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Abstract: Cellular automata (CA) are parallel computational models that comprise of a grid of cells.
CA is mainly used for modeling complex systems in various fields, where the geometric structure of
the lattices is different. In the absence of a CA model to accommodate different types of lattices in
CA, an angle-based CA model is proposed to accommodate various lattices. In the proposed model,
the neighborhood structure in a two dimensional cellular automata (2D-CA) is viewed as a star graph.
The vertices of the proposed graph are determined by a parameter, angle (θ). Based on the angle (θ),
the neighborhood of the CA, which is treated as the vertices of the graph, varies. So this model is
suitable for the representation of different types of two dimensional lattices such as square lattice,
rectangular lattice, hexagonal lattice, etc. in CA. A mathematical model is formulated for representing
CA rules which suit for different types of symmetric lattices. The star graph representation helps to
find out the internal symmetries exists in CA rules. Classification of CA rules based on the symmetry
exists in the rules, which generates symmetric patterns are discussed in this work.
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1. Introduction

Cellular automata (CA) [1] are computational model which consists of a grid of cells where each
of the cells acts as a finite automaton. The neighborhood of a cell Cij in a two dimensional CA is the set
of surrounding cells on which the updation of Cij depends upon. The updation of each cell is based on
a transition function, which is called a rule of the CA. Data are represented as states of the cell in a CA.
The states of each cell get updated in unit time steps in parallel, based on rules which are characterized
by the neighborhood in synchronous fashion. The states of the CA get updated by the application of
rules uniformly in each cell in the CA and it produces patterns at each time step. The output pattern of
the CA shows the dynamic and complex behavior. One of the reasons for the complex behavior of
the CA is due to the various properties exists in the CA rules. The pattern generated by the CA is the
cumulative observation of the output of the CA in successive time steps.

Cellular automata have enormous applications in various domains such as engineering, physics,
biology, etc. CA are used for modeling complex systems [2–6]. This has motivated the interest to do
the research on the structure of cellular automata. The major components of the CA are its rules that
vary according to the number of states, the size of the neighborhood and the geometric structure of the
lattice. Since, CA is used as a computational model to model complex problems; the underlying lattices
of the CA are different in shape. The primary objective of this work is to propose a model which can
represent various types of symmetric lattices and find out the behavior of the rules characterized by
the proposed neighborhood structure. Here the neighborhood of a CA is viewed as a type of star
graph, so the rules of the model vary according to the lattice structure and size of the neighborhood.
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In this proposed work, we classify the rules based on the internal symmetric behavior that exists in the
rules, which are leading to a symmetric pattern.

The existing neighborhood structures used in CA are using a fixed neighborhood structure for
a specific lattice. Major neighboring structures such as vonNeumann neighborhood [7] contains
five neighborhood cells and the Moore neighborhood [8] contains nine neighborhood cells for each
cell in a two dimensional CA. Wolfram has done an extensive study on totalistic CA [9] based on
two dimensional cellular automata with the Moore neighborhood structure, where the updation of
every cell in a CA is based on the sum of the state values of the neighborhood of every cell. A.R.
Khan [10] used a different approach to represent rules in a rectangular nine neighborhood CA. In a nine
neighborhood CA, fixed positional weight is assigned [10] to each cell in the neighborhood of a cell
Cij to indicate the dependency of the neighborhood with the cell Cij to update the cell Cij. In Ref. [10]
rule 1 indicates the dependency of the cell Cij on itself. Rule 2 indicates the dependency of the cell Cij
on its right neighborhood and rule 4 indicate the dependency of the cell Cij on its bottom diagonal
cell; rule 8 indicates the dependency of the cell Cij on its bottom cell, etc. in such a way that the nine
neighboring cells are considered as nine distinct rules. Figure 1 refers to the two dimensional CA
model described in [10] shows the dependency of the neighborhood cells to the cell to be updated, Cij.
In another approach, two dimensional CA is viewed as a tree [11] with k + 1 cell structure where each
cell has k neighbors. In Ref. [11] the nodes are indexed by numbers 1, 2, 3, .., k and the root node is
indexed by (k + 1), the rules are defined based on the traditional approach [1]. In order to represent a
hexagonal lattice, a seven neighborhood [12] structure is used analogously to a CA model described
in [10]. To update a cell in a hexagonal lattice, the dependency of the six surrounding cells [12] on
the cell to be updated is considered. In Ref. [12] analogous to the two dimensional model described
in [10] positional weight is assigned to each cell in clockwise direction to indicate the dependency of
the neighborhood cells on the cells to be updated.
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Cellular automata rules have the immense computation power. Depending upon the structure
of the neighborhood and the nature of the operations used to define rules [13], the characteristics
of the rule may change. In order to find out an exact CA rule for a particular application, we need
to classify the CA rules according to its properties. One such property that exists in the CA rule is
the internal symmetry exists in it. The output pattern of CA at any iteration varies according to the
rule of the CA. The various ways of classification of the rules are discussed in Ref. [14], classification
of CA rules into reversible rules, self-symmetric rules and symmetry on pair rules are using matrix
algebra on a hexagonal neighborhood model. Linear CA rules are classified based on the patterns
generated at kth iteration [15] using fixed positional weight 2D-CA model [10]. Two dimensional
CA rules are classified into symmetric rules and nonequivalent rules under black and white (BW)

transformations [11] on the possible permutations in the rule table. Uniform group rules in a two
dimensional cellular automata [14] are classified into four classes based on the characteristic matrix
called T matrix. Totalistic rules, outer totalistic rules [9] are classified on a 2D-CA based on the number
of neighborhoods considered for the updating of each cell.

Symmetry is a property existing in objects; it has a lot of applications [16–19] in day to day life
in various fields. CA is used for modeling complex systems in various domains, in various types
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of underlying lattices. So a CA model which is capable of generating symmetric patterns helps to
model lots of applications [20] in various fields such as architecture, biology, human body, etc. where
symmetry plays a vital role. Based on the symmetric nature of the CA rules, one can decide that
whether the CA can generate symmetric patterns or not. Various studies exist on symmetry in CA
rules based on various methods. Internal symmetries of CA rules based on permutation states [21],
β-calculus, and a universal map derived based on β-calculus [22], discrete Walsh analysis [23], and
polynomial representation of one dimensional CA [24] symmetropy [25] are the various methods that
exist to measure the symmetry of CA rules. If the rule possesses symmetry, it reflects in the output
pattern. By modeling symmetric objects in a CA, one can identify the anomalies present in the objects
easily based on the symmetric patterns generated from the objects. So, the main objectives of this
paper are as follows.

In the absence of a generic CA model to represent various types of lattices, the main objective of
this paper is to propose an angle-based CA model to accommodate various types of symmetric lattices
and propose a generic mathematical equation to represent CA rules for any symmetric lattice. In this
paper, we propose the classification of CA rules based on the amount of the internal symmetries that
exists in the CA rules, which will lead to symmetric patterns generated by a CA.

2. Materials and Methods

2.1. Angle-Based Address for Cells in a Lattice

Since one of the objectives of this paper is to represent various types of symmetric lattices using
CA, a mechanism is required to accommodate various types of lattice in a CA. A finite lattice is a
regular arrangement of objects such as rectangle, circle, hexagon, etc. called a rectangular grid, circular
grid, or hexagonal grid, respectively. Here we assume a two dimensional CA with two states. In order
to accommodate various types of symmetric lattice, we use polar coordinate system to refer a cell with
respect to the cell to be updated. The cell to be updated is considered as the pole and the horizontal
line drawn from the pole is the polar axis (initial line). For this purpose, we define the distance of a cell
from the pole as the number of cells traversed (other than the cell to be updated) by the line joining the
pole and the center of the cell. For example, in a rectangular lattice, the distance of a neighbor cell from
the cell to be updated is one unit. In various symmetric lattices, the neighboring cells w.r.t. a pole is
arranged at different angles such as 60◦ in a hexagonal lattice, 45◦ in a rectangular lattice, etc. In order
to accommodate various symmetric lattices in a two dimensional CA, we define the polar angle (Φ)
and input angle (θ) as follows.

Definition 1 (Polar angle (Φ) of a cell). It is the angle measured in the counter clockwise direction from the
reference point (pole) to the center of a neighboring cell in the unit distance in a two dimensional regular lattice.

The reference point is considered as the center of the cell to be updated. The polar angle of each
cell varies according to the pole. Every cell will have a unique polar angle w.r.t. a fixed pole.

Definition 2 (Input angle (θ)). It is a constant, which is determined by the formula, θ = 360◦/p, 0 < θ ≤
180◦ where ′p′ is a positive even integer which produces θ as a whole number.

Figure 2 shows the addressing of cells w.r.t a cell in a rectangular lattice. We refer a neighboring
cell as C(1, Φ), as the distance from the cell to be updated C(0, 0) to a neighboring cell is one unit and
Φ is the polar angle measured between C(0, 0) and any specific neighboring cell.
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In the two dimensional CA, the existing neighborhood structures such as Moore neighborhood
and von Neumann neighborhood uses fixed neighborhood size. With an idea of having a flexible
number of neighborhoods in any type of symmetric lattice, and to have a general representation of
neighborhood, an n-star graph CA (nSG-CA) is proposed to represent the neighborhood structure in a
two dimensional CA.

2.2. An n-Star Graph Cellular Automata Model for Two Dimensional CA

Definition 3 (Graph). A graph is an ordered pair, G = (V, E), where V is the vertex set and E is the edge
set [26].

For example, a graph G is shown in Figure 3.
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In the graph G = (V, E), where V = {V0, V1, V2, V3, V4, V5, V6, V7, V8} and

E = {e1 = (V0, V1), e2 = (V0, V2), . . . ., e8 = (V0, V8)}

Definition 4 (n-star graph). It is defined as a type of star graph with one internal node and N leaves.

Figure 3 is a sample n-star graph. The vertex set in the n-star graph, G as
shown in Figure 3 is, V = {V0} U {V1, V2, V3, V4, V5, V6, V7, V8} and edge set, E =

{e1 = (V0, V1), e2 = (V0, V2), . . . , e8 = (V0, V8)}.

Definition 5 (2D-CA). It is a two dimensional cellular automata have five tuples, 2DCA = (L, S, Nb, N, f ),
where:

i. L is a two dimensional regular lattice.
ii. S is the set of nonempty binary states.
iii. Nb describes the finite set of neighborhood of each cell Cij, Nb =

{
Cij

}
U {N } and

{
Cij

}
∩ {N} = Φ

where Cij is the cell to be updated in a two dimensional lattice, i indicates the distance of the cell C from the
cell to be updated, and j indicates the polar angle of the cell C with the cell to be updated, so Cij is C(0, 0)
and N is the set of the neighborhood of the cell Cij, which excludes cell Cij from the set Nb.
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iv. f is the transition function, defines the local rule to be applied to each cell, f : St+1(Cij) = St (Cij), St(n1),
St(n2), . . . , St(n8), where St+1(Cij) indicates the successor state of the cell Cij at t + 1 time step, St(Cij)
indicates the current state of the cell Cij at t time step and St(n1), . . . , St (n8), indicates the current state
of each cell in the neighbourhood of Cij.

The neighborhood structure of 2D-CA is can be viewed as one type of a star graph, so it can be
called as n-star graph where ‘n’ indicates the neighborhood structure.

Definition 6 (n-Star graph cellular automata model (nSG-CA)). It is a type of star graph cellular
automata, where the cell to be updated and its neighborhood in a two dimensional CA are viewed as an
n-star graph,nSG-CA = (L, S, Nb, N, f , V, E), where:

i. L is a regular symmetric lattice where cells are arranged in such a way that, each cell Cij is surrounded by
an even number of cells in unit distance.

ii. S is the set of binary states.
iii. Nb describes the finite set of neighborhood of each cell Cij in an nSG-CA, Nb = CijU N and Cij∩ N = Φ,

the cardinality, |Nb| at every cell position must be odd.
iv. N is the set of neighborhood cells of each cell Cij, excluding the cell Cij.

v. f is the transition function termed as a rule in nSG-CA which is characterized by the neighborhood as in
the definition of 2D-CA.

vi. V is the set of vertices in the nSG-CA; for each cell in nSG-CA, the cells in the neighborhood Nb is mapped
into vertices V such that Cij is mapped into V0 and every element in N is mapped into vertices of the n-star
graph such that n1 → V1 , n2 → V2, n3 → V3, . . . nN → VN for all ni ε N.

vii. E is the set of edges in the nSG-CA, which is formed by connecting each cell in the neighbourhood with Cij
such as {(V0, V1), {(V0, V2), . . . {(V0, VN)}.

The nSG-CA model for a rectangular lattice with nine neighborhood is shown in Figure 4, where
Cij is the cell to be updated and the cells in the neighborhood such as n1, n2, n3, ..., n8 are equivalent to:

C(1, 0◦), C(1, 45◦), C(1, 90◦), C(1, 135◦), C(1, 180◦), C(1, 225◦), C(1, 270◦), C(1, 315◦)
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neighborhood cells.

3. Generic Rule Convention of nSG-CA Model

In a star graph CA, the state of each cell gets updated at every time step based on a rule, which is
characterized by the neighborhood. A cell in the neighborhood of Cij is indicated as nij, where i is unit
distance and j is Φ, the polar angle of the neighborhood cell. The CA rules are defined based on the
dependency of the cell to be updated with the neighboring cells, i.e., the dependency of Cij, the cell to be
updated with nij, any cell in the neighborhood of Cij is defined as that, the state of nij at every time step
take part in the updation of Cij. The rule may depend on a maximum of |Nb| cells in a neighborhood
structure, which include the cell Cij, and its N neighborhood in the unit distance. Different rules are
used to update a cell Cij, based on the dependency of Cij with its neighbourhood cells.
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Since rules are characterized by the neighborhood, every rule can also be represented as a
star graph.

In order to distinguish the rules, a positional weight, Pw is assigned to each cell in the
neighborhood. The positional weight of each cell nij in the neighborhood w.r.t the Cij, the cell to
be updated is determined by the equation,

Pw
(
nij

)
= 2((

Φ(nij)
θ )+1), nij ε N

(
Cij

)
(1)

where Φ is the polar angle of each neighborhood cells, nijεN with the Cij the cell to be updated.
The positional weight, Pw of the cell to be updated, is 20. The positional weight of each cell varies
according to the cell to be updated. In Equation (1), the positional weight, Pw

(
nij

)
, of each cell

represents the rule number characterizing the dependency of the cell to be updated, Cij to each element
nij ε N of its neighborhood cell. The Cij has got dependency only on itself, referred as rule 1. If the cell
Cij has dependency on two or more cells, the rule number is calculated by the arithmetic sum of the
rule numbers of the relevant cells.

For example, for a circular lattice shown in Figure 5, five neighborhood structures are used.
nSG-CA rule 14 refers to the three neighborhood dependency of the cell Cij to its three neighbors is
calculated by the formulae 23 + 22 + 21, where 20 is the positional weight of the cell to be updated
(Cij). The total number of rules for a two dimensional CA depends on the value of neighborhood,
Nb. The total number of rules of the nSG-CA model is 2Nb , which includes the rule characterizing no
dependency. For an nSG-CA with a hexagonal lattice has 7 neighborhoods and its positional weight
with respect to the cell to be updated (Cij) is shown in Figure 6.
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In this paper, X-OR is the operation used to update a cell Cij based on its rule number. X-OR is a
binary operator and it is commutative.

The total number of rules for different types of two dimensional lattice is different. For a hexagonal
lattice, the size of the neighborhood for each cell Cij ,|Nb| is 7, so the total rules are 27 = 128, in a
square lattice, for each cell Cij with five neighborhood has 32 rules and for each cell Cij in a rectangular
lattice with nine neighborhood can generate 512 rules. A variant of hexagonal lattice, where a cell is
placed at every 30◦ w.r.t the cell to be updated has |Nb| = 13. So the total number of rules are 213.
So in order to find out a rule for a particular application, classification of cellular automata is required.
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4. Classification of Two Dimensional Cellular Automata Rules

One principal direction of research in cellular automata is to study the CA dynamics (patterns)
which evolves in successive time steps. A detailed analysis of CA dynamics will enable us to
understand the emergent behavior of a pattern and the computational capacity of a CA. In other
words, CA classification based on the study of its dynamics has been the major focus of researchers.
The CA dynamics vary according to the CA rules. To comprehend the behavior of the rules in the
proposed model, it is necessary to have a classification based on their properties. Symmetry is a
property exists in CA rules. If a CA rule is symmetric its equivalent pattern is also symmetric. Based
on this property, classification of CA rules of nSG-CA model for any heterogeneous symmetric lattice is
discussed. Since the nSG-CA model is a type of star graph representation of the neighborhood structure,
rules are characterized by the neighborhood, each rule in an nSG-CA can also be represented as a star
graph. In order to distinguish the neighborhood structure and rule, the star graph representation of a
rule is denoted as r-star graph, where r denote rule.

Definition 7 (r-star graph). It is a subgraph of n-star graph, in which all the vertices and edges are the subsets
of nSG-CA.

In order to measure the symmetry in a star graph, graph automorphism [26] can be used.

Definition 8 (Isomorphic graph). Two graphs G1 and G2 are isomorphic graphs if ∃ structure preserving
vertex bijection f : V(G1)→ V(G2) .

Definition 9 (Vertex bijection in a graph). A vertex bijection f : V(G1)→ V(G2) between two graphs
G1 and G2 if, the total number of edges between every pair of vertices Vi and Vj in graph G1 is equal to the total
number of edges between their images f (Vi) and f (Vj) in graph G2. A vertex bijection f : V(G1)→ V(G2) is
structure preserving if Vi and Vj are adjacent in G1 ⇔ f (Vi) and f (Vj) are adjacent in G2.

Definition 10 (Graph automorphism). An automorphism of a graph G is the isomorphism [26] with itself,
i.e., ∃ structure preserving vertex bijection f : V(G)→ V(G) .

The set of automorphisms defines a permutation group known as the automorphisms
group. A permutation γ of V(G) is an automorphism of G if for all Vi, Vj ε V (G) then,{(

Vi, Vj
)}

ε E(G)⇔
{

γ(Vi), γ
(
Vj
)}

ε E(G) . The set of automorphisms of a graph G under the
operation, composition of functions, forms a subgroup of the symmetric group of V(G) called the
automorphism group [26,27] of G. For example, the total number of automorphism for a star graph
(SN) is N!. In Ref. [28], graph automorphism is used to find the symmetries in a cellular automata,
where the global dynamics of a CA are viewed as a graph. So, the concept of graph automorphism can
be used as a transformation in an r-star graph to measure the symmetry in a rule.

4.1. CA Rules Based on Symmetry

The r-star graph representation of rule 62 in a rectangular lattice with nine neighborhood
nSG-CA is shown in Figure 7. In rule 62, the cell Cij depends on five neighborhood cells among
nine neighborhoods for its updation. The dependant cells of Cij are marked using bold line and the
nondependant cells are marked using a dotted line in the r-star graph representation of rule 62.
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4.1.1.Representation of a given rule

A rule f can be represented as

f =
N−1

∑
l=0

a ∗ 2l (2)

where a is coefficient and a ε {0, 1}, ∗ is the multiplication operator.
For example, Rule 25 in a rectangular lattice with five neighborhoods can be represented as shown

in Figure 8. (
1 ∗ 24

)
+

(
1 ∗ 23

)
+

(
0 ∗ 22

)
+

(
0 ∗ 21

)
+

(
1 ∗ 20

)
= 25
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Automorphisms of a graph is a permutation of its vertex set that preserves incidences of vertices
and edges. Since automorphism of a graph is a structure preserving vertex bijection, a transformation
is required for the possible mapping of vertices in the r-star graph. So a transformation called
Θ-transformation is defined as follows.

Definition 11 (Θ-transformation). Let f = α0C(0, 0) ⊕ α1C(1, 0 ∗ θ) ⊕
α2C(1, 1 ∗ θ)⊕, . . . ,⊕αNC(1, (N − 1) ∗ θ) be a rule in nSG-CA, where αi ε{0, 1}∀i ε{0, . . . , N}, let
Θ = (0, l0θ, l1θ, . . . , lN−1θ) be a transform on the rule f , where l0, l1, l2 , . . . , lN−1 ε {0, 1, . . . , N − 1}.

The Θ-transform on f is defined as,

c f ∗ = f Θ = α0C(0, 0)⊕ α1C(1, (0θ + l1θ)Mod Nθ)

⊕α2C(1, (1θ + l2θ)Mod Nθ), . . . ., αNC(1, ((N − 1)θ + lN−1θ)Mod Nθ)

The set of all Θ-transformations of the rule f are the set of automorphisms of the r-star graph;
that is N!. It is equivalent to the total automorphisms of the star graph.

Definition 12 (Symmetric rule). A rule f is said to be symmetric rule, if ∃ a bijective Θ transformation such
that f Θ = f .
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One of the major focus of this work is to find out the symmetric rules (local internal symmetry),
which generate symmetric patterns w.r.t. the line θ = 90◦. The following theorem supports to define
the symmetry in rules w.r.t vertical axis, line θ = 90◦.

Theorem 1. In a two state two dimensional nSG-CA, the reflection of the edge (C(0, 0), C(1, l θ)) w.r.t line
θ = 90◦ in the r-star graph of any rule f is (C(0, 0), C(180− l θ)).

Proof. Without loss of any generality, we assume a rectangular lattice for two dimensional nSG-CA.
Let C(1, lθ) be a cell in the neighborhood of C(0, 0). By the description of our nSG-CA model, the
polar angle(θ), between the edge (C(0, 0), C(1, l θ)) with the initial line is l θ. Then the angle between
the edge (C(0, 0), C(1, l θ)) with the axis of reflection θ = 90◦ is 90− lθ. In a reflection of a line w.r.t
an axis, the axis of reflection should bisect the angle between the original line and the reflected line.
The only line which will make an angle 90− lθ with the axis of reflection θ = 90◦ is the edge of the
star graph which will have a polar angle of lθ + 90− l θ + 90− l θ = 180− l θ, as shown in Figure 9,
i.e. in our nSG-CA model, edge, (C(0, 0), C(180− l θ)) can have an angle of 180− lθ with the pole.
Further, we observe that line θ = 90◦ is the perpendicular bisector of the angle between the edges
(C(0, 0), C(1, lθ)) and (C(0, 0), C(1, 180− lθ)). Hence the reflection of the edge (C(0, 0), C(1, θ))

w.r.t line θ = 90◦ is (C(0, 0), C(1, 180− l θ)). This completes the proof.
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Based on the above Theorem 1, the symmetry in rules w.r.t. the line θ = 90◦, which is denoted as
self symmetry is defined.

Definition 13 (Self-symmetry in a rule). A rule f is said to be self symmetric in the r-star graph, if it
satisfies the following conditions:

1. f is a symmetric rule, where Θ = (0, l0θ, l1θ, . . . . . . , lN−1θ) is a bijective transform of f
2. liθ ε Θ if and only if 180− liθ ε Θ ∀ i ε {0, 1, . . . N − 1}

Definition 14 (Pairwise symmetric rules). Let f = α0C(0, 0) ⊕ α1C(1, 0θ) ⊕ α2C(1, 1θ) ⊕ . . . . . . ⊕
αNC(1, (N − 1)θ) be a rule in an r-star graph, where α0, α1, . . . , αN ε{0, 1}. Let a transform Θ∗ =

(0, 180− 0θ, 180− 1θ, . . . , 180− (N − 1)θ) on the rule f . The rules f Θ∗ and f are said to be pairwise
symmetric rules if f Θ∗ 6= f .
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4.2. Algorithm to Identify the Nature of Symmetry in CA Rules

The following algorithm (Algorithm 1) is used to identify the nature of symmetry in CA rules.

Algorithm 1. Identification of type of symmetry in a rule.

Input: Rule number, f or Conclude that f
Output: Returns the pairwise symmetric pair rules of f or

Conclude that f is self-symmetric

Initialization

1 Let 2p be a partition of f with coefficient 1
2 Let L be a horizontal line passing through the cell to be updated on
X-Axis.
3 Initialize variables, ′s′, image and d as 0

Iteration for partition checking 4 for each 2p in f
5 case 1:
6 Let 2i and 2j be two partitions coincide with L such that 2i is on the
left side and 2j is on the right side w.r.t the cell to be updated.
7 Assign 2j = 21

Partition is in upper half 8 If (0 < Φ (2p) <= 180)
9 If

(
2p equals 2i

)
10 image = 2j

11 else i f (2p < 2i)

12 d = i–p
13 image = 2j+d

14 end elseI f
15s = s + image
16 case 2:

Partition is in the lower half 17 Let 2j = 2N+1 where N = 360/θ

18 I f (180 < Φ(2p) <= 360)
19 I f (2p > 2i)

20 d = p–i
21 image = 2j−d

22 end i f
23 s = s + image
24 case 3:
25 I f

(
2pequals 20)

26 image = 20

27 s = s + image
Partition checking iteration 28 end f or
Nature of rule 29 i f (s equals f ) given rule f is self-symmetric

30 else
31 rules s and f are pairwise symmetric

4.2.1. Description of Algorithm

The algorithm to identify the nature of symmetry for a given rule is shown in Algorithm1. In order
to identify the nature of symmetry exists in a rule, the given rule is partitioned into powers of 2 based
on the Equation (2). Assuming that a horizontal line L is passed through the cell to be updated and it
contains two partitions such as 2i in the left side of cell to be updated and 2j in the right side of the
cell to be updated. Each partition of a rule is either at the top or bottom of the line L. Thus, two cases
are considered. Case 1 checks whether the partition is in the top of the line L or not and find out the
equivalent reflection of each partition. Case 2 checks for the partitions which are in the bottom of the
line L and find out its equivalent reflections. Case 3 checks whether the partition includes the cell to be
updated or not and find out the reflection. If the sum of the reflections of a rule is same as the given



Symmetry 2018, 10, 772 11 of 18

rule number, then conclude that the given rule is self-symmetric and the sum of the reflections of its
partitions of the given rule differs from the given rule, then conclude that they are pairwise symmetric
rules. The Algorithm 1 takes polynomial time complexity only to check the nature of the rules.

4.2.2. Illustration

Consider a rule 25 in a hexagonal lattice with seven neighborhoods. The partitions of the rule 25
with coefficient 1 are 24, 23, and 20. Consider each of the partitions, 2p as 24, then 2p equals 2i so, the
image is 21. The second partition is 23, so consider 2p as 23 which is lesser than 2p, then d = 4–3, i.e., 1.
Then the image is 21+1 i.e., 22. The third partition is 20, then the image is 20 itself. So the sum of 21, 22,
and 20 is 7, which is not equal to 25. So conclude that rule 7 and rule 25 are pairwise symmetric rules
in a hexagonal lattice with seven neighborhoods.

4.3. Global Symmetry (Symmetry in Pattern)

The local internal symmetry of the rule f is discussed in the session 4.2. The connection between
local internal symmetries and the dynamics of nSG-CA is provided by global symmetries, which
are obtained as concatenations of local internal symmetries. Figure 10 shows the r-star graph of a
self-symmetric rule, in the figure 10, the edges present in the r-star graph is marked as bold. If the rule
is self symmetric, the cell state set of the rule is partitioned into three disjoint sets w.r.t. the vertical line.
They are as follows:

(a) State set in the left side of the vertical line;
(b) State set on the right side of the vertical line;
(c) State set is on the vertical line.
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To illustrate this, let us consider a rule f ,

f = C(0, 0)⊕C(1, 45◦)⊕C(1, 135◦)⊕C(1, 225◦)⊕C(1, 315◦), Θ = (0, 90◦, 270◦, 90◦, 270◦)

is a transform of the rule f , since f Θ = f and f is a symmetric rule,
{C(1, 135◦), C(1, 45◦)}, {C(1, 225◦), C(1, 315◦)} are local internal symmetries of the rule f as shown
in the Figure 10. The cell state set of f is A = {C(0, 0), C(1, 45◦), C(1, 135◦), C(1, 225◦), C(1, 315◦)}
can be divided into three sets. They are,

A1 = {C(1, 135◦), C(1, 225◦)} is on the left side of the vertical line
A2 = {C(1, 45◦), C(1, 315◦)} is in the right side of the vertical line
A3 = {C(0, 0)} is the cell on the vertical line.

nSG-CA is a dynamical system ((ZK)
z x, (ZK)

z, f ) where evolution is the state space (ZK)
z x,

(ZK)
z is obtained in discrete steps by the repeated iteration of the global evolution rule.
F : (ZK)

z x, (ZK)
z → (ZK)

z x, (ZK)
z, where K = {0, 1}. The global evolution rule F is induced by

a local rule f : (ZK)
2r+1 x, (ZK)

2r+1 → ZK , 2r is the number of neighbors of the central cell. If f is self
symmetric, then the rule set can be partitioned into three disjoint sets. Let A1 is the cells of the left side,
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A2 is the cells on the right side of the vertical line, θ = 90◦, and A3 is on the vertical line. For the input
configuration x, the evolving state set of A1 and the evolving state of A2 are symmetric, because of
the internal symmetry of each cell. The evolving state set of A3 are also symmetric since, cells of A3

are on the vertical line. Therefore, the self-symmetric rule f generates symmetric pattern F, which is
symmetric w.r.t. line θ = 90◦ obtained by A1, A2 and A3 act on an input configuration x.

5. Results

There are two types of symmetric rules with respect to line θ = 90◦ in an nSG-CA model. They are
pairwise symmetric rules and self-symmetric rules. The nSG-CA model is based on null boundary
conditions. X-OR is considered as the operator for the experiments. Consider a rectangular lattice
with five neighborhood cells. Figure 11 shows the initial seed image, where ∗ represents 1 and
space represents 0. In order to generate a pattern, X-OR operation is applied to all the cells in the
neighborhood with the cell to be updated. The uniform rule is applied to all the cells w.r.t the cell to be
updated at each time step in parallel. Null boundary conditions are applied. The symmetry axis is a
vertical line passing through 90◦. Figure 12 shows the pattern of rule 19 and rule 25 in a rectangular
lattice with five neighborhood structure. The evolving pattern in four iterations are shown in the
Figure 12. From the figure, it is observed that both the patterns are pairwise symmetric. i.e., symmetric
with respect to axis, θ = 90◦. Figure 13 shows the pattern of the rule 31 in a rectangular lattice with
five neighborhoods at 8th iteration, which shows a self-symmetric pattern.
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The classification of symmetric rules in a rectangular lattice with five neighborhood is shown
in Table 1. The total 31 rules are classified into five classes based on the number of cells dependent
on the cells to be updated among the five neighborhood cells. Thus 5C1 indicates dependency of one
neighborhood to the cell to be updated among five neighborhoods; 5C2, 5C3, 5C4, 5C5 indicates the
dependency of two, three, four, and five neighborhood cells to the cell to be updated, respectively.
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Table 1. Classification of rules in a rectangular CA lattice with N = 5, where PR denotes pairwise
symmetric rules and self-denotes self-symmetric rules.

5C1
5C2

5C3
5C4

5C5

PR Self PR Self PR Self PR Self PR Self

R (2, 8) R(1) R(12, 6) R(5) R(7, 13) R(11) R(23, 29) R(15) - R(31)
R(4, 16) R(3, 9) R(10) R(25, 19) R(14) R(27) -

R(24, 18) R(17) R(22, 28) R(21) R(30) -
R(20) R(26) -

Consider a hexagonal lattice with seven neighborhoods and an initial seed image shown in
Figure 11. Then, Figures 15 and 16 indicate two pair rules which are generating pairwise symmetric
patters. Figure 16 indicates the pattern of rule 28 in a hexagonal lattice for six iterations. The Pattern
generated for Rule 14 in a hexagonal lattice for six iterations is shown in Figure 16. Self-symmetric
pattern of rule 97 for eight iterations is shown in Figure 17.
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The classification of symmetric rules in a hexagonal lattice with seven neighborhood cells are
shown in Table 2. There are 128 rules in a two dimensional CA with hexagonal lattice including rule 0.
These rules are classified into seven classes based on the number of cells dependent on the cells to be
updated among the seven neighborhood cells. Thus 7C1 indicates dependency of one neighborhood
to the cell to be updated among seven neighborhoods cells; 7C2, 7C3, 7C4, 7C5, 7C6, 7C7 indicates
the dependency of two, three, four, five, six, and seven neighborhood cells to the cell to be updated
respectively. PR denote pairwise symmetric rules, which are mentioned in brackets and self-denote the
self-symmetric rules in a two dimensional CA with hexagonal lattice. There are no pairwise symmetric
rules in 7C7 category.
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Table 2. Classification of rules in a hexagonal lattice with seven neighboring cells.

7C1
7C2

7C3
7C4

7C5
7C6

7C7

PR Self PR Self PR Self PR Self PR Self PR Self Self

(8,4) 1 (17,3) 12 (25,7) 13 (92,46) 30 (93,47) 31 (123,119) 126 127
(16,2) (9,5) 96 (21,11) 97 (60,78) 114 (61,79) 109 (125,111)
(32,64) (33,65) 18 (81,35) 19 (102,120) 108 (103,121) 115 (63,95)

(24,6) (49,67) (86,58) (87,59)
(48,66) (37,73) (106,116) (107,117)
(20,10) (69,41) (54,90) (55,91)
(80,34) (28,14) (105,101) (62,94)
(72,36) (88,38) (71,57) (118,122)
(68,40) (56,70) (39,89) (124,110)

(84,42) (99,113)
(52,74) (29,15)
(82,50) (27,23)
(112,98) (85,43)
(74,44) (53,75)
(104,100) (83,51)
(22,26) (77,45)

6. Discussion

In order to simulate various complex systems, where the underlying lattices may be different
in nature using cellular automata, the angle based model is used. nSG-CA model can be used to
accommodate various types of neighborhood structures with the angle(θ) concept. The generic rule
convention used in nSG-CA generates unique rules for each symmetric lattice. Every rule in an nSG-CA
model with a specific lattice gets a unique number i.e., no two rules have the same number in a lattice.

The algorithm proposed in this paper can be used to check the symmetric nature of each rule in
a specific lattice. In order to measure the symmetry in a rule, which is represented as r-star graph,
a Θ-transform based on graph automorphism is used. A rule f is said to be symmetric if f = f Θ.

Self-symmetric rule is defined based on subset of Θ-transform, i.e., a rule is self-symmetric w.r.t
the line = 90◦, if the reflection of all the vertices in the r-star graph w.r.t line θ = 90◦ is a vertex
in the r-star graph if self. The self-symmetric rules generate self-symmetric patterns if the input
data are symmetric. A mechanism is discussed in this paper to reflect the self-symmetry exists in a
rule to the output pattern (global symmetry). Pairwise symmetric rules are also defined based on
Θ∗-transformation. Two pairwise symmetric rules together generate a bilateral symmetric pattern if
the input is symmetric.

The angle concept used in this work is as follows, the polar angle and input angle (θ) are the
key parameters of this work. With the input angle (θ), we can accommodate any two dimensional
symmetric lattices in a CA. A generic rule convention, which suits for any symmetric lattice could
derive with relationship between the polar angle and input angle (θ) of cells in a two dimensional CA.
In order to find the symmetry in rules, Θ-transform is used based on the angle. So, with one parameter,
all the concepts discussed in this work are covered.

6.1. Applications of the Proposed nSG-CA Model

Symmetry is a property observed in many objects in our day to day life, such as architectures,
arts, natural objects, human body, etc. has a lot of applications in our day to day life [29].
Bilateral symmetry i.e., vertical symmetry computation of shapes and images is a basic problem
in computer vision, image processing, and mathematics. The work, such as the use of bilateral
symmetry in facial recognition [30,31], 3D face authentication, and recognition based on bilateral
symmetry analysis [32,33], bilateral symmetry in modeling the human body to recognize an
automated person [34], and in feature restoration to recover features that are invisible [34], has
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used bilaterally symmetry analysis of the pattern generated from the models; CA is used for image
processing [35] applications.

The main application of the nSG-CA model is to find out the asymmetry in symmetric images
such as brain anomaly detection, anomaly detection in mammograms, etc. The brain exhibits a high
level of bilateral symmetry and it gets violated in the presence of an anomaly. So with the pairwise
symmetric rules, one can find out the anomaly in brain images. Similarly like any other objects which
exhibits symmetry with respect to line θ = 90◦.

Since CA is used for modeling complex systems [36], the nSG-CA model is suitable for modeling
different types of symmetric regular lattices such as the square lattice, rectangular lattice, hexagonal
lattice, etc. In crashworthy applications, in order to absorb more crash energy, different variants
hexagonal lattice such as honeycomb structures [37,38] where cells are placed in 60◦, 30◦, 15◦, etc. are
used. Since cellular automata can be used as a platform to simulate crash worthy applications [39],
using the nSG-CA model, one can simulate any applications with honeycomb structures because, the
representation of honeycomb structure is easy with this proposed model. Moreover, all the rules of
the proposed model are bilaterally symmetric. Since the symmetric rules are capable of generating
symmetric patterns, using this nSG-CA model, one can generate symmetric patterns based on various
types of lattice to model various complex systems.

6.2. Comparison with Existing Models

The existing two dimensional CA models such as the Moore neighborhood [1] and von Neumann
neighborhood [8] are used for the representation of rectangular lattices with nine neighborhoods
and five neighborhoods. Other fixed weight neighborhood models [10] and the seven neighborhood
hexagonal model [12], which is based on the fixed weight neighborhood model, also exist. Instead
of multiple models, one can represent any symmetric lattice such as a rectangular lattice, hexagonal
lattice, circular lattice, square lattice, etc. using the nSG-CA model based on an angle itself.

In many of the applications, in order to generate bilateral symmetric patterns i.e., vertical
symmetric patterns, pairwise symmetrical CA rules are required. The classification of symmetric
rules discussed in [14–16] requires exponential time complexity to identify a pairwise symmetric rules
which can generate a bilateral symmetric pattern, because they are defined based on a permutation
approach. However in this work an algorithm is proposed to find the self-symmetric rule and a
pairwise symmetric rule in polynomial time, which generates bilateral symmetric patterns.

7. Conclusions

This paper has described a cellular automata model with which one can model any uniform CA
with various types of regular lattices such as rectangular lattice, circular lattice, hexagonal lattice etc.
where each cell is surrounded by an even number of cells. A mathematical formula is proposed to
generate rules in a 2D-CA based on various types of underlying lattice. A polynomial time algorithm
is proposed to identify self-symmetric rules and pairwise symmetric rules in any type of symmetric
lattice in a two dimensional CA, which are capable of generating symmetric patterns. This paper
focused on the symmetry w.r.t the middle of the lattice. The scope of this paper can be extended to
study any type of symmetry with reference to any axis. The results of this paper can be applied to
anomaly detection in symmetric objects that exists in nature, leading to many vital applications such
as brain tumor, facial anomaly etc.
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