ <mw”‘ 2 cos 4 +cwb~ 205 B2 )k]
2
<m<u"‘ 1sin 22 +chB Lsin %)
wy | 1—
“in 4{ (mw“ 2 cos “27T+cwﬁ 2 cos ,Bn)]
\/ (w“ 2 cos 4+ £ wh 2cosﬁﬂ)
Proof. Note that, for t > 0,
_ 030 + Geq3Weqn,3X30 .
x3(t) = e~ Ceneqnt <x30 COS Wegg 3t + :}q ar sin wegq 3t |- (182)
eqd,3

In (182), when substituting ¢,3, Wegd,3, and wegn, 3 with those explained in Section 5, we have (181).
The proof finishes. [

Note 6.6: If («, ) = (2, 1), x3(t) returns to be the free response to an ordinary oscillator with the
viscous damping. As a matter of fact,

v WX
x3(8) |0 g1 = e swnt (Xg() cos wyt + w sin wdt) , (183)
’ d

where wy; = wy /1 — ¢2.

Figure 28 indicates x3(t) form=c=k=x19 = vj9 = 1.
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1.5 =
1.13 —
o =
bl & 075 -
N N:
0.38 —
05 | | | o
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t t
(a) (b)
1 T T 2 | |
0.63 — 1.25
~ ~
= -
& 025 4 & 05
> >
-0.13 . -0.25
| | |
-0.5 ' L ' -1
0 25 5 75 10 0 25 5 75 10
t t
(0 (d)

Figure 28. Plots of free response x3(f) for m = ¢ = k = xy9 = v19 = 1. Solid line: w = 1.1. Dot line:
w=15 (a)a=18,5=08(ge3=078). (b) a =15, =08 (Geg3 = 1.33). (c) a = 1.8, f = 0.3 (g¢g3 = 0.91).

(@ a=2,B=1 (G = 0.50).

Note that the plots regarding with x3(t) in Figure 28 are with fixed w. However, actual x3(t) is
frequency varying. Figure 29 shows its frequency varying pictures in time domain and Figure 30 in

t-w plane.
2 1.5 T T T
1.25 — 1.13 —
= =
& 05 4 & 075 -
e o
-0.25 — 0.38 —
-1 | ] | 0 | |
0 5 10 15 20 0 5 10 15 20
t
(b)
1 2 T T T
0.63 1.25 -
~ ~
Nl N}
& 025 & 05 m
% >
-0.13 =025 —
-05 - I I |
0 5 10 15 20
t t
(c) (d)

Figure 29. Free response x3(t) with variable w (=1, 2, ..., 10) form=c=k=1. (a)a =19, B =0.8
(gqu, =0.66). (b)a=15,=0.8 (Geqz = 1.33). (c)a =18, =03 (gqu, =091). (d)a=2,8=1 (ggqg, =0.50).
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x3 x3
(c) (d)

Figure 30. Free response x3(t) in t-w plane withm =k =xyg = v;p = land c=0.1fort=0, 1, ..., 30;
w=1,2,..5 (@a=18 §=08(021 < gz < 0.72). (b) a = 1.8, f= 0.5 (0.20 < gg3 < 0.70). (¢) a = 1.5,
B=0.8(049 < Gop3 < 1.49). (d) & =2, B=1 (Gog3 = 0.05).

Corollary 12 (Decrement III). Denote by x3(t) the free response to a fractional oscillator in Class III. Then, for
1<a <2and 0< B <1, its logarithmic decrement, denoted by A3, is given by

n(a}“’l sin %+Zgwnw/§’l sin ﬁTn)

wy \/7 (w‘"*z cos %+2gwnwﬁ’2 cos ﬂ%)

Ay = - (184)
1 w1 sin 8 4 2cw,wP 1 sin ﬁT”
Proof. Note that x3(t) 27TCeq3
Begz = In x3(ti-‘:1) N 1-— q2 ‘ o
Seqa

Replacing the above ¢,;3 with that in (147) yields (184). This completes the proof. []
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When a =2 and B =1, Az = Agyz(w, @, B) becomes the conventional logarithmic decrement.

In fact,

Aqu‘a:Lﬁ:l -

As A3 is a function of w and (a, B), we write it by A3 (w, &, B).

n(a}“‘l sin %+2gwnwﬁ_1 sin /52—7T>

Wn

\/7 (w"‘*z cos %+2gw”w5‘2 cos ﬂ%)

1—

Delta eq3(omega, alpha, beta)

Delta eq3(omega, alpha, beta)

w*1sin 4 +2¢w,whP 1 sin /37”

2wy \/7 (w“*z cos L +2¢w,wP=2 cos '62—7T>

a=1,=1

1—¢2

27 (186)

Figures 31 and 32 show its plots.

800

600 — E

400~ :

200~ :

200 I I

150 —

100~

0

Figure 31. A.53(w, a, B) : Logarithmic decrement of fractional oscillator in Class IIl for m =c =k = 1.
(a) Solid line: @ = 1.7, B = 0.8. Dot line: « = 1.7, § = 0.5. (b) Solid line: « = 1.8, = 0.8. Dot line: « = 1.8,

B=05.
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Figure 32. Aeq3(w, a,B) form=c=1,k=25. (a) Solid line: « = 1.7, = 0.8. Dot line: « = 1.7, = 0.5.
(b) Solid line: « = 1.8, f = 0.8. Dot line: « = 1.8, 5 =0.5.

6.5. Application to Representing Generalized Mittag-Leffler Function (1)

The previous research (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7)) presented
the free response to fractional oscillators of Class I type by using a kind of special function, called
the generalized Mittag-Leffler function, see (32). The novelty of our result presented in Theorem 10
is in that Equation (172) or (173) is consistent with the representation style in engineering by using
elementary functions. Thus, we obtain novel representations of the generalized Mittag-Leffler functions
as follows.

Corollary 13. The generalized Mittag-Leffler function in the form
xl(t) = x10Ea1 [—(wnt)“] + v10tEqx 2 [—(wnt)”‘],l <a<2,t>0, (187)

is the solution to fractional oscillators in Class I (Mainardi [25], Achar et al. [33], Uchaikin ([38], Chapter 7)).
It can be expressed by the one in (172). That is, for 1 <a < 2,t > 0,
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x1(t) = x10Eq1 [~ (wnt)"] + v10tEg2 [~ (wnt)"]
i W% sin2 % i
“n _4w,21|cos%|t
X10 COS
10 ‘/w”‘*2|cos%|
_ wsin % (188)
—e 2Jcos 2] w%sina” —
010+77x10 w _ w¥sin ot
2wy ] |cos & n 402 (1919
i Y G
wig |cos 55
The proof of Corollary 13 is straightforward from (172).
When v19= 0 in (187), we obtain a corollary below.
Corollary 14. The generalized Mittag-Leffler function given by
x1(t) = x10Ea1 [~ (wnt)*],1 <a < 2,t >0, (189)
can be expressed by the elementary functions, for 1 <a < 2, t > 0, in the form
w w" sin? 4%
X10 COS L — rrans
10 <\/w“2|cos“2"| 4w%|c057| )
. -~ w sinlg ¢ o o
X1 (t) — xlOEa,l [7(C(Jnt) ] —¢ Z‘COST‘ w2 sin 55~ 10 3 w¥ sin2 % ; (190)
2wy |cos s | @n 402 |cos arn ‘
2 |gin| —Z 2L
_ 4‘*’2 Tinz §| w®=2|cos 4 |
Wy | COs 7
Proof. If 19 = 0 in (187), (188) becomes (189). The proof completes. [
If x19= 0 in (187), we obtain another corollary as follows.
Corollary 15. The generalized Mittag-Leffler function expressed by
x1(t) = v1gtEpn [—(wnt)"],1 <a < 2,6 >0, (191)
can be represented, for 1 <o < 2,t > 0, by the elementary functions in the form
w" sin? &%
wsin & Wyl — > 0‘27.[
~ Dlcos EITT [ . 4wi |cos
x1(t) = v10tEap [~ (wnt)"] = % | [ — L0 sin ki (192)
1— w" sin? 4% a)"‘_2|COS M|
4w? |cos o | 2

Proof. When x;y = 0 in (187), (188) becomes (192). The proof finishes. [

7. Impulse Responses to Three Classes of Fractional Oscillators

In this section, we shall present the impulse responses to three classes of fractional oscillators

using elementary functions.

In Section 4, we have proved that

H

y]‘((u) = ij(w), ] =123,



Symmetry 2018, 10, 40 50 of 91

where H,j(w) is the frequency response function solved directly from a jth fractional oscillator while
H,j(w) is the one derived from its equivalent oscillator. Doing the inverse Fourier transform on the
both sides above, therefore, we have

hw'(t) = hx]'(t), ji=1,23,

where ,(t) is the impulse response obtained directly from the jth fractional oscillator but ,;(t)
is the one solved from its equivalent one. In that way, therefore, we may establish the theoretic
foundation for representing the impulse responses to three classes of fractional oscillators by using
elementary functions.

The main highlight presented in this section is to propose the impulse responses to three classes
of fractional oscillators in the closed analytic form expressed by elementary functions. As a by product,
we shall represent a certain generalized Mittag-Leffler functions using elementary functions.

7.1. General Form of Impulse Responses

Given a following functional form of equivalent oscillators for finding their impulse responses,
we denote by /;(t) the impulse response to the equivalent oscillator in Class j in the form

2hi(t)  dhy(h) .
meqjdiiz + Ceqj# + kh](f) = 5(t),] =1,2,3. (193)

Rewrite the above in the form

d?h;(t - dh(t
12( ) | Cea i(t) Lk () = 5(t)
dt meqj dt meqj mgq]-

,i=1,2,3. (194)

According to the results in the previous sections, we have

d?h;(t) dh;(t) 5(t)
J ] 2 ;
—ap e e gy e (1) = ] = 1,2,3. (195)
Therefore, functionally, we have
efgequeqn,jt .
h](t) = SN Weqq jt, t 2 0. (196)

MegjWeqd,j

Equation (196) is a general form of the impulse response to fractional oscillators for Class j
(j=1,2,3). Its specific form for each Class is discussed as follows.

7.2. Impulse Response to Fractional Oscillators in Class I

Theorem 13 (Impulse response I). Let iy (t) be the impulse response to a fractional oscillator in Class I. Then,
fort>0and 1< a < 2, we have

_ wsin 50 PR
e Ao T gin [ ——lw 7 S 2y
/w“*2|cos a 42 |cos %|
h(t) = — . (197)
a—2 (A% 11— = 7
Mwy /w2 |cos 4| s |
Proof. From (196), we have
e_geqlweqn,lt i
h(t) = Sin Wegq,1t, t > 0. (198)

Meq1Weqd,1
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When replacing 1,4 by that in Section 4, ¢.q1 and wegq,1 as well as w,gy,1 With those in Section 5,

respectively, we obtain

e*Qeqlweqn,lt

hl(t) = W Slnweqd/lt =
w24 5in2 %
wn | 1=y i
wsin 2 4wn\cos 5

tsin
" 2[cos ’X"\ \/wzx 2|cos arr‘

20 gip2 &
wZ sin 2 wn w |sm 2
Qa7 n— 2 a7 4u)
e 2wn\/\cos | \/w |cos £5F \ si n
a—2
(/@ |cos gt |

w"‘*2|cos 4 ‘m

20 gin2 AT
Wy W™ 2|cos L \/174‘:72|S::SW|

This finishes the proof. []

w24 gin2 zxzn

D(*;Jn ar \/l 2|COS*
\/w |COST|

Figure 33 shows the plots of h(t), where the oscillation frequency w is fixed. Note that w is an
argument of 111 (t). Therefore, its pictures in time domain are indicated in Figure 34. Figure 35 indicates

its figures in t-w plane.

hi(t)

0.7

0.4

h1(t)

01H .

0.2 [

0.5

(0)

60

h1(t)

hi(t)

(d)

Figure 33. Plots of impulse response hy (t) with wy, =1. (a) « = 1.9, solid line: w =1 (Geq1 = 0.08); dot line:
w =0.7 (Geq1 = 0.04). (b) a = 1.6, solid line: w =1 (G¢41 = 0.33); dot line: w = 0.7 (Geq1 = 0.19). (c) x = 1.3,
solid line: w =1 (g¢q1 = 0.66); dot line: w = 0.7 (geq1 = 0.42). (d) & = 2, solid line: w =1 (g1 = 0); dot line:

w =0.7 (Geq1 = 0).
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Figure 34. Plots of impulse response hy(t) for w, =5, w=0,1, ..., 5. (a) Fora =1.8 (0 < Geq1 < 0.57).

(b) For a = 1.5 (0 < geq1 < 0.94). (c) For a =1.3 (0 < gpp1 < 1.07). (d) For a =2 (Geq1 = 0).

hl hl
(a) (b)

Figure 35. Impulse response h (t) in t-w plane withm =1, w, =03 fort=0,1,..,30; w=1,2, ..., 5.

(@) « =19 (0.26 < geq1 < 5.58). (b) & =2 (geq1 =0).

Note 7.1: The impulse response h (t) reduces to the conventional one if « = 2. In fact,

wsinT ¢

“le g w _ whsin® 5
» Y e T 4afcos 8] Lo
1( )|zx:2 - s p w24 g 2% N mwn S
mwy W |C057’ 1- 4w%|cos%|

a=2

(199)
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7.3. Impulse Response to Fractional Oscillators in Class 11

Theorem 14 (Impulse response II). Denote by hy(t) the impulse response to a fractional oscillator in Class I1I.
Fort > 0and 1< B < 2, therefore, it is given by

2,,2(8-1) gin2 BT
gwnwﬁ 1sm ﬂr[ Wn 17(; wr (ﬁ )sm 5
- t 17%w572c05E§

e ]—Wwﬁ cos/ST Sil’l
\/1—%w5*2 cos 57"

hy(t) = : (200)
e B2 BT [ P Dsin? BT
wnm\/l wﬂ cos \/l Ty
Proof. From (196), we have
—Geg2W, t 1 :
hy(t) = e Seeq2! ———— sin wegq ot, t > 0. (201)

Meq2Weqd,2

By replacing Megn with that in Section 4, Geq2s Weqn,2,s and Wegd,2 by those in Section 5, we obtain

1 /57T
_ cwP~1sin Wy ;
€ B2 05 BT [1- € (B2 cos BT
~Geq2Weqn 2t - \/1 mw cos mw cos .
hz(t) _ e TN sin wegg ot _ e SIN Wegg ot
Meq2Weqd 2 (mfcwﬁ’z cos ﬁ%)weqd;
2,2(B~1) gin2 ‘BTT(
wp | 1-F————— 2
1- £ wP~2cos Erx
cwnwbP=1 sin BT sin d Z t
=2 72 1o € B2 o5 BT
—¢ 1—%wﬁ_zc05ﬁ7n mYT TS
(mfcwﬁfzcos ﬁ—n)w 2.,2(B—1) gin2 ﬁ
2 n GFw sin
- T
\/1—%wﬁ72cosﬁ2—n 17%“’}6 cos /j
sz(ﬁ*” in2 5
Qu/nwﬁ’l sin ﬂzﬂ sin wn _¢ = ﬂﬂr
,1 ciﬁ 3 ﬁnt \/1—7wﬁ Zcos cos
—e l-mw cos F5-

2 IB 1 S]n2 ﬁn ’
wpm 1770.;13 2 cos B \j MW
This is (200). Hence, the proof completes. [

Figure 36 illustrates h, (t) with fixed w. Its plots with variable w are shown in Figure 37. Its pictures
in t-w plane are indicated in Figure 38.
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(c) (d)

Figure 36. Illustrating impulse response h(t) for m = ¢ = k = 1. Solid line: w = 30. Dot line: w = 10.
(a) B =0.3, solid line: w =30 (g¢q2 = 0.02); dot line: w =10 (geg2 = 0.05). (b) B = 0.6, solid line: w = 30
(Geqz = 0.10); dot line: w =10 (geq2 = 0.16). (c) B = 0.9, solid line: w =30 (G¢q2 = 0.35); dot line: w =10
(Geqz = 0.40). (d) B =1, solid line: w =30 (Geq2 = 0.50); dot line: w =10 (geq2 = 0.50).

1 1
0.63 0.63
~~ ~~
)
S 025 & 025
N= <
-0.13 -0.13
-0.5 0.5
t t
(a) (b)
1 | | 1 | |
0.63 0.63
~~ ~~
S 025 S 025
= =
-0.13 —0.13
05 | | | 0.5 | | |
20 75 15 225 30 20 75 15 225 30
t t
(0) (d)

Figure 37. Plots of impulse response I (t) with variable w for m = ¢ = k = 1 in time domain. (a) For = 0.63,
w=1,2,..,5(024 < gpp <062). (b) For f=0.63, w=1,2, ..., 10 (0.18 < gepp < 0.62). (c) For =0.83,
w=1,2,..,5(037 < gepp <0.56). (d) For f=0.83, w=1,2,..,10 (0.33 < gepp < 0.56).
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h2 h2
(c) (d)

Figure 38. lllustrating impulse response h, (t) in t-w plane form=c=k=1witht=0,1,..,50, w=1, 2, ..., 5.
(@) B=0.3(0.08 < gepp < 0.69). (b) B=0.6 (0.22 < gppp < 0.63). () f=0.9 (043 < gepp < 0.54). (d) p=1
(Geqz = 0.50).

Note 7.2: The impulse response h;(t) reduces to the conventional one if f = 1. As a matter of fact,

B gwnwﬁ71 sin'BTn ; -
e 17%“)'872“)5@ sin wy, 1_Mt
: 1- £ wP2cos Er
7 v
ha ()| g1 =
o J1- o2 cos B |1 P sin? B (202)
" " 2 1—%wﬁ*2cosﬁ7ﬂ
p=1
e—Gwnt

sinwy /1 — ¢2t.

mwy/1—¢2

7.4. Impulse Response to Fractional Oscillators in Class 111

We present the impulse response to fractional oscillators in Class III with Theorem 15.

Theorem 15 (Impulse response III). Let h3(t) be the impulse response to a fractional oscillator in Class I11L.
Fort>0,1<a <2,0<B<1,itisin the form

_ maw* 1 sin o +cwP~1 sin /57” Wegnst
2\/—(mw”‘*2 cos &L +ewP~2 cos ‘BTn)k .
e SIN Weqq 3t
ha(t) = , (203)

- (mw“*z cos 4 + cwP=2 cos ﬁ%) Weqd,3

where
Wy

Weqn,3 =
\/— (w‘"*2 cos ¢ + £wh=2 cos ﬁ%)

7
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and

2
(mw“*l sin & +cwf 1 sin ﬁTn)
T

Wny | 1= 4[7 (mw“*z cos - +cwP=2 cos % k}

)
\/— (w“*Z cos 4 + £wh2 cos ’87”)

weqd,B =

Proof. With (196), we get

_ 1 .
ha(t) = e Sedemdt —_—__sin Wegaat, t > 0. (204)
Meg3Weqd,3
In the above expression, substitute .53 with the one in Section 4, g3, Wegd 3s Weqn,3 by those in
Section 5, respectively, we have, for t > 0,
mw® L sin % +cwPLsin /STT(

- p- Wegn,3t
e 2\/7(mw’x_2 cos %+cwﬁ72 cos ﬁT)k

sin weqdlgt

ha(t) =
— (mw“*z cos ¢ + cwP=2 cos ﬁ%) Weqd,3

The right side on the above is (203). Thus, the proof completes. [

The plots of h3(t) with fixed w are shown in Figure 39, with variable w in Figure 40, and in t-w

plane by Figure 41.
2
~~ L= N —
1 ]
O |
_ | | |
! 0 1 2 3 4
t
(a)
1 T T
0.63 —
F 02sf =
z Of Z
-0.13
0.5
t t
(c) (d)

Figure 39. Impulse response h3(t) for m =c =1, k =25 (wy, =5). (a) (v, B) = (1.8, 0.3), solid line: w =2
(Gegs = 0.03); dot line: w =1 (geg3 = 0.02). (b) (&, ) = (1.5, 0.8), solid line: w = 2 (Geg3 = 0.20); dot line:
w =1 (geg3 = 0.10). (c) (&, f) = (1.8, 0.5), solid line: w =2 (geq3 = 0.05); dot line: w =1 (Geq3 = 0.02).
(d) (&, B) = (2, 1), solid line: w =2 (g¢43 = 0); dot line: w =1 (Ge43 = 0).
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1 1
0.63 — 0.63 —
~ ~
=) S
0.25 — 0.25 —
2 2 A
-0.13 — -0.13 ]
205 | | | 05 | | |
0 1 2 3 4 ) 1 2 3 4
t t
(a) (b)
1
0.63F —
=
& 025 =
<
-0.13 —
0.5 ' ' '

(©)

Figure 40. Impulse response h3(t) to a fractional oscillator in Class III for m = ¢ = 1, k = 25 (wy, = 5).
@ (& p) = (18,08),w=1,2,..,5(0.09 < o3 < 0.45). (b) (&, ) = (15,0.8), w=1,2, ..., 5(0.09 < Gog3 < 0.20).
© (@ B)=(13,08),w=1,2, ..., 5(048 < gop3 < 0.67).

(d)

Figure 41. Impulse response to a fractional oscillator in Class III in t-w plane form =c=1, k =25
(Wp=5)with t=0,1,...,30; w=1,2, ..., 5. (@) a = 1.8, B = 0.8 (0.09 < ¢o3 < 0.45). (b) x = 1.8, B = 0.4
(0.07 < Gegz <0.15). () = 1.5, 8=0.8(0.33 < gg3 < 0.91). (d) a =2, B=1(geg3 = 0).
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Note 7.3: The impulse response h3(t) degenerates to the conventional one when a = 2 and
B =1.Indeed,

Br

a—1 o am -1
smTJrcwﬂ sin -

mw
- Weqn,3t
20/ — x—2 [ud B—2 pr k .
e \/ (maw! cos 5= +cw! cos ) sin wqu,?,t efgwnt .
ha(t) |y po1 = = ———sinwgt.  (205)

- (mcu"“2 cos ¢ + cwP=2 cos %”) Wegd 3 mwq

a=2,6=1

7.5. Application to Represetenting Generalized Mittag-Leffler Function (2)

The impulse response to fractional oscillators in Class I by using the generalized Mittag-Leffler
function is in the form (Uchaikin ([38], Chapter 7))

hi(t) = " Egu[—(wnt)*],1 <a <2,t > 0. (206)
In this section, we propose the representation of (206) by elementary functions.

Corollary 16. The generalized Mittag-Leffler function in the form (206) can be expressed by the elementary
functions in Theorem 13, for 1 < a < 2 and t > 0, in the form

w2 sin2 %
pis

e—;}:;:%‘tsin n _4w121|ms"‘7| ;
\/w*=2|cos &%
By o [~ (wnt)"] = jcos 7| . 207
4 20 qin2 AT
e/ w=2|cos 4|, /1 — wsin” 5
n 2 4w%|cos%|

The proof is straightforward from Theorem 13 and (206).

8. Step Responses to Three Classes of Fractional Oscillators

In this section, we shall put forward the unit step responses to three classes of fractional oscillators
in the analytic closed forms with elementary functions. Besides, we shall suggest a novel expression of
a certain generalized Mittag-Leffler function by using elementary functions.

8.1. General Form of Step Responses

Denote by ¢;(t) (j = 1, 2, 3) the step response to a fractional oscillator in the jth Class. Then, it is
also the step response to the jth equivalent oscillator. Precisely, g;(t) is the solution to the jth equivalent
oscillator expressed by

{ Megi8j (1) + Ceqiy (1) + Ky (6) = u(t) ) o (208)

§(0) = 0,4(0) =0

The solution to the above equation is given by

(t) th ( )d 1 1 e*gequeqn,jt < ¢ (P ) . 1.2.3 (209)
8j :/fT T:E _72“)5 Weqd,jt = @j ) | /] = L9
where Ceni

¢ =tan ' ——A__ =123 (210)
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8.2. Step Response to a Fractional Oscillator in Class I
Theorem 16 (Step response I). Let g1(t) be the unit step response to a fractional oscillator in Class I. For t > 0

and 1 <« < 2, it is given by
r o gin2 AT T
wsin® Wy [1- 2
72\&)5 ag] 4wy ‘cos b
e 2l cos| —F——=t—¢P1

\/—w* 2 cos F

si(t) =411~ - - , (211)
1_ w? sin *F
\/ (Zwm/cos”‘zﬂ>

where .
w?2 sin 4%

2wy, ‘cos%|

sl an ! . (212)
1— g% 1 & . oam 2
V q 1— w?2 sin &F
2 |

Wy |cos &

¢1 = tan !

Proof. Note that

e_geqlweqn,lt

a =11
1 = — -
k \/1_9%171

Substituting ¢.;1 with the one in (141) into the above produces

cos (weqd,lt — q>1) . (213)

&
)2 sin 27T
w4 sin 55

—— W, t
_ ' 2 — AT eqn,1
¢ SeqlVeqn,1 cos(wmd’lt—(pl) e "MV T8 cos(weqd/lt—qﬁl)

1 1
gl(t)zfl_ — =5|1- n 2
\/1 Seql )7 sin A7
q 17< w2 sin &5 )
an\/fcos%

Replacing weqn,1 and w4, with those in Section 5 in the above yields (211) and (212). The proof
finishes. [

(214)

Figure 42 shows the unit step response g (t) with fixed oscillation frequency w. Note that g7 (t)
takes w as an argument. Thus, we use Figure 43 to indicate g (t) with variable w in time domain.
Its plots in t-w plane are shown in Figure 44.

1> l l l l 2 T T 1
1.2 —
[y 0.9 — =
N N
— —
&0 0.6 ] — o0
0.3 |- —
0 L 1 0 I R B
0 12 24 36 48 60 0 12 24 36 48 60
t t
(a) (b)

Figure 42. Cont.
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2
&0 D
t t
(c) (d)

Figure 42. Unit step response g1 (t) to a fractional oscillator in Class I with fixed w for m =k = 1.
(a) & = 1.3, solid line: w =1 (geq1 = 0.66); dot line: w = 0.7 (¢¢q1 = 0.52). (b) & = 1.6, solid line: w =1
(Geq1 = 0.33); dot line: w = 0.7 (Geq1 = 0.25). () a = 1.9, solid line: w =1 (geq1 = 0.08); dot line: w = 0.7
(Qeql =0.06). (d) x =2 (Qeql =0).

2 — 2

1.6 — 1.6 _
o 12 . 4 o 12 -
— —

0 0.8 — 50 (8 _

0.4 — 0.4 -

0 I I B 0 L 1

0 12 24 36 48 60 0 12 24 36 48 60
t t
(a) (b)

2 I 2 —

1.6 — 1.4 —
= 12 1 S 08 -
N A
— —
en 08 — 80 0.2 —

0.4 — -0.4 —

0 L 4 L

0 12 24 36 48 60 0 12 24 36 48 60
t t
(c) (d)

Figure 43. Step response g1 (#) to a fractional oscillator in Class I with variable w form=k=1. (a) « = 1.3,
w=1,12,14,..,5(0.66 < o1 < 1.88). (b)a =15, w=1,12,14, .., 10 (0.66 < ¢ < 2.95). () a =17,
w=1,12,14,...,10 (0.08 < Go1 < 0.36). (d) & = 1.9, w = 1, 1.12, 1.14, ..., 10 (0.08 < o1 < 0.70).
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(a) (b)

Figure 44. Step response g1 (t) to a fractional oscillator in Class Iin t-w plane form=k=1,w=0,1, .., 5.
(@) a=19 (0 <ge1 <0.36). (b) a=1.6 (0 < g1 < 1.183).

Note 8.1: If « = 2, g1 (¢) reduces to the conventional step response with damping free. In fact,

B W sin2 AT 7]
wsin % Wy [1- g2
~Jlcos BT t 4wy |cos @g |
e 2l cos| —F—t— 471

\/—w*2 cos &

1 1
81(H)]pep = % 1- - > = E(l — cos wpt), (215)
1_— w? sin
2wy 4/ — cos 4
L da=2
and
w? sin
(P . 1 2wy |cos%| B
1],-1 = tan =0. (216)

N 2
1_ w? sin &F
2wy |COS %|
a=2

8.3. Step Response to a Fractional Oscillator in Class 11

Theorem 17 (Step response II). Denote by g (t) the unit step response to a fractional oscillator in Class L.
It is in the form, fort > 0and 0 < <1,

2,2(B-1) g2 BT
Qtwrwﬁfl sin’BTn wy 1*7‘; i o ;{

- 1_c. B2 B 1—%@572 cos 5~

e TmYm TS cos t— ¢

\/<17%w5*2 cos /S—Zn)

§2(t) =2 [1- , (217)

k 1 202D sin? BT
1— £ wh=2 cos %ﬂ

where ]
1. BT
cwP=1sin 5

1 Sex g \1-fwP s BF . (218)

2 . g
1-— €6q2 \/1 - gzwz(ﬁfl) 51n2 'BT

¢p = tan™

1— %wﬁ’z cos ﬁTﬂ
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Proof. ; Substituting ¢, with that in Section 5 into the following expression

1 e_Gezﬂweqn,Zt
() = % 1— ———=cos (weqd,zt - 4)2) (219)

\/ 1- gng

yields
wP~Lsin r
BV A=

1 e — Ww cos e

gat) =7 |1~ cos (Wegaat — 92 |- (220)

1_ c202(B=1) gin? ETH
— T
1— £ wP=2cos B

On the other side, replacing wegn 2 by the one in (135) in the above results in

Bl gn B2
1- 5 wP™“ cos 1— € P2 T
gz(f) _ % 1— 4 i z COS(chd,2t7¢Z) _ % 1— e m ¢ cos oy COS(qudlztftpz)
1— gzwz(/sil) sin? é; 1— ngZQB*l) sin2 ﬂTN
lf%w/b72 cos ’BTH 17%(0/572“’5/377(

Finally, substituting w4 by that in (157) in the above produces (217) and (218). Hence, we finish the
proof. O

We use Figure 45 to indicate g, (t) with fixed w. When considering variable w, we show ¢ (#) in
Figure 46 in time domain and Figure 47 in t-w plane.

2 I 2

LsHfY L N 1.5 = [ .
3 1 a0 '-; 3
Q Q 1
an an

0.5 — 0.5 —

0 | | 0 | |
0 10 20 30 0 10 20 30
t t
(a) (b)
1.5 I 1.5 I
1L13 — 113+ _
= =
N N
S 075 — 0.75 —
&b b
0.38 = 0.38 =
0 | | 0 | |
0 10 20 30 0 10 20 30
t t
(c) (d)

Figure 45. Step response ¢»(t) to a fractional oscillator in Class II with fixed w for m =c =k = 1.
(a) B =0.3, solid line: w =20 (g¢q2 = 0.03); dot line: w =5 (geq2 = 0.08). (b) = 0.6, solid line: w =20
(Geqz = 0.12); dot line: w =5 (Geq2 = 0.22). (c) B = 0.9, solid line: w = 20 (g¢q2 = 0.37); dot line: w =5
(Geqz = 0.43). (d) B =1, solid line: w =20 (Geq2 = 0.50); dot line: w =5 (Geq2 = 0.50).
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g2(t)
g2(t)

t t
() (b)
L5 T T L5 T T
L3 - N o N
ey ~
S 075 —4 S o0s _
en en
0.38 — 0 -
0 | | 05 | |
0 10 20 30 20 10 20 30
t t
(c) (d)

Figure 46. Step response ¢ (t) to a fractional oscillator in Class II with variable w form =c =k =1.
(@)p=03,w=1,2,..,5(0.08 < gepp <0.69). (b) =03, w=1,2,...,10 (0.22 < gepp < 0.63). (c) B=0.9,
w=1,2,..5(043 <gep <054). (d) =09, w=1,2,...,10 (040 < gepp < 0.54).

g2

g2 g2
© ()

Figure 47. Step response ¢, (#) in t-w plane for m = ¢ =1 and wy, = 0.3 (k = 0.09), witht=0, 1, ..., 30,
©w=1,2,34. (a) B =03 (009 < gp < 069). (b) p = 0.6 (024 < gop < 0.63). (c) p = 0.9
(0.44 < oo < 054). (d) B =1 (o2 = 0.50).
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Note 8.2: When B =1, g>(#) turns to be the ordinary step response. As a matter of fact,

1 7gweqn,2t
82(t)lp1 = ll - 617 cos (wn V1-¢— <P2>] , (221)

_g2

where
Br
7

cwP1sin

17%@5’2 cos%T 1 G

-1
$2|g_1 = tan — .
‘B \/1 _ g2w2(ﬂ71) sin? pr 1- QZ

(222)

_ € wB2c0s P
1—£wh~2cos &5

8.4. Step Response to a Fractional Oscillator in Class 111

Theorem 18 (Step response III). Let g3(t) be the unit step response to a fractional oscillator in Class I11. It is
in the form, fort > 0,1<a <2,and 0< B <1,

i _ mw* L sin %Jrcw/j*l sin ﬁTH ]
e 2(mw*=2|cos ot |[—cwP~2 cos ﬂTﬂ)
2
(mw""l sin %Jrcwﬁ_l sin ﬁ—;)
wy | 1—
4 [— (mw“_z cos %+cwﬁ72 cos ﬁTn)k]
cos t—¢3
\/7 (w“‘z cos 4+ £ wP=2 cos 'BTH)
H=1)1- L : (223)
83 - k 5 ’
1 mew* 1 sin 4 +cwP 1 sin /577[
2\/7 (mw“—z cos Y +cwh=2 cos %")k
where
cwP~1sin ﬁTH
Cen3 2\/(m—cw5*2cos ﬁ%)k
¢3 = tan~! a tan~! (224)

(m —cwhP=2 cos ﬁTn

2 - .
(/1= Ceqd 1 ( 2261 sin? BT >
4 )

Proof. Replacing ¢.43 by that in (147) on the left side of the following produces the right side in
the form

g(t) =¢|1- ¢ LAt MCOS(%W# - 4’3)
17@343 ’

maw®= 1 sin % +cwP~1sin ﬁTTI ;
- Weqn,3 225
2\/7(mw”‘*2 cos %Jrcwﬁ*z cos ISTH )k ( )
1— e cos(wmmt*(pg,)
2

==

maw*=1sin % +cwP~1sin Br

1— 2
2\/7 (mw""*z cos %Jrcw/j*z cos ﬂTn)k
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Further, replacing w,;,,3 with the one in (137) in the above yields

i wn (mw* L sin %Jrcwﬁ_l sin ﬁTn) T

—(w* 2 cos % +%wﬁ72 cos ég)

o :
/

24/ = (mw*=2 cos 4 +cwP~2 cos Br )k
2 27 cos(Wegq st—93)

_ 1 e
g3(t) = ¢ >
1 mw*—1sin %Jrcwﬁ*l sin ﬁTﬂ
2\/7 (mw”"z cos % +cwP™2 cos ’BTn)k
(226)
mw® 1 sin % +cwPLsin ﬁTﬂ
~2c0s UL | B2 cos BT
1 B 2(mw*~=|cos &5t | cwP2 cos 5 ) cos(wqu,3t—¢3)
Tk 2

Br

mw*=1sin % +cwPLsin B

1— 2
2¢— (mw""z cos %-ﬁccuﬁ*z cos /STT()k

Finally, considering w43 expressed by (160), we have (223) and (224). Hence, the proof finishes. [J

Figure 48 illustrates g3(t) in time with fixed w while Figure 49 is with variable w. Its illustrations
in t-w plane are shown in Figure 50.

2 i i 2
15 H -
= :I:-:". =
1
% ' %
0.5 -
0 | | |
0 25 5 75 10
t
(a)
L5 T T T
o ——
= e
OD OD
051 =
0 | | | 0 | | |
0 25 5 75 10 0 25 5 75 10
t t

Figure 48. Cont.
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(e)

Figure 48. Illustrating step response g3(#) with fixed w form =c =1,k =25 (w, =5). (a) (&, B) = (1.8, 0.8),
solid line: w =1 (geq3 = 0.13), dot line: w =2 (g¢43 = 0.05). (b) (&, B) = (1.5, 0.8), solid line: w =1 (G¢y3 = 0.33),
dot line: w =2 (ggg3 = 0.15). (¢) (&, B) = (1.3, 0.8), solid line: w =1 (G453 = 0.49), dot line: w =2 (ggg3 = 0.24).
(d) (&, B) = (1.8, 0.5), solid line: w =1 (gg3 = 0.09), dot line: w =2 (Geq3 = 0.03). (e) (&, f) = (2, 1), solid line:
w=1(Geg3 =0), dot line: w =2 (Geqg3 = 0).

2 I I I 2 T | | 1.5 T T |
15 - 15 = 1 13[‘- _
= = | =
g 1 - 0.75 —
b o0 b
0.5 — 0.5 = 038} —
0 | | | 0 l I I 0 | | |
0 2.5 5 75 10 0 25 5 75 10 0 2.5 5 75 10
t t t
(a) (b) (0)

Figure 49. Demonstrating step response g3(t) with variable w (=1,2, .., 5) form =c =1,k =25 (w, = 5).
(a) (2, B) = (1.8, 0.8) (0.13 < geg3 < 1.22). (b) (&, B) = (1.5, 0.8) (0.34 < geg3 < 0.91). (0) (&, B) = (1.3, 0.8)
(049 < gegz < 1.14).

(a) (b)

Figure 50. Cont.
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(c) (d)

Figure 50. Illustrating step response g3(¢) in t-w plane form =c=k=1, witht=0,1,..,30,w=1,2, ..., 5.
(a) (a, B) = (1.8, 0.3) (0.05 < geg3 < 0.10). (b) (&, B) = (1.8, 0.5) (0.09 < gg3 < 0.20). (c) (&, B) = (1.5, 0.6)
(025 < Goga < 055). (d) (@, B) = (2, 1) (049 < g3 < 0.96).

Note 8.3: For («, B) = (2, 1), g3(t) reduces to the conventional step response. Indeed,
1 e~ Swnt
I - — 2t —
g3(t) ‘aiZ,ﬁZI Tk |} m cos (wﬂ \V 1—c¢%t ¢3|a2,‘81>‘|/ (227)
where

mw* 1 sin 4 +cwP 1 sin ﬁT"

2\/7 (mw“—2 cos - +cwP=2 cos %—”)k

_ -1
$3 | a=2,p=1 — tan

a—1 qiy AT —1 5 ﬁi
1_ |: mw Sin =5 +cwl3 SN —

2\/7 (mw”“z cos G +cwP=2 cos /37”

;

a=2,=1

8.5. Application to Represetenting Mittag-Leffler Function (3)

The step response to fractional oscillators in Class I by using the generalized Mittag-Leffler
function is in the form (Uchaikin ([38], Chapter 7))

81(t) = t*Eg i1 [~ (wnt)"], 1 < < 2,¢ > 0. (229)
In the following corollary, we propose the representation of (229) by elementary functions.

Corollary 17. The generalized Mittag-Leffler function expressed by (229) can be represented by using the
elementary functions described in Theorem 16. Precisely, fort > 0 and 1 < a < 2, we have

wsin 75~ Wy

e g1 74(4}% cos%
e 2|cos 5t | cos | | _

RVar=ry-aial
1
F*Eqst [~ (wnt)"] = £ [1- , (230)

k 1— w%sin% 2
2wy 4/ — cos &t

where ¢y is given by (212).
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Proof. The left side of (230) equals to g1 (t) following Theorem 16. According to (229), therefore, (230)
holds. This completes the proof. []

9. Frequency Responses to Three Classes of Fractional Oscillators

We put forward frequency responses to three classes of fractional oscillators in this section.
They are expressed by elementary functions based on the theory of three equivalent oscillators
addressed in Section 4.

9.1. General Form of Frequency Responses to Three Classes of Fractional Oscillators

Denote by H;(w) the Fourier transform of the impulse response /;(t) to a fractional oscillator
in Class j (j = 1, 2, 3), where h;(t) is given by (196). Then, it is the frequency response function to a
fractional oscillator in Class j (j =1, 2, 3).

In fact, doing the Fourier transform on the both sides of (195) produces

. 1
(= + 26agjqn 0 + lgn ) Hy () = 2 (231)
Thus, we have
1 1
Hi(w) = - . (232)

(w?  —w?+i i ; 2 .
eqn,j %

Note that ‘
2

Therefore, by letting 7,,; be the equivalent frequency ratio of a fractional oscillator in Class j, Hj(w)

may be expressed by
Hj(w) = L =123 (234)

2 .
k(l - ’yeqj + IZQQ‘UI)/B‘U)

The amplitude of H;(w) is

1 1 .
|H]-(w)| =z - 2,]:1,2,3. (235)
\/(1 - 'quj) + (26eqj Veq))
Its phase frequency response is given by
2 . .
¢j(w) = tan ! QEL’Y;W,] =1,2,3. (236)

eqj

9.2. Frequency Response to a Fractional Oscillator in Class I

Theorem 19 (Frequency response I). Let Hy(w) be the frequency response to a fractional oscillator in Class I.
Then, for 1 < a < 2, it is in the form

1

H = .
1((4]) w“|cos% .wsin 4%
k(1- >l +i—>2

(237)

Wy Wiy
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Proof. In the equation below,

Hy(w) = ! (238)

k<1 - 'Yéﬂ + i2€eq1’)’eq1)

when replacing 7.1 by

wy/w* 2|cos &
w \/ @2 |cos 4| 239)

= w,n) = = /
Yeql = Yeql ( ) Oeqn1 wn

and 2Geq1Yeq1 by

a . a—2 % .
wisin T wy/w 2|cos | gin 4T
2 = 2 (240)

2 =2 = ,
GeqlVeql wn w2

2wy, ‘cos &= ‘
we have (237). This completes the proof. [

From Theorem 19, we have the amplitude of H; (w) given by

1/k

Hy ()] = : , (41)
\/<1_w"‘|co:"‘2”|) +(w“sir21%)2
Wy Wy
and the phase in the form
w" sin &F -
v w® sin 2%
¢1(w) = tan™! e = tan~! 5 2 T (242)
1_w”‘|c057| a)n—a)“‘COST
2
Wy

Note 9.1 (Equivalent frequency ratio I): The equivalent frequency ratio 7.4 is a function of
oscillation frequency w and the fractional order «. It may be denoted by 7v¢q1 (w, &).
Figure 51 shows the plot of +,,1. Figure 52 indicates the illustrations of Hy(w).

10 | | |

~
W

gammal(omega)

2.5

omega

Figure 51. Equivalent frequency ratio .41 (w, «) for fractional oscillators in Class I with m =k = 1.
Solid line: o = 1.8. Dot line: a = 1.5. Dash line: o = 1.2.
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gammal(omega, alpha)
(a)
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Ej
< N
= g N
> ~ NG
= ~o N
S ol =~
00197 1 10
gammal(omega, alpha) (log)
(b)
2 T
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(0]
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gammal (omega, alpha)
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gammal(omega, alpha) (log)
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Figure 52. Frequency response Hj (w) to fractional oscillators in Class I with m = k = 1. Solid line:
a=1.8(0.04 < gy <0.06). Dot line: « =1.5(0.13 < g¢1 < 0.19). Dash line: « = 1.2 (0.33 < ¢,p1 < 0.46).
(a) Amplitude |H;(w)| in ordinary coordinate. (b) |Hj(w)| in log-log. (c) Phase ¢;(w) in ordinary
coordinate. (d) ¢1(w) in log-log.
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Note 9.2: If « = 2, Hy (w) — o0 at w = wy,. In that case, H (w) turns to be the ordinary frequency
response with damping free in the form

B 1/k 1k 1k
Hi(w)|p—p = oo F| _ wrsn BT (243)
2 Wiy

Wi Wy =2

9.3. Frequency Response to a Fractional Oscillator in Class 11

Theorem 20 (Frequency response II). Denote by Hy(w) the frequency response to a fractional oscillator in
Class 1I. Then, for 0 < B < 1, it is given by

1/k
Hy(w) = / — (244)
1—192 (1 — LwP=2cos %n) i
where v = - is the ordinary frequency ratio.
Proof. Consider 1
Hy(w) = : . (245)
k(l - 'quz + ZzQqu’quZ)
Note that
= (w,B) = YY1 Swh2cos b _ \/1 — L wB2cos pr (246)
Yeqz = Ve \Or P) = Wegnp W m 2 7 m 2
Besides,
2cwb-1gin B7 2cwP sin B
2GeqYeq2 = cw’ SN Y= B2 cos pr = & (247)
\/1 — £wP=2cos ’%ﬂ @n m 2 @n
Therefore, (245) becomes
Hy(w) = 1
2( ) k(177§qz+i2§eq273q2)
— 1/k .
- 2 . B
1— (w% 1—£wh=2 cos ﬁ%) +i2gw/5:;n 2
_ 1/k .
1—92 (1— £ whP=2cos ﬁ%) +i2gwﬁw$
This finishes the proof. []
From Theorem 20, we have the amplitude of Hy(w) in the form
1/k
|Ha(w)| = — (248)
2 B gin BT
\/{1 — 2 (1 — £wP2cos %n)] + (Zgw o >
and its phase given by
2¢wP sin ﬁTn
¢2(w) = tan™! n . (249)

1—192 (1 — £wP=2cos ﬁ%)
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Note 9.3 (Equivalent frequency ratio II): The equivalent frequency ratio 7.y is dependent on
oscillation frequency w and the fractional order f as can be seen from (9.16). We denote it by .5 (w, B)-
Figure 53 indicates the plot of e (w, B). H2(w) is shown in Figure 54.

10

7.5

gamma?2(omega)
T

omega

Figure 53. Equivalent frequency ratio ;2 (w, B) of fractional oscillators in Class Il with m =c =k = 1.
Solid line: B = 0.8. Dot line: B = 0.5. Dash line: g =0.2.
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Figure 54. Cont.
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Figure 54. Frequency response Hj(w) to fractional oscillators of Class II type with m = ¢ = 1 and
k=4. Solid line: B = 0.8 (0.15 < ggp2 < 0.29). Dot line: B = 0.5 (0.06 < g,p» < 0.33). Dash line: §=0.2
(0.01 < oo < 0.35). (a) Amplitude |Hp(w)| in ordinary coordinate. (b) [Hz(w)| in log-log. (c) Phase
¢2(w) in ordinary coordinate. (d) ¢, (w) in log-log.

Note 9.4: When B = 1, Hp(w) reduces to that of an ordinary oscillator’s in the form (also see
Figure 55).

1/k
HZ(w)|ﬁ:1 - : B Zgwﬁsinﬁl
1—72<1—%wﬁ*2c05 T)'Hiwn 2 =1 (250)

_ 1/k _ 1/k
1—92+i2¢ &= 1—2+i2¢y "




Symmetry 2018, 10, 40 74 of 91

0.6
=
g0 0.4 _
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=
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=
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gamma?2(omega, beta) (log)
(b)
10
™
2
= 1 =
< —
en
Q
= e
S o1
3
=
a
0.0 01 0.1 1
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Figure 55. H(w) for p =1 withm =c=1and k = 4 ({¢2 = 0.25). (a) |H2(w)| in ordinary coordinate.
(b) |Hz(w)] in log-log. (c) Phase ¢, (w) in log-log.

9.4. Frequency Response to a Fractional Oscillator in Class 111

Theorem 21 (Frequency response III). Let H3(w) be the frequency response to a fractional oscillator of Class
III type. Then, for 1 <a < 2and 0 < B < 1, H3(w) is in the form

1/k
3\w) = .
H. / — — (251)
1— 92 ( w2|cos 4| — cwh 2 cos b +i V(MH sin *° + 2P sin 7)
2 m wy (w‘"*z |cos o | —2cwywP=2 cos /37”)
Proof. In the equation below
1
H3(w) = (252)

k (1 - ’73,73 + i2€eq3'}’eq3)
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we notice
Yeq3 = ')’eqS(a)/ &, ﬁ) = w::];n,S = wﬁn (wa 2COS + CUIS 2 cos ﬁz )
(253)
= 'y\/— (w“*z cos 4 + £wh=2 cos %”)
In addition,
(w“*l sin 4 + 2¢w,wP 1 sin /57”)
'y\/— (w“*Z cos 4 + £whP2 cos ’87”)
2(; 3Yeq3 = 2 254
i an\/ (w“ 2 cos - +2¢wpwP 2 cos ﬁ") ( )
B 'y(w"‘ 1sin 4 +2¢w, wP 1 sin ’3”)
wy (w"‘ 2|cos | —2¢wpwP=2 cos 52 >
Thus, (252) becomes
1/k
Ha(w) = cwh~2 cos BT 'y(w“ Lsin 8% 4+2cw, wP~1sin ﬁ”)
1— ~2( r—2 am|
Y (CL) |C05 2 | m ) +1w (w**2|cos%|—2gwnwﬁ ZCOSﬁT)
Therefore, the proof completes. []
From Theorem 21, we obtain |H3(w)| in the form
1/k
|Hs ()] = —. (255)
{1 — 9?2 (w”"2|cos 4| — £wbP~2cos ﬁ%)}
'y(w”‘ Lsin &% +2gwnwﬁ Lsin /S”) 2
+ wy (w"‘ 2|cos ‘ —2¢wpwP2 cos ﬂz >
The phase ¢3(w) is given by
¥ (w”‘ 1 sin 4 +2¢wywP 1 sin %)
wy (w2 |cos 4 | —2¢w,wP=2 cos b
¢3(w) = tan™! ( s |- ) (256)

1—7 (w“*2|cos 4| — £whP2cos %”) '

Note 9.5 (Equivalent frequency ratio III): 7,43 relates to w and a pair of fractional orders (, f).
Figure 56 indicates its plots. Figure 57 demonstrates Hz(w).

3 T T T . 2 | T I
—_
< <
& &
g g
=] =]
N N
on o
< <
< <
on o0
0 | | | 0 | | |
0 2.5 5 7.5 10 0 2.5 5 7.5 10
omega omega
(a) (b)

Figure 56. Plots of equivalent frequency ratio %qg(w, «,B) for m = ¢ =k =1. (a) Solid line: («, B) =
(1.8,0.8). Dot line: (&, B) = (1.5, 0.8). (b) Solid line: («, B) = (1.5, 0.8). Dot line: («, B) = (1.5, 0.6).
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Figure 57. llustrations of frequency response Hj(w) to fractional oscillators of Class Il withm=c=1,
k=25. (a) |H3(w)| and ¢3(w). Solid line: (a, B) = (1.8,0.9) (0.23 < g¢43 < 0.54). Dot line: (&, B) = (1.5, 0.9)
(0.36 < gegz < 1.04). (b) |Hz(w)| and ¢3(w). Solid line: («, ) = (1.8, 0.7) (0.27 < geg3 < 0.50). Dot
line: (, B) = (1.5,0.7) (0.50 < gog3 < 0.95). (c) |H3(w)| and @3(w). Solid line: («, B) = (1.8, 0.55)
(0.31 < geg3 < 0.46). Dot line: («, B) = (1.5, 0.55) (0.86 < geg3 < 0.97).

Note 9.6: If (¢, B) = (2, 1), H3(w) reduces to the ordinary one given by

1/k
H3 (@) (wp)=21) = T2 7 1900 it ey (257)

10. Sinusoidal Responses of Three Classes of Fractional Oscillators

When the excitation force takes the sinusoidal one in the form of coswt or sinwt, the response is
termed sinusoidal response, which plays a role in the field of oscillations.

10.1. Stating Problem

Note that the sinusoidal response to fractional oscillators attracts research interests but it is yet
a problem that has not been solved satisfactorily. In fact, the existence of the sinusoidal response
to fractional oscillators remains a problem. In mathematics, it is regarded as a problem of periodic
solution to fractional oscillators. Kaslik and Sivasundaram stated that the exact periodic solution does
not exist ([81], p. 1495, Remark 5). The view of Kaslik and Sivasundaram’s in [81] is also implied in
other works of researchers. Taking fractional oscillators in Class I as an example, Mainardi noticed that
the solution to fractional oscillators for 1 < & < 2, when driven by sinusoidal function, does not exhibit
permanent oscillations but asymptotically algebraic decayed ([25], p. 1469), also see Achar et al. ([33],
lines above Equation (14)), Duan et al. ([39], p. 49).

As a matter of fact, when considering a fractional oscillator of Class I type for 1 < a < 2 without
the case of @ = 2 in the form

d*y,(t)
A

m +kyi(t) =coswt, 1 <a <2, (258)
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it is obvious that y; (+) must contain steady-state component that is not equal to 0 for  — co no matter
what value of & € (1, 2) is. Otherwise, the conservation law of energy would be violated. The problem
is what the complete solution of y(f) should be.

The actual solution y1(t) should, in reality, consist of two parts. One is the steady-state part,
denoted by y15(f), where the subscript s stands for steady-state, which is not equal to 0 for f — co and
for any value of « € (1, 2). The other is the transient part, denoted by y14,(t), where the subscript tr
means transient. Thus, the complete solution should, qualitatively, be in the form

y1(t) = y1u(t) + yas(t). (259)

We contribute the complete solutions to three classes of fractional oscillators regarding their
sinusoidal responses in this section. Our results will show that there exist steady-state components
for fractional oscillators in either class with any value of « € (1, 2) for those in Class I, or § € (0, 1) in
Class II, or any combination of & € (1, 2) with § € (0, 1) for those in Class III.

10.2. Stating Research Thought

Consider the sinusoidal responses to three classes fractional oscillators based on the equivalent
oscillation equation in the form

d?x(t) dx;i(t)
Megj—ir— + Cegj—gp— + kxj(t) = Acos wt
dX]'(t)

%j(0) = xjo, =|,_, = Yo

,i=1,2,3. (260)

The complete response x;(t) consists of the zero state response, denoted by x;,5(t), and zero input
response denoted by x;;(t), according to the theory of differential equations. Therefore,

xj(t) = szs(t) + szi<t)r (261)
where x;;;(t) is solved from
4 jzi (£ dxzi(t
Mg i e+ k(1) = 0

dx;i(t)
%j(0) = xjo, —g—|,_, = Yjo

,i=1,2,3. (262)

On the other hand, x;,5(t) is the solution to

dzx'zs(t) dxjys(t)
Megj étz + Ceqj ]dt + kx]-zs(t) = Acoswt
dx;i(t)
(0)=0, 20—
xj(0) 7 P

,i=1,2,3. (263)

Note that x,;(t) is actually the free response to the fractional oscillators in Class j. It has been
solved in Section 6. Thus, the focus of this section is on (263).

10.3. General Form of Sinusoidal Responses to Three Classes of Fractional Oscillators

The solution to (263) in the general form, for t >0, =1, 2, 3, is given by

(wfqn,j — wz) COS Wt + 260 Weqn jw Sin wi

A 2 2 .
ilw? 4w ) sinwgg, it
—|—€7g5‘7jwe’7”,jt (ng wi T wZ) CcOS wqu]t _ €€qj( eqn.j ) eqd,j

! " / \/ngqj

Xjas () = - - > . . (264)
eqj%eqd, ) ' 4
s (weqn,j w ) + (26eqjWeqn,jw)
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10.4. Sinusoidal Response to Fractional Oscillators in Class I

Theorem 22 (Sinusoidal response I). Let x1.5(t) be the zero state sinusoidal response to a fractional oscillator
in Class I. Then, for t > 0and 1 < a < 2, it is in the form

_ 1 A
X1zs(t) - a—2 oz 2 2 whsin2 &7
— - an 4 Wi _ 2
ma}n\/ w COs = w (_w“CDS% 1) + |cosM|2
w* sin? o 2
4w |cos %|
2 2 2 qin ATT
w: w”sm - .
w* Ai"fl cos wt + ——=2- sinwt
w"* cos |cos T|
r W sin2 &7C T
wny 1m0 2y (265)
4 w2 2 4wy |cos &%
w = —1) cos
—w" cos 5~ — w2 cos a
wsin &¢
—3 a% t w! sin2 %
+e feos 51 2 wny T Ak
w? sin%g 4 4wn|c057‘
72—z +1 ) sin
2w 4 / — cos % —w"® cos \/—w"‘*z cos &7
2
1 w?2 sin %
L 2wn —cos % h

Proof. Consider the expression below

2 2 :
<weanl —w ) Co8 Wt + 2Geq1 Wegy,1w SIN Wi

A
Geql

~GeqlWeqn,1t 2 2 __Geqt .
e Seq1Weqn (weanl w ) COS Weqq 1t \/ﬁ( eqn,1 +w ) SIN Weqq 1
gcql

266
(wgqn,l_w2)2+(ngqlw[’anlw)z ( )

o 1
leS(t) - meqlweqd,l

In the above, replacing m,.q by the one in Section 4, ¢eg1, Weya1 and wegn,1 by those in Section 5,
respectively, produces (265). This finishes the proof. [

Denote by x1455(t) and X154 (t) the steady component and the instantaneous one, respectively.

Then, we have

— A
X1zs,5(t) = z wa 2 60 w2 2 whsin? 4
—w*2 cos &L 1— w Lo —1) +——5
COS ax | ( —w® cos 4L ) ‘cos o |2 (267)
2 2 wWw?sin &
4 Wi S 5
[w ( s 1) cos wt + fcos 7 sin wt
and
A
leS,tV(t) 2 4 2w
w* sin2 sin T
ny/ —w 2 cos & [1—— =
4w5 |cos ”‘” | W cos Ty |cos an |
i w¥ sin2 &7 1
wn 172721%
Ak AR =
wsin 47 w* cos —w*2 cos 4
- a% t
e 2|cos “5* w 2 sin &7 w* sin2 a27r

w2 2
4 .
— w +1) sm—
€ 2 ( w“cos &t /=2 cos
1—( =2
2w
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Figure 58 shows the plots of x1,5(t).

0.1 0.17
0.06 0.06
= 0.0, = 002
W Wl
N N
= -0.02 = 002
-0.06 -0.06
-0.1 TR . 0.1
10 4 8 12 16 20 10 20 40 60 80 100
t t
(a) (b)

Figure 58. Illustrating x1,(¢) form =1,k =9 (w, = 3), w = 1. Solid line: « = 1.9 (Geq1 = 0.03). Dot line:
=16 (o1 = 0.11). (@) =0, 1,...,20. (b) £ =0, 1, ..., 100.

Note 10.1: x;,4(t) is not a pure harmonic function as can be seen from Figure 58.

Remark 29. We found that the sinusoidal response to fractional oscillators in Class I for any value of « € (1, 2)
does have steady-state component x1, s (t) expressed by (267), also see Figure 59.

0.05

0.03

0.01

-0.01

x1zs, s(t)

-0.03

-0.05

Figure 59. Steady-state component, X1, 5 (t), of sinusoidal response to a fractional oscillator in Class I
form=1,k=9 (wy =3), w=1. Solid line: a = 1.9 (g¢z = 0.03). Dot line: & = 1.6 (¢4 = 0.11). Dash dot
line: & = 1.3 (Gog1 = 0.22).

The illustration of x14 4 (t) is indicated in Figure 60.

Figure 60. Instantaneous component Xy, (t) for m =1, k =9 (w, = 3), w = 1. Solid line: & = 1.9
(Geq1 =0.03). Dot line: « = 1.6 (g41 = 0.11). Dash dot line: & = 1.3 (g1 = 0.22).
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Note 10.2: For « = 2, we have
2

2 2 2
X125 (t) = - — 54— [w‘l(zg — 1) cosw t + w‘%% - 1) coswnt]
w4( ) (269)

_ A
= i (COsw t + cos wyt).

10.5. Sinusoidal Response to Fractional Oscillators in Class 11

Theorem 23 (Sinusoidal response II). Denote by xp,5(t) the zero state sinusoidal response to a fractional
oscillator in Class II. Then, for t > 0 and 0 < B < 1, it is expressed by

1
2
2,2(81) gin2 BT
€ wB2cos B |1 £ 75" 7
mwy ! cos 55 17%“#_2&5/57”
A

2 2
2 chnwﬁ sin P
2 ) 4 R 2
17%(0;{37 cos - 1—%&)/57 cos -

X275 (t) =

T

2 2cwnwh sin P “

Wi 2 .
— 1 — w* | coswt + sin wt
17%wﬁ’2 cos’%ﬂ ) 17%14;/3’2 cosﬁ%r
_ 5 -
wny|1- b s B t
( w% 2) 17%01;;72(05#377[
— = — W’ ] cos 270
177%(4_;3 2(:051377r \/1*ﬁwﬁ_2COSﬁTn ( )
gwnwﬂ'_l sin ﬁTﬂ 5“)/871 sin ﬁTn < “’% +w2)
_|_e 17%avﬁ72cosﬁ7n \/1*%&):372“)5}57” 17%wﬁ_2COSﬁTN
- 2
1— gwﬂ*] sin 'BTT[
1 1—%w’572cos ﬁTﬂ
2
wWwn 1— 7(;2&;2(&71) sz ﬁTn t
. 1- %wﬁ72 cos Eg
s B
L \/17%wﬂ*2COST ]
Proof. In the following expression,
1 A
xZZS(t) = [ 2 2
42 eqd2 (wgqn,ziwz) +(2g3‘72w""7”r2w)
2 2 :
(cu eqn2 — W ) COS Wt + 26 oo Weqn 2w SIN wi (271)

Geq2

— e Wean ot 2 2 2 2) gi
e Seq2Weqn,2 [(weqn/2 —w ) COS Weqd ot — \/ﬁ (weqn,Z +w ) sin weqd,Zt]
gqu

replacing ., with the one in Section 4, ¢eq, Wegd,2 and wegn 2 by those in Section 5, results in (270).

The proof completes. [J
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The stead-state part of xp.s(t) is represented by

1

x2zs,s(t) =
o 202(=1) gin2 /3T7r

mwpy/1— £ wP=2 cos BF

c -2 pr
l—mw/S €os 5

A
w2 : Zgwnwf; sin Br z (272)
n —w? + 2
1—%wﬁ72cosﬁ7n 1—%&1:572@5‘5%

w? 2 24;(41,1@1/3 sin i .
T W cos wt + ﬁsmwt .

c B2 B c, B-2
—ﬁwﬁ cos 5 —mwﬁ' cos

On the other side, the transient part xo, ¢, (¢) is given by

1

2,,2(B—1) g2 BT
_ T Ccw sin
mwn[1- b Zcos%J1<W>
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Figures 61-63 show the plots of xp,5(t), X22s,5(t), and X2 ¢ (t).

I |
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-0.08
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Figure 61. Sinusoidal response x,,(t) to a fractional oscillator in Class Il with = 0.9 (solid line) (Geqz = 0.14),
B = 0.6 (dot line) (Geq2 = 0.07), B = 0.3 (dash dot line) (goy2 = 0.03) withm=c=1, w, =3 and w=1.
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Figure 62. Steady-state sinusoidal part of x5 (t) with = 0.9 (solid line) (Geqz = 0.14), B = 0.6 (dot line)
(Geqz = 0.07), B = 0.3 (dash dot line) (g¢q2 = 0.03) withm =c=1, wy =3 and w = 1.
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Figure 63. Transient part of x;,(¢) with B = 0.9 (solid line) (Geqz = 0.14), B = 0.6 (dot line) (geq = 0.07),
B = 0.3 (dash dot line) (g¢2 =0.03) withm=c=1, wy, =3 and w =1.

Note 10.3: If B = 1, we obtain the zero-state response of the conventional sinusoidal response to a

2-order oscillator in the form

Ae=snt | (w? — w?) cos wyr/1 — g2t — ¢(w?+w?) sinwy\/1-¢2t

L Vize . @7

mwpy/1 — ¢2 (@2 — w?)? + (2cwpw)?

Xz5(t) [ p=1 =

Remark 30. We discovered that the sinusoidal response to fractional oscillators in Class II for any value of
B € (0, 1) does have steady-state component x5 s(t) described by (272), also see Figure 62.

10.6. Sinusoidal Response to Fractional Oscillators in Class 111

Theorem 24 (Sinusoidal response III). Let x3,5 () be the zero state sinusoidal response to a fractional oscillator
of Class III type. Then, for t >0,1 <a < 2,and 0 < B < 1, it is written in the form
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where Meg3 and weqq, 3 are given by (119) and (160), respectively.
Proof. In the following expression,
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84 of 91

(275)

, (276)

Substituting g3, Weqn,3 and Weqd,3 with those in Section 5 yields the Theorem 24. That completes

the proof. O

Figure 64 illustrates x3,5(f).
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Figure 64. Indicating the sinusoidal response x3.(t) to a fractional oscillator in Class III with («, B) =
(1.8, 0.8) (solid line) (geq3 = 0.13), (&, B) = (1.5, 0.8) (dot line) (g43 = 0.22), (&, B) = (1.3, 0.8) (dash dot
line) (Gq3 = 0.40) withm=c =1,k =36 (wy =6) and w = 1.

The steady-state part of x3,5(f) is in the form
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Its transient part, taking into account (160), is given by
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The steady-state component and the transient one of x35(f) are shown in Figures 65 and 66,

respectively.
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Figure 65. Indicating the steady-state component of x3;(t) with («, B) = (1.8, 0.8) (solid line) (g¢43 = 0.13),
(&, B) = (1.5,0.8) (dot line) (G¢q3 = 0.22), (, B) = (1.3, 0.8) (dash dot line) (Gep3 = 0.40) withm =c =1,k =36

(wp=6)and w=1.
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0.004

0.002

x3zs, tr(t)

Figure 66. Transient component of x35(t) with (&, B) = (1.8, 0.8) (solid line) (Geqz = 0.13), (&, ) = (1.5,0.8)
(dot line) (Geq3 = 0.22), (2, B) = (1.3, 0.8) (dash dot line) (Gey3 = 0.40) withm =c=1,k=36 (wy =6)and w = 1.

Note 10.4: When («, B) = (2, 1), x3,5(t) reduces to the ordinary zero-state sinusoidal response to a
2-order oscillator in the form

2402 sinwn /12
X325 () |y, p=1 = (

w3 —w? 2-&-(2gw w)?
2 4 o2 n ) ' (279)
Ae—cwnt (wz—wz)coswdt_M}

1 ! vi-¢

2
mwg (w% —wz) +(2cwnw)?

Remark 31. We revealed that the sinusoidal response to fractional oscillators in Class Il for any value of
a € (1,2)and B € (0, 1) does have steady-state component x3, s(t) described by (277), also see Figure 65.

Remark 32. The results presented above show that the exact periodic solutions to three classes of fractional
oscillators exist.

11. Discussion

Three classes of fractional oscillators previously studied are usually characterized by constant-
coefficient fractional differential equations. The basic theory and key point I presented in Section 4 is
to equivalently represent them by the second-order differential equations with variable-coefficients.
In this way, three classes of fractional oscillators, which are nonlinear in nature, all reduce to linear
oscillators with variable-coefficients. In methodology, that may open a new way of the linearization to
describe and research fractional oscillators.

In addition to keep fractional properties of fractional oscillators with its equivalences, for instance,
the characteristic roots of a fractional oscillator being infinitely large as explained by Li et al. [18]
and Duan et al. [39], based on the proposed equivalent oscillators, we also reveal other properties
of fractional oscillators, which may be very difficult, if not impossible, to be described directly from
the point of view of fractional differential equations, such as the equivalent, i.e., intrinsic, masses
Mg, €quivalent dampings ceq;, equivalent natural frequencies weg,,j and wegq j (j =1, 2, 3) of fractional
oscillators, which are nonlinear with the power laws in terms of oscillation frequency w as stated in
Sections 4 and 5.

The significance of the presented theory with respect to three classes of fractional oscillators in
both theory and practice is about the closed form analytic formulas of the responses to fractional
oscillators explained in Sections 6-10 by using elementary functions, making the matters much better
in engineering.
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Note that power laws plays a role in understanding the nature in general, see, e.g., Gabaix et al. [82],
Stanley [83]. As a matter of fact, the fractional order a relates to the fractal dimension, see
Lim et al. [20-22]. Thus, my study of the power laws previously stated is quite beginning in the aspect
of fractional oscillations. Further research is needed in future. In addition to that, our future work will
consider the applications of the present equivalent theory of the fractional oscillators to fractional noise
in communication systems (Levy and Pinchas [84], Pinchas [85]), partial differential equations, such as
transient phenomena of complex systems or fractional diffusion equations (Toma [86], Bakhoum and
Toma [87], Cattani [88], Mardani et al. [89]).

12. Conclusions

We have established a theory of equivalent oscillators with respect to three classes of fractional
oscillation systems. Its principle is to represent a fractional oscillator with constant coefficients (mass
and damping) by a 2-order oscillator equivalently with variable mass and damping. The analytic
expressions of equivalent masses, equivalent dampings, equivalent damping ratios, equivalent natural
frequencies, and equivalent frequency ratios have been presented. We have revealed that the equivalent
masses and dampings of three classes of fractional oscillators follow power laws in terms of oscillation
frequency. By using elementary functions, we have put forward the closed form representations
of responses (free, impulse, step, frequency, sinusoidal) to three classes of fractional oscillators.
Additionally, analytic expressions of the logarithmic decrements of three classes of fractional oscillators
have been proposed. As by products, we have stated the representations of four types of the generalized
Mittag-Leffler functions in the closed form with elementary functions.
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