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Abstract: A single qubit may be represented on the Bloch sphere or similarly on the 3-sphere S3.
Our goal is to dress this correspondence by converting the language of universal quantum computing
(UQC) to that of 3-manifolds. A magic state and the Pauli group acting on it define a model of
UQC as a positive operator-valued measure (POVM) that one recognizes to be a 3-manifold M3.
More precisely, the d-dimensional POVMs defined from subgroups of finite index of the modular
group PSL(2,Z) correspond to d-fold M3- coverings over the trefoil knot. In this paper, we also
investigate quantum information on a few ‘universal’ knots and links such as the figure-of-eight knot,
the Whitehead link and Borromean rings, making use of the catalog of platonic manifolds available
on the software SnapPy. Further connections between POVMs based UQC and M3’s obtained from
Dehn fillings are explored.
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Manifolds are around us in many guises.

As observers in a three-dimensional world, we are most familiar with two-manifolds: the surface of a
ball or a doughnut or a pretzel, the surface of a house or a tree or a volleyball net...

Three-manifolds may be harder to understand at first. But as actors and movers in a three-dimensional
world, we can learn to imagine them as alternate universes.

(William Thurston [1]).

1. Introduction

Mathematical concepts pave the way for improvements in technology. As far as topological
quantum computation is concerned, non-abelian anyons have been proposed as an attractive
(fault-tolerant) alternative to standard quantum computing which is based on a universal set of
quantum gates [2–5]. Anyons are two-dimensional quasiparticles with world lines forming braids
in space-time. Whether non-abelian anyons do exist in the real world and/or would be easy to
create artificially, is still open to discussion. In this paper, we propose an alternative to anyon-based
universal quantum computation (UQC) thanks to three-dimensional topology. Our proposal relies on
appropriate 3-manifolds whose fundamental group is used for building the magic states for UQC.
Three-dimensional topological quantum computing would federate the foundations of quantum
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mechanics and cosmology, a recurrent dream of many physicists. Three-dimensional topology was
already investigated by several groups in the context of quantum information [6,7], high energy
physics [8,9], biology [10] and consciousness studies [11].

Recall the context of our work and clarify its motivation. Bravyi & Kitaev introduced the
principle of ‘magic state distillation’: universal quantum computation, the possibility to implement an
arbitrary quantum gate, may be realized thanks to the stabilizer formalism (Clifford group unitaries,
preparations and measurements) and the ability to prepare an appropriate single qubit non-stabilizer
state, called a ‘magic state’ [12]. Then, irrespectively of the dimension of the Hilbert space where the
quantum states live, a non-stabilizer pure state was called a magic state [13]. An improvement of this
concept was carried out in [14,15] showing that a magic state could be at the same time a fiducial state
for the construction of an informationally complete positive operator-valued measure, or IC-POVM,
under the action on it of the Pauli group of the corresponding dimension. Thus UQC in this view
happens to be relevant both to such magic states and to IC-POVMs. In [14,15], a d-dimensional magic
state follows from the permutation group that organizes the cosets of a subgroup H of index d of a
two-generator free group G. This is due to the fact that a permutation may be seen as a permutation
matrix/gate and that mutually commuting matrices share eigenstates—they are either of the stabilizer
type (as elements of the Pauli group) or of the magic type. In the calculation, it is enough to keep
magic states that are simultaneously fiducial states for an IC-POVM and we are done. Remarkably,
a rich catalog of the magic states relevant to UQC and IC-POVMs can be obtained by selecting G as the
two-letter representation of the modular group Γ = PSL(2,Z) [16]. The next step, developed in this
paper, is to relate the choice of the starting group G to three-dimensional topology. More precisely, G is
taken as the fundamental group π1(S3 \ K) of a 3-manifold M3 defined as the complement of a knot or
link K in the 3-sphere S3. A branched covering of degree d over the selected M3 has a fundamental
group corresponding to a subgroup of index d of π1 and may be identified as a sub-manifold of M3,
the one leading to an IC-POVM is a model of UQC. In the specific case of Γ, the knot involved is the
left-handed trefoil knot T1, as shown in Section 2.

While Γ serves as a motivation for investigating the trefoil knot manifold in relation to UQC
and the corresponding ICs, it is important to put the UQC problem in the wider frame of Poincaré
conjecture, the Thurston’s geometrization conjecture and the related 3-manifolds [1]. For example,
ICs may also follow from hyperbolic or Seifert 3-manifolds as shown in Tables of this paper.

More details are provided at the next subsections.

1.1. From Poincaré Conjecture to UQC

The Poincaré conjecture is the elementary (but deep) statement that every simply connected,
closed 3-manifold is homeomorphic to the 3-sphere S3 [17]. Having in mind the correspondence
between S3 and the Bloch sphere that houses the qubits ψ = a |0〉+ b |1〉, a, b ∈ C, |a|2 + |b|2 = 1,
one would desire a quantum translation of this statement. For doing this, one may use the picture of
the Riemann sphere C∪∞ in parallel to that of the Bloch sphere and follow F. Klein lectures on the
icosahedron to perceive the platonic solids within the landscape [18]. This picture fits well the Hopf
fibrations [19], their entanglements described in [20,21] and quasicrystals [22,23]. However, we can be
more ambitious and dress S3 in an alternative way that reproduces the historic thread of the proof of
Poincaré conjecture. Thurston’s geometrization conjecture, from which Poincaré conjecture follows,
dresses S3 as a 3-manifold not homeomorphic to S3. The wardrobe of 3-manifolds M3 is huge but
almost every dress is hyperbolic and W. Thurston found the recipes for them [1]. Every dress is
identified thanks to a signature in terms of invariants. For our purpose, the fundamental group π1 of
M3 does the job.

The three-dimensional space surrounding a knot K—the knot complement S3 \ K—is an
example of a three-manifold [1,24]. We will be especially interested by the trefoil knot that underlies
work of the first author [16] as well as the figure-of-eight knot, the Whitehead link and the Borromean
rings because they are universal (in a sense described below), hyperbolic and allow to build 3-manifolds
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from platonic manifolds [25]. Such manifolds carry a quantum geometry corresponding to quantum
computing and (possibly informationally complete) POVMs identified in our earlier work [14–16].

According to [26], the knot K and the fundamental group G = π1(S3 \ K) are universal if every
closed and oriented 3-manifold M3 is homeomorphic to a quotient H/G of the hyperbolic 3-space H
by a subgroup H of finite index d of G. As just announced, the figure-of-eight knot, the Whitehead link
and Borromean rings are universal. The catalog of the finite index subgroups of their fundamental
group G and of the corresponding 3-manifolds defined from the d-fold coverings [27] can easily be
established up to degree 8, using the software SnapPy [28].

In paper [16] of the first author, it has been found that minimal d-dimensional IC-POVMs
(sometimes called MICs) may be built from finite index subgroups of the modular group Γ = PSL(2,Z).
To such an IC (or MIC) is associated a subgroup of index d of Γ, a fundamental domain in the
Poincaré upper-half plane and a signature in terms of genus, elliptic points and cusps as summarized
in ([16] Figure 1). There exists a relationship between the modular group Γ and the trefoil knot T1

since the fundamental group π1(S3 \ T1) of the knot complement is the braid group B3, the central
extension of Γ. However, the trefoil knot and the corresponding braid group B3 are not universal [29]
which forbids the relation of the finite index subgroups of B3 to all three-manifolds.

It is known that two coverings of a manifold M with fundamental group G = π1(M) are
equivalent if there exists a homeomorphism between them. Besides, a d-fold covering is uniquely
determined by a subgroup of index d of the group G and the inequivalent d-fold coverings of M
correspond to conjugacy classes of subgroups of G [27]. In this paper we will fuse the concepts of
a three-manifold M3 attached to a subgroup H of index d and the POVM, possibly informationally
complete (IC), found from H (thanks to the appropriate magic state and related Pauli group factory).

1.2. Minimal Informationally Complete POVMs and UQC

In our approach [15,16], minimal informationally complete (IC) POVMs are derived from
appropriate fiducial states under the action of the (generalized) Pauli group. The fiducial states
also allow to perform universal quantum computation [14].

A POVM is a collection of positive semi-definite operators {E1, . . . , Em} that sum to the identity.
In the measurement of a state ρ, the i-th outcome is obtained with a probability given by the Born
rule p(i) = tr(ρEi). For a minimal IC-POVM (or MIC), one needs d2 one-dimensional projectors Πi =

|ψi〉 〈ψi|, with Πi = dEi, such that the rank of the Gram matrix with elements tr(ΠiΠj), is precisely d2.

A SIC-POVM (the S means symmetric) obeys the relation
∣∣〈ψi|ψj

〉∣∣2 = tr(ΠiΠj) =
dδij+1

d+1 , that allows
the explicit recovery of the density matrix as in ([30] Equation (29)).

New minimal IC-POVMs (i.e., whose rank of the Gram matrix is d2) and with Hermitian angles∣∣〈ψi|ψj
〉∣∣

i 6=j ∈ A = {a1, . . . , al} have been discovered [16]. A SIC (i.e., a SIC-POVM) is equiangular

with |A| = 1 and a1 = 1√
d+1

. The states encountered are considered to live in a cyclotomic field F =

Q[exp( 2iπ
n )], with n = GCD(d, r), the greatest common divisor of d and r, for some r. The Hermitian

angle is defined as
∣∣〈ψi|ψj

〉∣∣
i 6=j =

∥∥(ψi, ψj)
∥∥ 1

deg , where ‖.‖means the field norm of the pair (ψi, ψj) in
F and deg is the degree of the extension F over the rational field Q [15].

The fiducial states for SIC-POVMs are quite difficult to derive and seem to follow from algebraic
number theory [31].

Except for d = 3, the IC-POVMs derived from permutation groups are not symmetric
and most of them can be recovered thanks to subgroups of index d of the modular group
Γ ([16] Table 2).The geometry of the qutrit Hesse SIC is shown in Figure 1a. It follows from the
action of the qutrit Pauli group on magic/fiducial states of type (0, 1,±1). For d = 4, the action of
the two-qubit Pauli group on the magic/fiducial state of type (0, 1,−ω6, ω6 − 1) with ω6 = exp( 2iπ

6 )

results into a minimal IC-POVM whose geometry of triple products of projectors Πi turns out to
correspond to the commutation graph of Pauli operators, see Figure 1b and ([16] Figure 2). For d = 5,
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the geometry of an IC consists of copies of the Petersen graph reproduced in Figure 1c. For d = 6,
the geometry consists of components looking like Borromean rings (see [16] Figure 2 and Table 1 below).

Figure 1. Geometrical structure of low dimensional MICs: (a) the qutrit Hesse SIC, (b) the two-qubit
MIC that is the generalized quadrangle of order two GQ(2, 2), (c) the basic component of the 5-dit MIC
that is the Petersen graph. The coordinates on each diagram are the d-dimensional Pauli operators that
act on the fiducial state, as shown.

1.3. Organization of the Paper

The paper is organized as follows. Section 2 deals with the relationship between quantum
information seen from the modular group Γ and from the trefoil knot 3-manifold. Section 3 deals
with the (platonic) 3-manifolds related to coverings over the figure-of-eight knot, Whitehead link and
Borromean rings, see Figure 2, and how they relate to minimal IC-POVMs. Section 4 describes the
important role played by Dehn fillings for describing the many types of 3-manifolds that may relate to
topological quantum computing.

Figure 2. (a) The figure-of-eight knot: K4a1 = otet0200001 = m004, (b) the Whitehead link L5a1 =
ooct0100001 = m129, (c) Borromean rings L6a4 = ooct0200005 = t12067.

2. Quantum Information from the Modular Group Γ and the Related Trefoil Knot T1

In this section, we describe the results established in [16] in terms of the 3-manifolds corresponding
to coverings of the trefoil knot complement S3 \ T1.

Let us introduce to the group representation of a knot complement π1(S3 \ K). A Wirtinger
representation is a finite representation of π1 where the relations are of the form wgiw−1 = gj where
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w is a word in the k generators {g1, · · · , gk}. For the trefoil knot T1 = K3a1 = 31 shown in Figure 3a,
a Wirtinger representation is [32]

π1(S3 \ T1) = 〈x, y|yxy = xyx〉 or equivalently π1 =
〈

x, y|y2 = x3
〉

.

In the rest of the paper, the number of d-fold coverings of the manifold M3 corresponding to the
knot T will be displayed as the ordered list ηd(T), d ∈ {1..10 . . .}. For T1 it is

ηd(T1) = {1, 1, 2, 3, 2, 8, 7, 10, 18, 28, . . .}.

Details about the corresponding d-fold coverings are in Table 1. As expected, the coverings
correspond to subgroups of index d of the fundamental group associated to the trefoil knot T1.

Figure 3. (a) The trefoil knot T1 = K3a1 = 31, (b) the link L7n1 associated to the Hesse SIC, (c) the link
L6a3 associated to the two-qubit IC.

2.1. Cyclic Branched Coverings over the Trefoil Knot

Let p, q, r be three positive integers (with p ≤ q ≤ r), the Brieskorn 3-manifold Σ(p, q, r) is
the intersection in C3 of the 5-sphere S5 with the surface of equation zp

1 + zq
2 + zr

3 = 1. In [33],
it is shown that a r-fold cyclic covering over S3 branched along a torus knot or link of type (p, q) is
a Brieskorn 3-manifold Σ(p, q, r) (see also Section 4.1). For the spherical case p−1 + q−1 + r−1 > 1,
the group associated to a Brieskorn manifold is either dihedral [that is the group Dr for the triples
(2, 2, r)], tetrahedral [that is A4 for (2, 3, 3)], octahedral [that is S4 for (2, 3, 4)] or icosahedral [that is
A5 for (2, 3, 5)]. The Euclidean case p−1 + q−1 + r−1 = 1 corresponds to (2, 3, 6), (2, 4, 4) or (3, 3, 3).
The remaining cases are hyperbolic.

The cyclic branched coverings with spherical groups for the trefoil knot (which is of type (2, 3))
are identified in the right hand side column of Table 1.

2.2. Irregular branched coverings over the trefoil knot

The right hand side column of Table 1 shows the subgroups of Γ identified in ([16] Table 1) as
corresponding to a minimal IC-POVM. Let us give a few more details on how to attach a MIC to some
coverings/subgroups of the trefoil knot fundamental group π1(T1). Columns 1 to 6 in Table 1 contain
information available in SnapPy [28], with d, ty, hom, cp, gens and CS the degree, the type, the first
homology group, the number of cusps, the number of generators and the Chern-Simons invariant of
the relevant covering, respectively. In column 7, a link is possibly identified by SnapPy when the
fundamental group and other invariants attached to the covering correspond to those of the link.
For our purpose, we are also interested in the possible recognition of a MIC behind some manifolds in
the table.
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Table 1. Coverings of degree d over the trefoil knot found from SnapPy [28]. The related subgroup of
modular group Γ and the corresponding IC-POVM [16] (when applicable) is in the right column.
The covering is characterized by its type ty, homology group hom (where 1 means Z), the number of
cusps cp, the number of generators gens of the fundamental group, the Chern-Simons invariant CS
and the type of link it represents (as identified in SnapPy). The links L7n1 (shown in Figure 3b) and
L6a3 (shown in Figure 3c) correspond to the Hesse SIC and the two-qubit IC, respectively. The case of
cyclic coverings corresponds to Brieskorn 3-manifolds as explained in the text: the spherical groups for
these manifolds is given at the right hand side column.

d ty hom cp Gens CS Link Type in [16]

2 cyc 1
3 + 1 1 2 −1/6

3 irr 1 + 1 2 2 1/4 L7n1 Γ0(2), Hesse SIC
. cyc 1

2 + 1
2 + 1 1 3 . A4

4 irr 1 + 1 2 2 1/6 L6a3 Γ0(3), 2QB IC
. irr 1

2 + 1 1 3 . 4A0, 2QB-IC
. cyc 1

3 + 1 1 2 . S4

5 cyc 1 1 2 5/6 A5
. irr 1

3 + 1 1 3 . 5A0, 5-dit IC

6 reg 1 + 1 + 1 3 3 0 L8n3 Γ(2), 6-dit IC
. cyc 1 + 1 + 1 1 3 . Γ′, 6-dit IC
. irr 1 + 1 + 1 3 3 .
. irr 1

2 + 1 + 1 2 3 . 3C0, 6-dit IC
. irr 1

2 + 1 + 1 2 3 . Γ0(4), 6-dit IC
. irr 1

2 + 1 + 1 2 3 . Γ0(5), 6-dit IC
. irr 1

2 + 1
2 + 1

2 + 1 1 4 .
. irr 1

3 + 1
3 + 1 1 3 .

7 cyc 1 1 2 −5/6
. irr 1 + 1 2 3 . NC 7-dit IC
. irr 1

2 + 1
2 + 1 1 4 . 7A0 7-dit IC

8 irr 1 + 1 2 2 −1/6
. cyc 1

3 + 1 2 2 .
. cyc 1

3 + 1 + 1 2 3 .
. cyc 1

6 + 1 1 4 . 8A0, ∼8-dit IC

For the irregular covering of degree 3 and first homology Z+Z, the fundamental group provided
by SnapPy is π1(M3) =

〈
a, b|ab−2a−1b2〉 that, of course, corresponds to a representative H of one of

the two conjugacy classes of subgroups of index 3 of the modular group Γ, following the theory of [27].
The organization of cosets of H in the two-generator group G =

〈
a, b|a2, y3〉 ∼= Γ thanks to the

Coxeter-Todd algorithm (implemented in the software Magma [34]) results in the permutation group
P = 〈3|(1, 2, 3), (2, 3)〉, as in ([16] Section 3.1). This permutation group is also the one obtained from
the congruence subgroup Γ0(2) ∼= S3 of Γ (where S3 is the three-letter symmetric group) whose
fundamental domain is in ([16] Figure 1b). Then, the eigenstates of the permutation matrix in S3 of
type (0, 1,±1) serve as magic/fiducial state for the Hesse SIC [15,16].

A similar reasoning applied to the irregular coverings of degree 4, and first homology Z+ Z
and Z

2 + Z leads to the recognition of congruence subgroups Γ0(3) and 4A0, respectively, behind
the corresponding manifolds. It is known from ([16] Section 3.2) that they allow the construction of
two-qubit minimal IC-POVMs. For degree 5, the equiangular 5-dit MIC corresponds to the irregular
covering of homology Z

3 +Z and to the congruence subgroup 5A0 in Γ (as in [16] Section 3.3).
Five coverings of degree 6 allow the construction of the (two-valued) 6-dit IC-POVM whose

geometry contain the picture of Borromean rings ([16] Figure 2c). The corresponding congruence
subgroups of Γ are identified in Table 1. The first, viz Γ(2), define a 3-manifold whose fundamental
group is the same as the one of the link L8n3. The other three coverings leading to the 6-dit IC are the
congruence subgroups γ′, 3C0, Γ0(4) and Γ0(5).
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3. Quantum Information from Universal Knots and Links

In the previous section, we found the opportunity to rewrite results about the existence and
construction of d-dimensional MICs in terms of the three-manifolds corresponding to some degree d
coverings of the trefoil knot T1. However, neither T1 nor the manifolds corresponding to its covering
are hyperbolic. In the present section, we proceed with hyperbolic (and universal) knots and links and
display the three-manifolds behind the low dimensional MICs. The method is as above in Section 2 in
the sense that the fundamental group of a 3-manifold M3 attached to a degree d-covering is the one of
a representative of the conjugacy class of subgroups of the corresponding index in the relevant knot
or link.

3.1. Three-Manifolds Pertaining to the Figure-of-Eight Knot

The fundamental group for the figure-of-eight knot K0 is

π1(S3 \ K0) =
〈

x, y|y ∗ x ∗ y−1xy = xyx−1yx
〉

.

and the number of d-fold coverings is in the list

ηd(K0) = {1, 1, 1, 2, 4, 11, 9, 10, 11, 38, . . .}.

Table 2 establishes the list of 3-manifolds corresponding to subgroups of index d ≤ 7 of the
universal group G = π1(S3 \ K0). The manifolds are labeled otetNn in [25] because they are oriented
and built from N = 2d tetrahedra, with n an index in the table. The identification of 3-manifolds of finite
index subgroups of G was first obtained by comparing the cardinality list ηd(H) of the corresponding
subgroup H to that of a fundamental group of a tetrahedral manifold in SnapPy table [28]. However,
there is a more straightforward way to perform this task by identifying a subgroup H to a degree d
covering of K0 [27]. The full list of d-branched coverings over the figure eight knot up to degree 8
is available in SnapPy. Extra invariants of the corresponding M3 may be found there. In addition,
the lattice of branched coverings over K0 was investigated in [35].

Table 2. Table of 3-manifolds M3 found from subgroups of finite index d of the fundamental group
π1(S3 \ K0) (alias the d-fold coverings of K0). The terminology in column 3 is that of Snappy [28].
The identified M3 is made of 2d tetrahedra and has cp cusps. When the rank rk of the POVM Gram
matrix is d2 the corresponding IC-POVM shows pp distinct values of pairwise products as shown.

d ty M3 cp rk pp Comment

2 cyc otet0400002, m206 1 2

3 cyc otet0600003, s961 1 3

4 irr otet0800002, L10n46, t12840 2 4 Mom-4s [36]
cyc otet0800007, t12839 1 16 1 2-qubit IC

5 cyc otet1000019 1 21
irr otet1000006, L8a20 3 15, 21
irr otet1000026 2 25 1 5-dit IC

6 cyc otet1200013 1 28
irr otet1200041 2 36 2 6-dit IC
irr otet1200039, otet1200038 1 31
irr otet1200017 2 33
irr otet1200000 2 36 2 6-dit IC

7 cyc otet1400019 1 43
irr otet1400002, L14n55217 3 49 2 7-dit IC
irr otet1400035 1 49 2 7-dit IC
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Let us give more details about the results summarized in Table 2. Using Magma, the conjugacy
class of subgroups of index 2 in the fundamental group G is represented by the subgroup on three
generators and two relations as follows H =

〈
x, y, z|y−1zx−1zy−1x−2, z−1yxz−1yz−1xy

〉
, from which

the sequence of subgroups of finite index can be found as ηd(M3) = {1, 1, 5, 6, 8, 33, 21, 32, · · · }.
The manifold M3 corresponding to this sequence is found in Snappy as otet0400002, alias m206.

The conjugacy class of subgroups of index 3 in G is represented as

H =
〈

x, y, z|x−2zx−1yz2x−1zy−1, z−1xz−2xz−2y−1x−2zy
〉

,

with ηd(M3) = {1, 7, 4, 47, 19, 66, 42, 484, · · · } corresponding to the manifold otet0600003, alias s961.
As shown in Table 2, there are two conjugacy classes of subgroups of index 4 in G corresponding to

tetrahedral manifolds otet0800002 (the permutation group P organizing the cosets is Z4) and otet0800007

(the permutation group organizing the cosets is the alternating group A4). The latter group/manifold
has fundamental group

H =
〈

x, y, z|yx−1y−1z−1xy−2xyzx−1y, zx−1yx−1yx−1zyx−1y−1z−1xy−1
〉

,

with cardinality sequences of subgroups as ηd(M3) = {1, 3, 8, 25, 36, 229, 435 · · · }. To H is associated
an IC-POVM [15,16] which follows from the action of the two-qubit Pauli group on a magic/fiducial
state of type (0, 1,−ω6, ω6 − 1), with ω6 = exp(2iπ/6) a six-root of unity.

For index 5, there are three types of 3-manifolds corresponding to the subgroups H.
The tetrahedral manifold otet1000026 of cardinality sequence ηd(M3) = {1, 7, 15, 88, 123, 802, 1328 · · · },
is associated to a 5-dit equiangular IC-POVM, as in ([15] Table 5).

For index 6, the 11 coverings define six classes of 3-manifolds and two of them: otet1200041 and
otet1200000 are related to the construction of ICs. For index 7, one finds three classes of 3-manifolds
with two of them: otet1400002 (alias L14n55217) and otet1400035 are related to ICs. Finally, for index
7, 3 types of 3-manifolds exist, two of them relying on the construction of the 7-dit (two-valued) IC.
For index 8, there exists 6 distinct 3-manifolds (not shown) none of them leading to an IC.

A Two-Qubit Tetrahedral Manifold

The tetrahedral three-manifold otet0800007 is remarkable in the sense that it corresponds to the
subgroup of index 4 of G that allows the construction of the two-qubit IC-POVM. The corresponding
hyperbolic polyhedron taken from SnapPy is shown in Figure 4a. Of the 29 orientable tetrahedral
manifolds with at most 8 tetrahedra, 20 are two-colorable and each of those has at most 2 cusps. The 4
three-manifolds (with at most 8 tetrahedra) identified in Table 2 belong to the 20’s and the two-qubit
tetrahedral manifold otet0800007 is one with just one cusp ([37] Table 1).

Figure 4. Two platonic three-manifolds leading to the construction of the two-qubit MIC. Details are
given in Tables 2 and 3.
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Table 3. A few 3-manifolds M3 found from subgroups of the fundamental group associated to the
Whitehead link. For d ≥ 4, only the M3’s leading to an IC are listed.

d ty M3 cp rk pp Comment

2 cyc ooct0200003, t12066, L8n5 3 2 Mom-4s [36]
cyc ooct0200018, t12048 2 2 Mom-4s [36]

3 cyc ooct0300011, L10n100 4 3
cyc ooct0300018 2 3
irr ooct0300014, L12n1741 3 9 1 qutrit Hesse SIC

4 irr ooct0400058 4 16 2 2-qubit IC
irr ooct0400061 3 16 2 2-qubit IC

5 irr ooct0500092 3 25 1 5-dit IC
irr ooct0500285 2 25 1 5-dit IC
irr ooct0500098, L13n11257 4 25 1 5-dit IC

6 cyc ooct0606328 5 36 2 6-dit IC
irr ooct0601972 3 36 2 6-dit IC
irr ooct0600471 4 36 2 6-dit IC

3.2. Three-Manifolds Pertaining to the Whitehead Link

One could also identify the 3-manifold substructure of another universal object, viz the Whitehead
link L0 [38].

The cardinality list corresponding to the Whitehead link group π1(L0) is

ηd(L0) = {1, 3, 6, 17, 22, 79, 94, 412, 616, 1659 . . .},

Table 3 shows that the identified 3-manifolds for index d subgroups of π1(L0) are aggregates of d
octahedra. In particular, one finds that the qutrit Hesse SIC can be built from ooct0300014 and that the
two-qubit IC-POVM may be built from ooct0400058. The hyperbolic polyhedron for the latter octahedral
manifold taken from SnapPy is shown in Figure 4b. The former octahedral manifold follows from the
link L12n1741 shown in Figure 5a and the corresponding polyhedron taken from SnapPy is shown in
Figure 5b.

Figure 5. (a) The link L12n1741 associated to the qutrit Hesse SIC, (b) The octahedral manifold
ooct0300014 associated to the 2-qubit IC.
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3.3. A Few Three-Manifolds Pertaining to Borromean Rings

Three-manifolds corresponding to coverings of degree 2 and 3 of the 3-manifold branched along
the Borromean rings L6a4 (that is a not a (3,3)-torus link but an hyperbolic link) (see Figure 1c) are
given in Table 4. The identified manifolds are hyperbolic octahedral manifolds of volume 14.655
(for the degree 2) and 21.983 (for the degree 3).

Table 4. Coverings of degrees 2 to 4 branched over the Borromean rings. The identification of the
corresponding hyperbolic 3-manifold M3 is at the 5th column. Only two types of 3-manifolds allow
the building of the Hesse SIC. The two 3-manifolds of degree 4 allow the construction of the two-qubit
MIC to be identified by the cardinality structure of their subgroups/coverings.

d ty hom cp M3 Comment

2 cyc 1
2 + 1

2 + 1 + 1 + 1 3 ooct0400259
. . 1

2 + 1 + 1 + 1 + 1 4 ooct0400055
. . 1 + 1 + 1 + 1 + 1 5 ooct0400048, L12n2226

3 cyc 1
3 + 1

3 + 1 + 1 + 1 3 ooct0607427
. . 1

3 + 1 + 1 + 1 + 1 + 1 + 1 5 ooct0600463
. . 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 7 ooct0600411
. irr 1 + 1 + 1 + 1 4 ooct0600466 Hesse SIC
. . 1 + 1 + 1 + 1 + 1 + 1 4 ooct0600398 Hesse SIC
. . 1 + 1 + 1 + 1 + 1 + 1 5 ooct0600407, L14n63856

4 irr 1
2 + 1

2 + 1 + 1 + 1 + 1 4 {63, 300, 10747 · · · } 2QB MIC
. . 1

2 + 1 + 1 + 1 + 1 + 1 + 1 4 {127, 2871, 478956, · · · } 2QB MIC

4. A Few Dehn Fillings and Their POVMs

To summarize our findings of the previous section, we started from a building block, a knot
(viz the trefoil knot T1) or a link (viz the figure-of-eight knot K0) whose complement in S3 is a 3-manifold
M3. Then a d-fold covering of M3 was used to build a d-dimensional POVM, possibly an IC. Now we
apply a kind of ‘phase surgery’ on the knot or link that transforms M3 and the related coverings
while preserving some of the POVMs in a way to be determined. We will start with our friend T1 and
arrive at a few standard 3-manifolds of historic importance, the Poincaré homology sphere [alias the
Brieskorn sphere Σ(2, 3, 5)], the Brieskorn sphere Σ(2, 3, 7) and a Seifert fibered toroidal manifold Σ′.
Then we introduce the 3-manifold ΣY resulting from 0-surgery on the figure-of-eight knot [39]. Later in
this section, we will show how to use the {3, 5, 3} Coxeter lattice and surgery to arrive at a hyperbolic
3-manifold Σ120e of maximal symmetry whose several coverings (and related POVMs) are close to the
ones of the trefoil knot [40].

Let us start with a Lens space L(p, q) that is 3-manifold obtained by gluing the boundaries of
two solid tori together, so that the meridian of the first solid torus goes to a (p, q)-curve on the second
solid torus [where a (p, q)-curve wraps around the longitude p times and around the meridian q
times]. Then we generalize this concept to a knot exterior, i.e., the complement of an open solid torus
knotted like the knot. One glues a solid torus so that its meridian curve goes to a (p, q)-curve on the
torus boundary of the knot exterior, an operation called Dehn surgery ([1] (p. 275), [24] (p. 259), [41]).
According to Lickorish’s theorem, every closed, orientable, connected 3-manifold is obtained by
performing Dehn surgery on a link in the 3-sphere. For example, surgeries on the trefoil knot allow to
build the most important spherical 3-manifolds—the ones with a finite fundamental group—that are
the basis of ADE correspondence. The acronym ADE refers to simply laced Dynkin diagrams that
connect apparently different objects such as Lie algebras, binary polyhedral groups, Arnold’s theory of
catastophes, Brieskorn spheres and quasicrystals, to mention a few [42].



Symmetry 2018, 10, 773 11 of 15

4.1. A Few Surgeries on the Trefoil Knot

The Poincaré Homology Sphere

The Poincaré dodecahedral space (alias the Poincaré homology sphere) was the first example of a
3-manifold not the 3-sphere. It can be obtained from (−1, 1) surgery on the left-handed trefoil knot
T1 [43].

Let p, q, r be three positive integers and mutually coprime, the Brieskorn sphere Σ(p, q, r) is the
intersection in C3 of the 5-sphere S5 with the surface of equation zp

1 + zq
2 + zr

3 = 1. The homology of a
Brieskorn sphere is that of the sphere S3. A Brieskorn sphere is homeomorphic but not diffeomorphic to
S3. The sphere Σ(2, 3, 5) may be identified to the Poincaré homology sphere. The sphere Σ(2, 3, 7) [39]
may be obtained from (1, 1) surgery on T1. Table 5 provides the sequences ηd for the corresponding
surgeries (±1, 1) on T1. Plain digits in these sequences point out the possibility of building ICs of the
corresponding degree. This corresponds to a considerable filtering of the ICs coming from T1.

Table 5. A few surgeries (column 1), their name (column 2) and the cardinality list of d-coverings
(alias conjugacy classes of subgroups). Plain characters are used to point out the possible construction of
an IC-POVM in at least one the corresponding three-manifolds (see [16] and Section 2 for the ICs
corresponding to T1).

T Name ηd(T)

T1 trefoil {1,1,2,3,2, 8,7,10,10,28, 27,88,134,171,354}

T1(−1, 1) Σ(2, 3, 5) {1,0,0,0,1, 1,0,0,0,1, 0,1,0,0,1}
T1(1, 1) Σ(2, 3, 7) {1,0,0,0,0, 0,2,1,1,0, 0,0,0,9,3}
T1(0, 1) Σ′ {1,1,2,2,1, 5,3,2,4,1, 1,12,3,3,4}

K0(0, 1) ΣY {1,1,1,2,2, 5,1,2,2,4, 3,17,1,1,2}

v2413(−3, 2) Σ120e {1,1,1,4,1, 7,2,25,3,10, 10,62,1,30,23}

For instance, the smallest IC from Σ(2, 3, 5) has dimension five and is precisely the one
coming from the congruence subgroup 5A0 in Table 1. However, it is built from a non modular
(fundamental) group whose permutation representation of the cosets is the alternating group
A5 ∼= 〈(1, 2, 3, 4, 5), (2, 4, 3)〉 (compare [15] Section 3.3).

The smallest dimensional IC derived from Σ(2, 3, 7) is 7-dimensional and two-valued, the same
as the one arising from the congruence subgroup 7A0 given in Table 1. However, it arises from a
non modular (fundamental) group with the permutation representation of cosets as PSL(2, 7) ∼=
〈(1, 2, 4, 6, 7, 5, 3), (2, 5, 3)(4, 6, 7)〉.

4.2. The Seifert Fibered Toroidal Manifold Σ′

An hyperbolic knot (or link) in S3 is one whose complement is 3-manifold M3 endowed with a
complete Riemannian metric of constant negative curvature, i.e., it has a hyperbolic geometry and
finite volume. A Dehn surgery on a hyperbolic knot is exceptional if it is reducible, toroidal or Seifert
fibered (comprising a closed 3-manifold together with a decomposition into a disjoint union of circles
called fibers). All other surgeries are hyperbolic. These categories are exclusive for a hyperbolic knot.
In contrast, a non-hyperbolic knot such as the trefoil knot admits a toroidal Seifert fiber surgery Σ′

obtained by (0, 1) Dehn filling on T1 [44].
The smallest dimensional ICs built from Σ′ are the Hesse SIC that is obtained from the congruence

subgroup Γ0(2) (as for the trefoil knot) and the two-qubit IC that comes from a non modular
fundamental group [with cosets organized as the alternating group A4

∼= 〈(2, 4, 3), (1, 2, 3)〉].
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4.3. Akbulut’s Manifold ΣY

Exceptional Dehn surgery at slope (0, 1) on the figure-of-eight knot K0 leads to a remarkable
manifold ΣY found in [39] in the context of 3-dimensional integral homology spheres smoothly
bounding integral homology balls. Apart from its topological importance, we find that some of its
coverings are associated to already discovered ICs and those coverings have the same fundamental
group π1(ΣY).

The smallest IC-related covering (of degree 4) occurs with integral homology Z and the congruence
subgroup Γ0(3) also found from the trefoil knot (see Table 1). Next, the covering of degree 6 and
homology Z

5 + Z leads to the 6-dit IC of type 3C0 (also found from the trefoil knot). The next case
corresponds to the (non-modular) 11-dimensional (3-valued) IC.

4.4. The Hyperbolic Manifold Σ120e

The hyperbolic manifold closest to the trefoil knot manifold known to us was found in [40].
The goal in [40] is the search of—maximally symmetric—fundamental groups of 3-manifolds.
In two dimensions, maximal symmetry groups are called Hurwitz groups and arise as quotients of the
(2, 3, 7)-triangle groups. In three dimensions, the quotients of the minimal co-volume lattice Γmin of
hyperbolic isometries, and of its orientation preserving subgroup Γ+

min, play the role of Hurwitz groups.
Let C be the {3, 5, 3} Coxeter group, Γmin the split extension C oZ2 and Γ+

min one of the index two
subgroups of Γmin of presentation

Γ+
min =

〈
x, y, z|x3, y2, z2, (xyz)2, (xzyz)2, (xy)5

〉
.

According to ([40] Corollary 5), all torsion-free subgroups of finite index in Γ+
min have index

divisible by 60. There are two of them of index 60, called Σ60a and Σ60b, obtained as fundamental
groups of surgeries m017(−4, 3) and m016(−4, 3). Torsion-free subgroups of index 120 in Γ+

min are
given in Table 6. It is remarkable that these groups are fundamental groups of oriented three-manifolds
built with a single icosahedron except for Σ120e and Σ120g.

Table 6. The index 120 torsion-free subgroups of Γ+
min and their relation to the single isosahedron

3-manifolds [40]. The icosahedral symmetry is broken for Σ120e (see the text for details).

Manifold T Subgroup ηd(T)

oicocld0100001 = s897(−3, 2) Σ120a {1,0,0,0,0, 8,2,1,1,8}
oicocld0100000 = s900(−3, 2) Σ120b {1,0,0,0,5, 8,10,15,5,24}

oicocld0100003 = v2051(−3, 2) Σ120c {1,0,0,0,0, 4,8,12,6,6}
oicocld0100002 = s890(3, 2) Σ120d {1,0,1,5,0, 9,0,35,9,2}

v2413(−3, 2) 6= oicocld0100004 Σ120e {1,1,1,4,1, 7,2,25,3,10}
oicocld0100005 = v3215(1, 2) Σ120 f {1,0,0,0,0, 14,10,5,10,17}

v3318(−1, 2) Σ120g {1,3,1,2,0, 11,0,23,12,14}

The group Σ120e is special in the sense that many small dimensional ICs may be built from it in
contrast to the other groups in Table 6. The smallest ICs that may be built from Σ120e are the Hesse SIC
coming from the congruence subgroup Γ0(2), the two-qubit IC coming the congruence subgroup 4A0

and the 6-dit ICs coming from the congruence subgroups Γ(2), 3C0 or Γ0(4) (see [16] Section 3 and
Table 1). Higher dimensional ICs found from Σ120e do not come from congruence subgroups.

5. Conclusions

The relationship between 3-manifolds and universality in quantum computing has been explored
in this work. Earlier work of the first author already pointed out the importance of hyperbolic
geometry and the modular group Γ for deriving the basic small dimensional IC-POVMs. In Section 2,
the move from Γ to the trefoil knot T1 (and the braid group B3) to non-hyperbolic 3-manifolds could be
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investigated by making use of the d-fold coverings of T1 that correspond to d-dimensional POVMs
(some of them being IC). Then, in Section 3, we went on to universal links (such as the figure-of-eight
knot, Whitehead link and Borromean rings) and the related hyperbolic platonic manifolds as new
models for quantum computing based POVMs. Finally, in Section 4, Dehn fillings on T1 were used
to explore the connection of quantum computing to important exotic 3-manifolds (i.e., Σ(2, 3, 5) and
Σ(2, 3, 7)), to the toroidal Seifert fibered Σ′, to Akbulut’s manifold ΣY and to a maximum symmetry
hyperbolic manifold Σ120e slightly breaking the icosahedral symmetry. It is expected that our work will
have importance for new ways of implementing quantum computing and for the understanding of the
link between quantum information and cosmology [45–47]. A subsequent paper of ours develops the
field of 3-manifold based UQC with its relationship to Bianchi groups [48].
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