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Abstract: We take dissipation into account in the derivation of the Casimir energy formula between
two objects placed in a surrounding medium. The dissipation channels are considered explicitly in
order to take advantage of the unitarity of the full scattering processes. We demonstrate that the
Casimir energy is given by a scattering formula expressed in terms of the scattering amplitudes
coupling internal channels and taking dissipation into account implicitly. We prove that this formula
is also valid when the surrounding medium is dissipative.

Keywords: Casimir effect; scattering theory; dissipation

1. Introduction

Casimir physics has seen a renewed interest in recent decades thanks to new measurements of
the Casimir interaction between macroscopic objects [1–3] with an improved precision [4–8], as well
as efforts to meet the associated theoretical challenges [9–14]. In order to accurately reproduce the
experimental data, a theoretical calculation has to model the optical properties of the materials used.
A puzzling result of these comparisons is that some of the most precise experiments appear to agree
well with the calculations only when the Ohmic losses in the metallic plates are neglected in the
model. Several possible explanations of this puzzle have been discussed, but none of them seem to be
satisfactory (a recent review is presented in [15]). For example, the electrostatic interaction between
patches on the plates is certainly a possible systematic effect for Casimir force measurements [16–19],
but it does not explain the discrepancy between theory and measurements [20,21].

This still-unsolved discrepancy between experiment and theory has led to discussions about the
correctness of the theoretical formula used to describe Casimir interaction. In particular, it has been
recently realized [22–24] that the calculations using the lossless plasma model were in fact neglecting
the interaction between magnetically coupled induced currents due to a subtlety in the mathematical
description of causality properties of the metallic optical response. Though it does not solve the
discrepancy, this work has shed interesting new light on the derivation of the scattering formula used
in most calculations. Among other worries, it has also been suggested that the scattering approach
might not be valid for the dissipative metallic plates used in the experiments [25,26]. Some works have
been devoted to ab initio treatments of the Casimir interaction between dissipative mirrors [27–30].

In the present article, we show that dissipation is taken into account in the usual scattering
formula of the Casimir interaction energy [31,32]. We explicitly consider the channels responsible
for dissipation in order to take advantage of the unitarity of the scattering processes. In the end, the
Casimir energy is given by a scattering formula written in terms of the scattering amplitudes of the
mirrors, implicitly accounting for the channels responsible for dissipation. In the context of Casimir
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physics, this result was already proven for the particular case of the plane-plane geometry [33,34],
and the derivation in the present paper can be considered as a generalization to the case of an arbitrary
geometry. In a broader context, it is reminiscent of properties known in the theory of resistance in
mesoscopic physics [35], or that of quantum field propagation in a dissipative medium [36,37].

2. Scattering Interpretation of the Casimir Effect

Our starting point is the interpretation of the Casimir effect in terms of the scattering
formula [31,32]. Since temperature does not play a key role in the considerations presented below,
we assume T = 0 for the sake of simplicity. We begin by considering a single object placed into
a medium, with scattering of electromagnetic fluctuations by this object leading to a change of the
vacuum energy written in terms of its scattering matrix S

∆Evac = −h̄
ˆ ∞

0

dω

2π
∆φ , (1)

∆φ =
1
2i

log det S . (2)

The change of vacuum energy ∆Evac is infinite when calculated for a single object, but its relevant
part for estimating the Casimir effect turns out to be finite [38–40]. The phase shift ∆φ is the trace
of eigen-phase shifts summed over all scattering channels at a given frequency ω. The Formula (1)
thus has a clear physical meaning when the scattering matrix S is unitary, as it should if all scattering
channels are taken into account. Accordingly, it is obvious that ∆Evac is real.

This discussion does not mean that (1) cannot be applied when dissipation enters the game.
It only implies that all scattering channels responsible for dissipation processes must be included in the
scattering theory. This can always be achieved, and necessarily leads to a unitary matrix. The general
expression (1) always describes the modification of the vacuum energy due to the presence of scatterers.
Another way to see that is to transform Equation (1) into an equivalent equation through an integration
by parts and a rearrangement of terms:

∆Evac =

ˆ ∞

0
dω

h̄ω

2
∆η , (3)

∆η =
1
π

∂

∂ω
∆φ . (4)

Here, h̄ω/2 describes the vacuum energy of one mode at frequency ω, while ∆η is the modification
of the density of states due to the presence of the scatterer [40,41]. Here again, this interpretation of (4)
has a direct physical meaning when the scattering matrix is unitary.

In the following, we derive the expression for the Casimir interaction energy between two objects
1 and 2 . The set-up is displayed in Figure 1, with wavy lines representing dissipative channels for
the objects and the medium. We apply the formula written above for the total scattering matrix S
viewed as describing the change of the electromagnetic vacuum energy when two objects are placed
in the surrounding medium at a distance L. As depicted in Figure 1, the total scattering matrix S
can be decomposed into the scattering matrices S1 and S2 related to the individual objects, and the
matrix SL describing the propagation between the two objects over a distance L through the medium.
The expression for the Casimir interaction energy is then obtained as the change in the vacuum energy
caused by the full scattering matrix S after extracting the part depending on the distance L.



Symmetry 2018, 10, 37 3 of 11

1

S1

2

S2

L

SL

Figure 1. The Casimir interaction between two objects 1 and 2 at a distance L is considered.
As indicated by the wavy lines, both objects as well as the medium in between are generally
dissipative. The two objects are described by unitary scattering matrices S1 and S2, which also
account for the external channels associated with the dissipation. The unitary scattering matrix SL

describes the translation between the reference frames of objects 1 and 2 , and also accounts for the
external channels.

We now introduce the notion of internal and external scattering channels. An internal scattering
channel links the two objects. It represents, for example, an outgoing channel from object 1 which
becomes an incoming channel at object 2 after propagation by a translation matrix, as discussed in
Section 4. The channels which are not internal are named external channels. They account for the
exchange of photons with the outside world and for quantum fluctuations from the environment. It is
assumed that photons leaving through an external channel will not return coherently, but rather be
absorbed in an excitation process in the outside world. Once these channels are included, the scattering
matrices S1, S2, and SL are unitary, and therefore the total scattering matrix S is unitary as well.
The Casimir interaction is then given by the part of Equations (1) and (3), which depends on L. We
show below that the Casimir energy can also be described by a simplified scattering formula written
in terms of scattering amplitudes between internal channels only, with the channels responsible for
dissipation taken into account implicitly [33,34].

3. Determinant Formula for Two Scatterers

In this section, we derive a relation involving determinants of scattering matrices for a scattering
set-up with an internal structure described by two scattering matrices as depicted in Figure 2. In order
to emphasize that the involved scattering matrices are general and not necessarily related to the
scattering matrices introduced in Figure 1, we denote them by calligraphic symbols S , S1, and S2.
When applying the relation for the determinant (17) obtained at the end of this section, we will replace
these general scattering matrices by specific scattering matrices related to the set-up shown in Figure 1.

Ignoring the internal structure, the scattering properties can be described by a scattering matrix
S coupling the ne

1 + ne
2 external channels among each other. Accounting for the internal structure,

in addition to the ne
1 and ne

2 external channels associated with the scattering matrices S1 and S2,
respectively, one has ni internal channels coupling the two scatterers. Even though the two scatterers
in Figure 2 are drawn at a certain distance, for the purpose of this section, we do not imply any effects
of translation between the two scatterers. Such effects can be accounted for by an additional scattering
matrix, as we will see in Section 4.



Symmetry 2018, 10, 37 4 of 11

S

ne
2 external channelsne

1 external channels

S1 S2

ni internal channels

Figure 2. Scattering geometry with internal structure. Seen from the outside, a total of ne
1 + ne

2 external
channels are coupled by a scattering matrix S . The internal structure is accounted for by two scattering
matrices S1 and S2 coupling ni internal channels to ne

1 and ne
2 external channels, respectively.

As the individual scattering matrices S1 and S2 couple internal (i) and external (e) channels
among each other, we can express them in block matrix form as

Sk =

(
S ii

k S ie
k

Sei
k See

k

)
k = 1, 2 . (5)

The global scattering matrix S is obtained by chaining the effect of the two individual scatterers

S = S1 ? S2 , (6)

where the symbol ? indicates that S is not obtained by a simple matrix multiplication of S1 and
S2. In fact, the scattering matrices can be transformed into transfer matrices for which the chaining
corresponds to a matrix multiplication [33]. From the resulting transfer matrix, one obtains the global
scattering matrix, which can be expressed as a block matrix

S =

(
S11 S12

S21 S22

)
, (7)

where the blocks refer to the external channels associated with scatterers 1 and 2. Evaluating the
chaining operation on S1 and S2 as just described, one finds

S11 = See
1 + Sei

1 S ii
2D21S ie

1 (8a)

S12 = Sei
1 D12S ie

2 (8b)

S21 = Sei
2 D21S ie

1 (8c)

S22 = See
2 + Sei

2 S ii
1D12S ie

2 , (8d)

where

D12 =
(

1− S ii
2S ii

1

)−1
(9a)

D21 =
(

1− S ii
1S ii

2

)−1
. (9b)

The matrices in (9) account for an arbitrary number of round trips along the internal channels
between the two scatterers starting on scatterer 1 and scatterer 2, respectively, as can be seen by means
of a Taylor expansion; e.g.,

D12 = 1 + S ii
2S ii

1 + S ii
2S ii

1S ii
2S ii

1 + S ii
2S ii

1S ii
2S ii

1S ii
2S ii

1 + · · · (10)

The relations (8a) and (8c) are visualized in Figure 3, and the other relations are obtained by
interchanging the two scatterers.
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Figure 3. Schematic representation of the blocks (a) S11 and (b) S21 of the total scattering matrix
S = S1 ? S2. The diagrams visualize the Equations (8a) and (8c), respectively. The two other blocks
defined in (8b) and (8d) are obtained by exchanging the two objects.

Relations (7)–(9) allow us to determine the determinant of the scattering matrix S . In the
derivation, we suppose that the three matrices S , S1, and S2 are unitary. From the property (A7) of
the determinant of a unitary 2× 2 block matrix, we get together with the relations (8a) and (8d)

detS =
det(S22)

det(S†
11)

=
det(See

2 + Sei
2 S ii

1D12S ie
2 )

det(See
1 + Sei

1 S ii
2D21S ie

1 )
∗

. (11)

Then, we use a generalization of the matrix determinant lemma on the above expression (see the
Appendix A). For instance, for the numerator we have according to (A5)

det(See
2 + Sei

2 S ii
1D12S ie

2 ) = det(See
2 )det(D12)det(D−1

12 + S ie
2 See

2
−1Sei

2 S ii
1 ) . (12)

By applying (A7) to matrices S1 and S2, we can express the determinants of the blocks See
1 and

See
2 related to the external channels by those related to the internal channels, S ii

1 and S ii
2 , and obtain

detS = det(S1)det(S2)
det(D12)

det(D21)∗
α , (13)

where the last factor reads

α =
det(S ii

2 )
∗ det(D−1

12 + S ie
2 See

2
−1Sei

2 S ii
1 )

det(S ii
1 )det(D−1

21 + S ie
1 See

1
−1Sei

1 S ii
2 )
∗

. (14)
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This factor can be further evaluated by making use of (A8) yielding

S ie
1 See

1
−1Sei

1 = S ii
1 − S ii

1
†−1

(15a)

S ie
2 See

2
−1Sei

2 = S ii
2 − S ii

2
†−1

. (15b)

Employing those expressions and the definitions (9a) and (9b), we find that

α =
det(S ii

2
† − S ii

1 )

det(S ii
1 − S ii

2
†
)
= (−1)ni

(16)

is only a phase factor depending on the number ni of internal channels. Finally, Sylvester’s determinant
identity implies detD12 = detD21, so that we get from (13) our first main result

detS = det(S1 ? S2) = (−1)ni
det(S1)det(S2)

det(D21)

det(D21)∗
. (17)

4. Application to the Casimir Interaction Energy

At first sight, it might appear that the result (17) can be directly applied to the expression for the
Casimir energy (1) between two dissipative objects by replacing the general scattering matrices S1

and S2 in (17) by the scattering matrices S1 and S2 of the two dissipative objects. However, as already
pointed out in the first paragraph of Section 3, the translation of the electromagnetic waves through
a potentially dissipative medium between the two objects has not yet been accounted for. Actually, we
have to consider the set-up depicted in Figure 4, where in addition to the scattering matrices S1 and
S2, a scattering matrix SL is present. This scattering matrix describes the translation of electromagnetic
waves between the bases associated with objects 1 and 2 over a distance L. As shown in Figure 4,
the operator SL involves a first set of internal channels connecting S1 to SL, a second set of internal
channels connecting S2 to SL, and a set of external channels. The operator SL then has the same
structure as in Equation (5). However, using the two sets of internal channels defined previously,
the block Sii

L itself has the following sub-structure:

Sii
L =

(
0 Tii

21
Tii

12 0

)
. (18)

Above, the vanishing blocks express the fact that no backscattering can occur during the
propagation between the two objects. The blocks Tii express the translation over a distance L from
object 1 to object 2 , and vice-versa. Concrete examples will be discussed at the end of this section.
Furthermore, SL couples to external channels describing the loss of photons and the influence of noise
from the environment. Those losses are described by the blocks Sei

L , and are directly responsible for the
imaginary part of the intervening medium’s refractive index. The global scattering matrix associated
with Figure 4 reads

S = S1 ? SL ? S2 . (19)

In the chaining of scattering matrices, we are free to choose the order. As indicated by the box
marked by a dashed line in Figure 4, we start by evaluating SL ? S2.



Symmetry 2018, 10, 37 7 of 11

S = S1 ? SL ? S2

SL ? S2

S1 S2SL

Figure 4. Set-up required to describe the Casimir effect. Apart from the scattering matrices S1 and
S2, a scattering matrix SL describing the translation over a distance L is needed. In addition to the
internal channels, all scattering matrices also couple to external channels, thus allowing the dissipation
of the objects and the medium in between to be accounted for. In a first step, the combination SL ? S2

indicated by the dashed box is considered.

With SL and S2 being unitary matrices, we can directly apply (17) by replacing S1 and S2 by
SL and S2, respectively. However, D21 reflecting the internal round-trips requires some attention.
In contrast to Section 3, the internal channels between scattering matrices S1 and S2 are now interrupted
by the scattering matrix SL, and we should consider as internal only those channels connecting S2

and SL. In contrast, the channels connecting S1 and SL are to be taken as external for the present
consideration. Since SL does not induce backscattering, it follows that the purely internal part of SL
vanishes, Sii

L = 0. As a consequence, D21 is a unit matrix, reflecting the fact that no internal round
trips are possible between SL and S2. From (17), we then obtain

det(SL ? S2) = (−1)ni
det(SL)det(S2) . (20)

In a second step, we apply (17) with S1 and S2 replaced by S1 and SL ? S2, and find together
with (20)

det S = det(S1)det(S2)det(SL)
det(D21)

det(D21)∗
. (21)

Apart from S ii
1 = Sii

1 , the matrix D21 also contains the coupling between the internal channels
due to reflection by the chain of scattering matrices SL ? S2. As explained before, SL does not by
itself lead to a coupling of internal channels linked to object 1 . This can happen only by means of Sii

2
sandwiched between translation matrices Tii

12 and Tii
21 through a dissipative medium over the distance

L from object 1 to object 2 and back. In the last factor of (21), we thus have to set

D21 =
(

1− Sii
1 Tii

12Sii
2 Tii

21

)−1
. (22)

We note that in the presence of a dissipative medium, Tii
12 and Tii

21 are non-unitary matrices.
We can now insert (21) together with (22) into (1) to obtain the change in the vacuum energy due

to the dissipative scatterers separated by a dissipative medium. To obtain the Casimir interaction
energy, we need to identify the part which depends on the distance L between the two objects. In (21),
the first two factors depend only on properties of the individual objects, and are thus irrelevant for
the Casimir interaction energy. Only the last two factors depend on L. However, the global scattering
matrix S contains a trivial dependence on L arising from the shift of the basis discussed before (19).
This effect would survive even in the absence of the objects 1 and 2 , in which case the Casimir
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interaction energy vanishes. We are thus left with the last factor. In view of (1) and (2), we finally
obtain for the Casimir interaction energy

ECas(L) = h̄
ˆ ∞

0

dω

2π
Im log detD−1

21

= h̄
ˆ ∞

0

dω

2π
Im log det(1− Sii

1 Tii
12Sii

2 Tii
21) . (23)

This expression depends only on the parts of the scattering matrices pertaining to the internal
channels. Nevertheless, the properties of these parts reflect the dissipative properties of the objects
and the medium in between.

In the form (23), the expression for the Casimir interaction energy is quite general and
basis-independent. The Dzyaloshinskii–Lifshitz–Pitaevskii formula [42] is recovered in the case
of a plane-plane geometry. In this geometry, it makes sense to work in a basis of plane waves
characterized by the quantum numbers {ω, q, ς}, where q = k − (k · L̂)L̂ is the transverse part
of the wave vector k with respect to the unit vector L̂ normal to the two planes (note that q is a
real quantity since Im[k] is perpendicular to surfaces of constant amplitudes) and ς denotes the
polarization. In this basis and this geometry, both the scattering matrix Sii and the translation
matrix Tii are diagonal, with matrix elements given by the Fresnel reflection amplitude r(ω, q, ς)

and exp
(

i(n2ω2/c2 − q2)1/2L
)

, respectively. The lossy propagation is conveniently described by
introducing a complex refractive index n(ω) whose imaginary part is identified with the attenuation
constant. In the case of anisotropic intervening media, the refractive index becomes a tensor instead of
a scalar. Consequently, channels associated with different polarizations of the electromagnetic field
can be coupled through the scattering and translation operators Sii and Tii.

Another useful basis is the multipole basis {ω, `, m, ς} whenever the system under study has
some degree of spherical symmetry. For a sphere, the scattering matrix Sii is diagonal with elements
determined by the Mie scattering amplitudes. The set of internal channels between a sphere and
another object consists of an infinite number of multipoles arising from translation formulas between
spherical waves (see, e.g., [43]), so that the translation matrix Tii is not diagonal.

For geometries involving gratings (see, e.g., [44]), one works once again in a plane-wave basis.
In this case, it is the scattering matrix which is not diagonal due to the non-specular nature of the
reflection by a grating. Therefore, the plane-plane geometry is one of the few examples where both
scattering and translation matrices are diagonal (the other one being the somewhat unrealistic geometry
consisting of two concentric spheres). In general, at least one the two matrices is not diagonal. It is
possible to treat in a similar way non-specular scattering for a Drude metal with Ohmic behaviour
related to a disordered distribution of impurities [45]. Finally, we note that the formalism presented in
this manuscript can be generalized so as to include off-the-energy-shell scattering matrix elements in
order to describe the dynamical Casimir effect observed in recent experiments [46–49].

5. Conclusions

We have derived an expression for the Casimir interaction energy between dissipative objects
embedded in a dissipative medium using the formalism of the scattering theory. The determinant of
the total scattering matrix can be factored out into parts depending or not on the distance between
the objects. The Casimir interaction energy is expressed using the distance-dependent part. Our final
result (23) depends exclusively on scattering matrix elements involving internal channels. Dissipation
thus appears only implicitly in the scattering amplitudes, as the blocks over the internal channels are
non-unitary.

Author Contributions: All authors contributed equally.

Conflicts of Interest: The authors declare no conflict of interest.
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Appendix A. Useful Lemmas

In this appendix, we gather several relations pertaining to block matrices which are required in
the main part of the text. Let

M =

(
A B
C D

)
(A1)

be a 2× 2 block matrix. Its determinant can expressed either as

det M = det(A)det(M/A) (A2)

or
det M = det(D)det(M/D) , (A3)

provided that the blocks A and/or D are invertible. The Schur complements of the blocks A and D in
M are defined as

M/A = D−CA−1B (A4a)

M/D = A− BD−1C , (A4b)

respectively. From the two expressions (A2) and (A3) for the determinant of M, one obtains the matrix
determinant lemma

det(A + BDC) = det(A)det(D)det(D−1 + CA−1B) , (A5)

if the lower right block in M is replaced by −D−1.
For the remainder of this section, we assume M to be unitary. If both blocks A and D are invertible,

the relation M† = M−1 reads(
A† C†

B† D†

)
=

(
(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 (M/A)−1

)
. (A6)

From the upper-left block together with (A3), we find

det M =
det(D)

det(A†)
. (A7)

Together with (A4b), the same relation yields

BD−1C = A−A†−1 . (A8)
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