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Abstract

:

This paper presents a new route planning system for the purpose of evaluating the strategic prospects for future Arctic routes. The route planning problem can be regarded as a multi criteria decision making problem with large uncertainties originating from multi-climate models and experts’ knowledge and can be solved by a modified A* algorithm where the hesitant fuzzy set theory is incorporated. Compared to the traditional A* algorithm, the navigability of the Arctic route is firstly analyzed as a measure to determine the obstacle nodes and three key factors to the vessel navigation including sailing time, economic cost and risk are overall considered in the HFS-A* algorithm. A numerical experiment is presented to test the performance of the proposed algorithm.
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1. Introduction


The dramatic variation of sea ice in the Arctic region, due to global warming, has attracted many researchers in science and engineering, where shipping in the Arctic water is one of the hottest issues. Compared to the traditional shipping routes, the Arctic routes have shorter distances linking Asia and North America, as well as linking Asia and Europe, and are a more open navigation environment, more access to the abundant oil and gas resources and lower piracy risk [1]. Therefore, navigation through Arctic routes is considered to be a money-making opportunity for shipping and oil gas companies.



Compared to the traditional ship path planning problem [2,3,4,5,6], sea ice condition becomes a key factor to the route planning in the Arctic region due to its impact on travel time and fuel consumption, as well as the risk of being stuck in the ice [7].



Reference [7] introduced a system for route optimization in ice-covered water, which consisted of an ice model, a ship transit model, and an end-user system. The system was operated on commercial vessels in the Baltic Sea, and its performance was tested. Reference [8] developed an ice navigation system combined with a sea ice model, transit model and a model for route planning which simulated the whole Arctic area. The system employed a modified transit model devised by [9], which integrated various parameters such as ice-breaking fee, port charge, capital cost, etc. Reference [10] developed another ice navigation system where the uncertainty of sea ice prediction and the extremely severe conditions were taken into consideration. The route optimization problem in ice-covered water was regarded as a dynamic stochastic path planning problem, and a heuristic route optimization model was proposed to solve it. Reference [11] devised an automatic ice navigation support system to find the safest- and- shortest routes in the Arctic area for different types of vessels with a geographic information system.



However, unlike the real-time path planning system, the model in this paper is mainly devised to evaluate the strategic prospects for future Arctic routes. Therefore, most data are incorporated for future prediction, where large uncertainties arise from the bias of current multi-climate models and the inconsistency of experts’ cognition. Additionally, for commercial navigating in the Arctic routes, sailing safety, as well as economic benefits, should be guaranteed according to the harsh weather conditions in the Arctic area. Therefore, sailing time, economic cost, and navigation safety are all key factors to influence the route planning, which makes the problem a multi-criteria decision making (MCDM) problem.



Owing to the MCDM problem with large uncertainties in the route optimization model, information on each grid has variation so that a new path planning method is required for the model to handle this uncertain decision problem. Many studies have examined that the hesitant fuzzy sets theory is a powerful tool to solve the mentioned kind of problem [12,13,14,15,16,17]. Therefore, this paper develops a new ice navigation system with a modified A* path planning algorithm called HFS-A* algorithm, where the hesitant fuzzy set theory is incorporated to improve the traditional A* algorithm. Three key factors, including sailing time, economic benefits, and navigation safety, are considered to the final decision-making in this system where multi-models of sea ice prediction and multiple experts’ knowledge are used as input. More details related to hesitant fuzzy set theory and A* algorithm can be seen in Section 2. Section 3 introduces the establishment of the HFS-A* algorithm. A numerical experiment has been used to examine the proposed model in Section 4, and the conclusion can be seen in Section 5.




2. Preliminaries


2.1. Traditional A* Algorithm


2.1.1. Basic Concepts


A* algorithm is a heuristic algorithm widely used for finding an optimal path in static road network presented by [18], which is derived from the Dijkstra algorithm [19] and the Greedy algorithm [20]. The Dijkstra algorithm can find the shortest path, but has to traverse the entire network with low efficiency, and the Greedy algorithm has fast search speed but cannot guarantee to find the best path. The A* algorithm can balance both search speed and global optimality by using the specific utility function f(n), which consists of a kind of cost function g(n) and a kind of cost function q(n):


f(n)=g(n)+q(n)



(1)




where g(n) represents the actual cost from initial node to the current node, and q(n) is the estimated cost from the current node to the end node. When q(n)=0, only q(n) works, then the A* algorithm degenerates to the Dijkstra algorithm, which can only guarantee finding the optimal route. When h(n)≤q(n), then the A* algorithm can maintain the search speed and the global optimality, and the search speed will be slower when the value of q(n) becomes smaller. When h(n)≫q(n), then the A* algorithm degenerates to the Greedy algorithm, which can run faster but may fall into local optimum.




2.1.2. Work Flow


The flow of the algorithm can be seen in Figure 1.



	Step 1

	
Initiate two ordered lists called “OPEN” list and “CLOSE” list and generate two nodes called “START” node and “END” node.




	Step 2

	
The utility function f(n) is calculated by Equation (1) at “START” node and put the “START” node into “OPEN” list.



Where, f(n) is the estimated value from the “START” node to the “END” node through the current node n; g(n) is the actual value from the “START” node to the current node n; g(n) is the estimated value from the current node n to the “END” node.




	Step 3

	
Take out the node of minimum utility from “OPEN” list and mark it as the current node n. This node will be saved in “CLOSE” list.




	Step 4

	
If and only if the node n is not the “END” node, continue the algorithm.




	Step 5

	
Evaluate each adjacent node of node n and skip the one which has already existed in “CLOSE” list. Then, compute the utility of this node if it is not in “OPEN” list and save it in “OPEN” list. If the node has already existed in “OPEN” list, recalculate the utility of this node and choose the smaller value by comparing the utility with the previous one. Finally, node n is assigned as the parent node of the node.




	Step 6

	
If “OPEN” list is not empty, back to Step 3. Otherwise, exit and report the failure of route search.









2.2. Basic Concepts of Hesitant Fuzzy Set


2.2.1. Hesitant Fuzzy Set


Hesitant fuzzy set, proposed by [21], is a more general fuzzy set. An HFS is defined in terms of a function that returns a set of membership values for each element in the domain [21].



Definition 1

([21]). A hesitant fuzzy set Aon Xis a function hAthat when applied to Xreturns a finite subset of [0,1], which can be represented as the following mathematical symbol:


A={⟨x,hA(x)⟩|x∈X},



(2)




where hA(x)is a set of some values in [0,1], denoting the possible membership degrees of the element x∈Xto the set A. For convenience, hA(x)is named a hesitant fuzzy element (HFE) [22].





Definition 2

([21]). For a hesitant fuzzy set represented by its membership function h=hA(x), we define its complement as follows:


hc=∪γ∈h{1−γ}. 



(3)









Definition 3

([22]). For an HFE h, Sc(h)=1lh∑γ∈hγ, is called the score function of h, where lhis the number of elements in hand Sc(h)∈[0,1]. For two HFEs h1and h2, if Sc(h1)>Sc(h2), then h2≺h1, if Sc(h1)=Sc(h2), h2≈h1.





Some operations on the HFEs (h, h1 and h2) and the scalar number λ are defined by [22]:


h1⊕h2=∪γ1∈h1,γ2∈h2{γ1+γ2∸γ1γ2},



(4)






h1⊗h2=∪γ1∈h1,γ2∈h2{γ1γ2},



(5)






hλ=∪γ∈h{γλ},



(6)






hλ=∪γ∈h{γλ}.



(7)








2.2.2. The Aggregation Operators for Hesitant Fuzzy Information


Reference [23] proposed an aggregation principle for HFEs:



Definition 4

([23]). Let A={h1, h2, …,hn}be a set of nHFEs, Θbe a function on A, Θ: [0,1]N→[0,1], then


ΘA=∪γ∈{h1×h2×…×hn}{Θ(γ)}.



(8)









Based on Definition 4, some new aggregation operators for HFEs were given by [22]:



Definition 5

([22]). Let hi(i=1,2,…,n) be a collection of HFEs, w=(w1, w2,…, wn)Tbe the weight vector of them, such that wi∈[0,1]and ∑i=1nwi=1. A generalized hesitant fuzzy weighted averaging (GHFWA) operator is a mapping Hn→H, and


GHFWAλ(h1, h2, …,hn)=(⊕i=1n(wihiλ))1λ=∪γ1∈h1,γ2∈h2,…,γn∈hn{(1−∏i=1n(1−γiλ)wi)1λ}. 



(9)









Definition 6

([22]). Let hi(i=1,2,…,n) be a collection of HFEs, w=(w1, w2,…, wn)Tbe the weight vector of them, such that wi∈[0,1]and ∑i=1nwi=1. A generalized hesitant fuzzy weighted geometric (GHFWG) operator is a mapping Hn→H, such that


GHFWGλ(h1, h2, …,hn)=1λ(⊗i=1n(λhi)wi)=∪γ1∈h1,γ2∈h2,…,γn∈hn{1−(1−∏i=1n(1−(1−γi)λ)wi)1λ}.



(10)










2.2.3. Decision Making Based on Hesitant Fuzzy Information


The decision method based on the above definitions can be derived as follows:

	Step 1

	
The possible alternative Xi of the attribute Ai provided by decision makers or other sources are denoted by the hesitant fuzzy elements hi(i=1,2,…,n).




	Step 2

	
The aggregation operators mentioned above are utilized to obtain the hesitant fuzzy elements hi(i=1,2,…,m) for the possible alternative Xi(i=1,2,…,m).




	Step 3

	
The score values Sc(hi) of hi(j=1,2,…,m) are calculated by Definition 3.




	Step 4

	
Choose the optimal alternative X* by the comparison of Sc(hi).









Example 1.

The vessel, which includes four directionsXi(i=1,2,3,4) to navigate, is planed to determine the optimal Arctic route for the following year. Suppose there are three factorsAi(i=1,2,3)that affect the decision making—A1: navigation time;A2: economic cost;A3: navigation risk. It should be noted that all of them are of the minimization type. The weight vector of the attributes isw=(0.3,0.4,0.3)T.





Then, the optimal route can be determined by using the mentioned method.

	Step 1

	
The decision matrix H=(hij)n×n is presented in Table 1, where hij(i=1,2,3,4;j=1,2,3) are in the form of HFEs.




	Step 2

	
Two operators, GHFWA and GHFWG, are used to obtain the HFE hi(i=1,2,3,4) for the directions Xi(i=1,2,3,4). Take direction X1 as an example and let λ=2; we have


h1A=GHFWA2(h11, h12, h13)=(⊕j=13(wjh1j2))12=∪γ11∈h11,γ12∈h12,γ13∈h13{(1−∏j=13(1−γ1j2)wj)12}={0.2157,0.2652,0.3503,0.4351,0.4577,0.5040,0.5966,0.6099,0.6383,0.2630,0.3039,0.3789,0.4566,0.4788,0.5213,0.6093,0.6220,0.6492,0.3166,0.3503,0.4149,0.4847,0.5040,0.5442,0.6263,0.6383,0.6639}.










h1G=GHFWG2(h11, h12, h13)=12(⊗j=13(2h1j)wj)=∪γ11∈h11,γ12∈h12,γ13∈h13{1−(1−∏j=13(1−(1−γ1j)2)wj)12}={0.1814,0.2541,0.2915,0.2672,0.3857,0.4514,0.2848,0.4142,0.4875,0.1958,0.2754,0.3168,0.2898,0.4226,0.4983,0.3092,0.4551,0.5411,0.2065,0.2915,0.3361,0.3071,0.4514,0.5361,0.3279,0.4875,0.5851}.












	Step 3

	
The score values Sc(hi), i=1,2,3,4 are calculated by Definition 3, which can be seen in Table 2.




	Step 4

	
From Table 2, X4 will be chosen as the optimal direction based on both the GHFWA operator and GHFWG operator where λ is set as 2.












3. An Improved A* Algorithm (HFS-A*)


In light of the harsh weather conditions in the Arctic region, the primary task for route planning is to identify the obstacles (e.g., sea ice). The Coupled Model Intercomparison Project, phase 5 (CMIP5) provided 39 Global Climate Models (GCMs) to predict sea ice data, from history to 21st century, under different representative concentration pathways (RCPs) [23,24]. Unlike the route planning in other regions, for the current sea ice forecasts in the Arctic region, there exists large uncertainty among these GCMs [25,26], which leads to the uncertainty of the length of the navigation season and the economic risk of exploiting the Arctic routes [27]. Therefore, only treating the shortest distance as the optimal route in the Arctic region is not reasonable; more factors, including the navigation risk, the navigation time, and the economic cost during navigation should be considered. Compared to the traditional A* algorithm, the HFS-A* algorithm is used to tackle the multi-criteria decision-making (MCDM) problem with large uncertainty derived from multi-model outputs and expert knowledge. The improved parts mainly focus on t, the identification of obstacles, and the construction of utility function.



3.1. Navigability of the Arctic Routes


With the impact of global warming, the extent of Arctic sea ice continues to decline [27]. Human’s enthusiasm to explore and develop the Arctic routes are aroused by shorter sailing distance, longer navigation season and increased access to natural resources. There are three criteria related to sea ice conditions for evaluating the navigability in the Arctic area.



Criterion 1 (navigation uncertainty).

Sea ice concentration is considered only for no ice-breaking or ice-strengthening ships, and it is navigable when sea ice concentration is less than 15% [28,29,30,31].





Criterion 2 (navigation time).

Sea ice thickness derived from an empirical regression model is considered and for no ice-breaking or ice-strengthening ships, it is navigable when sea ice thickness is no more than 1.2 m [32,33].





Criterion 3 (navigation economic cost).

Both sea ice concentration and thickness are considered by computing the Ice Numeral (IN) index from the Arctic Ice Regime Shipping System (AIRSS) provided by the Canada Transport [34,35,36,37]. The Ice Numeral is given by


IN=CaIMa+CbIMb+…+CnIMn



(11)




where Cnis the concentration in tenths of ice type n, and IMnis the Ice Multiplier for ice type n. Ice type describes the specific stage of development of ice, which is closely related to the ice age. Ice Multipliers, determined by ship class and ice type, are a series of integers, which are used to reflect the impact of sea ice type to the specific vessel. A negative IMrepresents the obstacle effect of vessel sailing. Ice types are determined by [34,38], which are presented in Appendix A. For no ice-breaking or ice-strengthening ships, it is navigable when the IN index is larger than zero. Details about vessel type and IM can also be seen in Appendix A.





Additionally, geographical environment, including water depth and channel width, is also a key factor for ships to navigate, which is related to the vessel type and dimension.



Overall, various evaluation criteria will add to the uncertainty of the sea ice navigability projection. In this paper, we take all three criteria into consideration with geographical restriction to make sure the navigability of the Arctic region, in another words, for one region, can be defined as navigable if and only if the criteria mentioned above are all reached.




3.2. Route Planning Criterion 1: Uncertainty of Sea Ice Condition


In this paper, a series of GCMs have been chosen based on their reasonable projections for future sea ice conditions evaluated by literature studies [39,40,41,42] (see Appendix B). In order to obtain the uncertainty of each model, these model outputs were compared with the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) estimate data set, which is a reanalysis with good spatial and temporal consistency constrained by the quality of the assimilated observations [43,44,45,46].



Suppose we have M GCMs, let each model data-set be Xi, i=1,2,…,M, the PIOMAS data set be X˜, then the uncertainty of each model can be obtained as follows:


hi1=0.5−0.5×Xi·X˜∥Xi∥×∥X˜∥,i=1,2,…,M



(12)




where, Xi·X˜∥Xi∥×∥X˜∥ is called cosine similarity, which is a measure of similarity between two non-zero vectors introduced by [47]. hi1, i=1,2,…,M represents the bias from the model to the “real state”, which can also be regarded as model uncertainty. When hi1 is equal to zero, it represents that the model data sets can well reflect the “real state”, while when hi1 is equal to one, the model uncertainty reaches its maximum.




3.3. Route Planning Criterion 2: Time for Navigation on the Arctic Routes


The navigation time for each grid can be depicted as follows:


Ti=SiVi, i=1,2,…, M,



(13)




where, Si is the distance of each grid, and vi is the velocity of the vessel on each grid. hi2 is the normalization of Ti.



On the Northern Sea Route (NSR), the vessel speed is mainly impacted by sea ice conditions. A h-v curve presented by [48] can reflect, well, the relationship between sea ice thickness and vessel speed. In this h-v curve, the ice resistance and the net thrust of the engine to overcome the ice resistance should both be considered.

	Step 1

	
The ice resistance can be presented as follows:


Rch=0.5μBρΔgHF2KP(12+HM2HF)2[B+2HF(cosδ−1/tanψ)](μhcosϕ+sinψsinα)+μBρΔgK0μhLparHF2+ρΔg(LTB2)3HMAWFFn2,



(14)




where μB=0.5 represents the ice porosity factor, ρΔ=0.8 is the density difference between ice and water. In this model, these two factors are considered to be constant for simple situations, e.g., when the temperature changes. Variables include the waterline area of the foreship AWF, the Froude number Fn, the length L, the parallel midbody length at waterline Lpar, the width B, the friction coefficient μh and the vessel draft T. KP and K0 are mechanical factors of ice found by [49]. The thickness of the brash ice HF can be determined as follows:


HF=HM+B2tanγ+(tanγ+tanδ)B(HM+B4tanγtanγ+tanδ).



(15)







Both γ and δ represent the slope angles of the brash ice.



The formula can be simplified by an approximation when B>10 m and HM>4 m [39]:


HF=0.26+(BHM)0.5.



(16)







The flare angle ψ mentioned above can be obtained with the bow angles ϕ and α:


ψ=arctan(tanϕsinα).



(17)








	Step 2

	
The net thrust can be calculated by the following formula:


Ttot(v)(1−t)=Row(v)+Ri(v),



(18)






Ttot(v)(1−t)=Row(v)+Ri(v),



(19)




where Ttot is the total thrust, (1−t) represents the thrust deduction factor, and Ri(v) and Row(v) are the resistance in ice and in open water respectively.









The effect of vessel speed is approximated by a quadratic factor called bollard pull TB [50], with the maximum open water speed vow, and the net thrust can be rewritten as


Tnet(v)=(1−13vvow−23(vvow)2)TB,



(20)






TB=Ke(PDDP)23,



(21)




where v is the vessel speed in the ice, Ke is the bollard pull quality factor, DP is the propeller diameter and PD is the actual power delivered.




3.4. Route Planning Criterion 3: Economic Cost for Navigation on the Arctic Routes


The economic cost of navigation on the Arctic routes are consist of four parts, which are capital cost, fuel cost, operation cost, and transit cost:


Costeconomic=Costcapital+Costfuel+Costoperation+Costtransit



(22)







3.4.1. Model for Capital Cost


Capital cost is related to the price of new ship building or the cost of a ship with loans and depreciations [51]. Generally, the annual capital cost can be computed as follows [52]:


Costcapital=(P×(1−eq)×(1+r)y×r(1+r)y−1)+(eq×C)/y



(23)




where P is a new ship price, eq is the equity, r is the interest rate, and y is the term of loan. The former item is called annual interests, while the latter item is called cash price.




3.4.2. Model for Fuel Cost


Fuel cost is often depicted as the major cost on the marine transportation, which is the largest single cost factor to most related simulations, ranging from 36.7% to 61% [53].



Fuel cost is impacted by the rate of fuel consumption and the price of fuel, which can be descripted as follows:


Costfuel=Fuelconsumption×Fuelprice



(24)







The fuel consumption of a vessel can be influenced by ship dimensions (e.g., the ship size, hull design, engine profile, speed) and external factors (e.g., sea ice, wind, wave, current, foggy) [51]. The fuel consumption for a specific type of vessel is basically computed by multiplying SFOC (specific fuel oil consumption) (g/kWh), engine power (kw) and sailing hours (h) [54].



Most authors consider speed as the key factor impacting the fuel consumption when the type of a vessel is determined and a simple exponential law based on empirical data are derived: the fuel consumption per unit distance is proportional to the square of the speed [55,56,57], which can be presented as


V12F1=V22F2,



(25)




where F1 and F2 are the fuel consumption rate under the velocity V1 and V2, respectively. Fuel price is affected by the fluctuation of the global economic market. Low fuel price indicates the depression of global economy, while high fuel price reflects the booming global market.




3.4.3. Model for Operation Cost


Operation cost mainly includes crew cost, insurance cost and maintenance fee which is presented as follows:


Costoperation=Costcrew+Costmaintenance+Costinsurance



(26)







1. Crew cost



Crew cost is determined by the vessel type, automation level and numerous other factors [51]. Compared to the open water, the crews in the Arctic region require additional ice navigation experience and the ability to cope with hash weather conditions, which may increase the crew cost [53]. The increased crew cost may come from the higher wage [58] for each member or the larger size of members [59].



2. Maintenance cost



For the purpose of preventing the occurrence of breakdowns and following the scheduled maintenance program, the cost of regular maintenance is needed for vessels.



3. Insurance cost



In face of the risk of Arctic navigation (e.g., collision, engine damage, propeller damage, local hull damage, grounding, etc.) analyzed IN some studies [60,61], maritime insurance is a good tool to mitigate the associated risks, which can be approximately separated into three major components: protection and indemnity (P&I), hull and machinery (H&M), and cargo insurance. The third-party liabilities encountered during the commercial operation of a ship are charged by P&I. H&M covers the cost of damage done to the ship or its equipment. Cargo insurance provides the payment for the damage to the cargo itself [62].




3.4.4. Model for Transit Cost


On the NSR, the transit fee based on vessel type and ice conditions mainly includes ice pilot fee and ice breaking fee and can be given as


Costtransit=Costicebreaking×Load×Payload+Costicepilot



(27)







These services are mainly provided by the Russian icebreaking service provider, Atomflot, and are compulsively charged subject to the law of the Russian Federation, which is dependent on the vessel type (e.g., the size and the ice-class of a vessel), and the navigation length and pilotage distance [62]. In general, higher ice-classed vessels are charged with lower icebreaking fees.





3.5. Work Flow of HFS-A* Algorithm


In this HFS-A* algorithm, the work flow can be seen in Figure 2. The method of obstacle identification has been discussed in Section 3.1 while the modified utility function can be described as follows:


f*(i)=g*(i)+q*(i)



(28)







When the current node i is determined, the actual cost g*(i) is equal to the score value Sc(hi), which can be computed by Definition 3.



More specifically, we assume each selected node has three criteria Cj(j=1,2,3) that affect the decision making—C1: uncertainty of sea ice condition; C2: navigation time; C3: navigation economic cost. It should be noted that all of them are of the minimization type. The weight vector of the attributes is w=(w1,…,wj)T.



The heuristic estimated cost function can be approximately evaluated:


q*(i)=Sc(hi)×D



(29)




where, D is the heuristic distance (Manhattan, Euclidean or Chebyshev) from the evaluated node to the END node [63].



Step 1 Map initialization

	
Initialize map grid and interpolate the mentioned data into grid.



	
Set the “START” node, “END” node, “OPEN” list and “CLOSE” list.



	
Find the obstacle nodes in terms of the constrain conditions mentioned in Section 3.1.








Step 2 The construction of utility function

	
Each time, compare all the adjacent nodes i of the current node n by


f*(i)=Sc(hi)×(D+1)



(30)




where, Sc(hi)=GHFWGλ(hi1, hi2,hi3) or Sc(hi)=GHFWAλ(hi1, hi2,hi3), hi1 is the HFEs of navigation uncertainty (see Section 3.2), hi2 is the HFEs of navigation time (see Section 3.3), and hi3 is the HFEs of navigation economic cost (see Appendix D.2).








Step –6 The same as the traditional A* algorithm.





4. Case Study and Conclusion


4.1. Study Area and Data Description


This experiment is to find the optimal route on the Northern Sea Route (NSR) based on the proposed method from Shanghai to Bergen port for an IB-classed 3800TEU container vessel.



Data related to water depth is derived from a product called ETOPO1 provided by the National Geophysical Data Center (NGDC), with a resolution of 1 arc-minute [64]. Data related to AIRSS system can be seen in Appendix A. Data related to sea ice conditions (both sea ice thickness and sea ice concentration) can be seen in Appendix B. Data related to vessel information can be seen in Appendix C. Data related to economic cost can be seen in Appendix D. All the climate model outputs and data related to water depth are interpolated to the grid size of 360 × 120 for the comparison with PIOMAS estimate data set, which the spatial coverage is 45° N to 90° N and the temporal resolution is monthly.




4.2. Route Planning by HFS-A* Algorithm


4.2.1. Navigability of the NSR


The numerical simulation firstly examines the navigability of the IB-classed 3800 TEU container vessels on the NSR for each month in the year of 2050 (see Figure 3). According to the ensemble model predictions, the open time of the NSR for that vessel to access may last for 3 to 5 months in the year of 2050. Most model outputs show the navigable time starts from August to the October, while merely 2 to 4 models extend the navigable time (from July to November).




4.2.2. Selection of the Aggregation Operators and Route Optimization


Secondly, route planning criteria (uncertainty, time and economic cost) have been calculated based on the models mentioned in Section 3.2, Section 3.3 and Section 3.4, and the results can be seen in Appendix D. These factors can be normalized respectively between 0 and 1, which can be described as:


hi−min(hi)max(hi)−min(hi), i=1,2,…, M



(31)







Thirdly, the optimal routes for IB-classed 3800 TEU container vessels from Shanghai to Bergen port on the NSR in September of 2050 can be found by two kinds of the aggregation operators (GHFHAλ, λ=1, 2, 6 and GHFHGλ, λ=1, 2, 6), which are used to aggregate the normalized results mentioned above. The detailed results can be seen in Table 3. Compared these two kinds of aggregation operators, the performance of the GHFHGλ, λ=1, 2, 6 operators in the route optimization is better than the GHFHAλ, λ=1, 2, 6 operators from the view of total sailing distance, sailing time, economic cost and average uncertainty. In the light of the comparison of different λ for each operator, the performance of the GHFHGλ becomes better with the λ increase, while the performance of the GHFHGλ becomes better when λ decreases. Therefore, the GHFHG1 operator has been examined as the best aggregation operator in this numerical study (The weights vectors for this experiment are assigned as 0.4, 0.3, and 0.3 for three criteria).



Finally, the optimal route determined by HFS-A* algorithm with the GHFHG1 operator can be seen in Figure 4. Three other routes according to simple single criterion (uncertainty, time, or economic cost) are also drawn in Figure 4. The detailed results can be seen in Table 4, where it can be found that path planning based on a single factor shows a slight advantage in its related aspect, but shows significant disadvantage in any other aspect compared with the optimal route. In other words, the optimal route can better balance these three key factors and show more realistic performance of the proposed route planning algorithm than the other three single factor route planning.






5. Conclusions


The opening of Arctic routes will be no longer a dream in the coming future with climate change; route planning is necessary for vessels to navigation on the Arctic region from different points of view (safe, economic cost, time etc.). This paper presents a modified A* algorithm where the hesitant fuzzy set theory is incorporated for the purpose of solving the MCDM problem in Arctic route planning with large uncertainties originating from multi-climate models and experts’ knowledge. Compared to the traditional A* algorithm, the navigability of the Arctic route is firstly analyzed as a measure to determine the obstacle nodes, and three key factors to vessel navigation, including sailing time, economic cost and risk are overall considered in the HFS-A* algorithm.



A numerical experiment, which is to find the optimal route between Bergen port and Shanghai port on the NSR, is presented to test the performance of the proposed algorithm. Multi-model ensemble forecast displays that the IB-class 3800 TEU container vessels can navigate on the NSR lasting for 3 to 5 months in the year of 2050. Most model outputs show the navigable time starts from August to October, while merely 2 to 4 models extend the navigable time (from July to November). The sensitivity analysis for the aggregation operators examines that the GHFHG1 operator has an advantage over other aggregation operators in route optimization, and its performance of integrating the three key factors in route planning is better than the performance of any other single factor.



In this paper, the improvement effects for this new approach have been evaluated theoretically and practically. Theoretically speaking, the simple A* algorithm cannot handle the Arctic path planning problem which has multi-criteria attribution with large uncertainties. Even if we can synthesize the time, economic and uncertainty factors by addition and multiplication, the uncertainties existing in climate model prediction and expert knowledge cannot be portrayed by a simple A* algorithm. Practically speaking, we compared the route planning result of HFS-A* algorithm and single factor route planning result (see Figure 4). It can be found that there is a more realistic performance of the HFS-A* route planning algorithm than compared with the simple A* route planning algorithm. Overall, this new HFS-A* algorithm can be well-applied to the Arctic region and to evaluate the strategic prospects for future Arctic routes.
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Table A1. Ice Type [28,29].






Table A1. Ice Type [28,29].





	Ice Type
	Characteristic





	New (Open Water)
	Newly formed ice, include ice crystal, grease like ice, crushed ice clusters, etc. These types of ice are just loosely frozen together, can only been seen in the process of floating. The ice thickness is less than 10 cm.



	Grey
	Young ice, has a thickness of 10–15 cm which is lower than that of nilas and is easy to expand and break



	Grey-white
	Young ice has a thickness of 15–30 cm



	Thin first year 1st stage
	One year ice, which the formation time does not exceed one winter, has a thickness of 30–50 cm.



	Thin first year 2 nd stage
	One year ice, which the formation time does not exceed one winter, has a thickness of 50–70 cm.



	Medium first year
	One year ice has a thickness of 70–120 cm



	Thick first year
	One year ice has a thickness of 120–220 cm



	Second year
	Adult ice, which has gone through at least one summer’s melting, has a thickness of 220–250 cm



	Multiyear
	Multiyear ice, which has gone through at least two summers’ melting, has a thickness beyond 250 cm
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Table A2. Ice Multiplier for ice type [28].






Table A2. Ice Multiplier for ice type [28].

















	
	Open Water
	Grey Ice
	Grey White Ice
	Thin First Year 1st Stage
	Thin FIRST Year 2nd Stage
	Medium First Year
	Thick First Year
	Second Year
	Multi Year





	CAC 3
	2
	2
	2
	2
	2
	2
	2
	1
	−1



	CAC 4
	2
	2
	2
	2
	2
	2
	1
	−2
	−3



	Type A
	2
	2
	2
	2
	2
	1
	−1
	−3
	−4



	Type B
	2
	2
	1
	1
	1
	−1
	−2
	−4
	−4



	Type C
	2
	2
	1
	1
	−1
	−2
	−3
	−4
	−4



	Type D
	2
	2
	1
	−1
	−1
	−2
	−3
	−4
	−4



	Type E
	2
	1
	−1
	−1
	−1
	−2
	−3
	−4
	−4
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Table A3. Vessel type [28].






Table A3. Vessel type [28].





	Vessel Type
	Description





	CAC3
	Commercial cargo ship, which can navigate in the area on all kinds of ice types but will escape the area of multiyear ice



	CAC4
	Commercial cargo ship, which is able to navigate on the area of arbitrary one-year-old ice, while the speed on the area of multiyear ice will be extremely reduced.



	Type A (IAS, PC6)
	Vessel, which can navigate on the area of thick first year ice.



	Type B (IA, PC7)
	Vessel, which can navigate on the area of medium first year ice.



	Type C (IB)
	Vessel, which can navigate on the area of thin first year ice



	Type D (IC)
	Vessel, which can navigate on the area of grey-white ice.



	Type E (ID)
	Vessel, which can navigate on the area of grey-ice.
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Table A4. Key sources of Global Cliamte Models (GCMs) used in this paper.






Table A4. Key sources of Global Cliamte Models (GCMs) used in this paper.





	Model
	Country
	Oceanic Resolution





	ACCESS1.0
	Australia
	1° × 1° L50



	ACCESS1.3
	Australia
	1° × 1° L50



	BNU-ESM
	China
	360(lon)×200(lat) L50



	CCSM4
	United States
	Nominal 1° (1.125° in longitude, 0.27–0.64° in latitude) L50



	CESM1-BGC
	United States
	Nominal 1° (1.125° in longitude, 0.27–0.64° in latitude) L60



	CESM1-CAM5
	United States
	Nominal 1° (1.125° in longitude, 0.27–0.64° in latitude) L60



	CNRM-CM5
	France
	Average 0.7° L42



	HADGEM2-CC
	United Kingdom
	1.875° × 1.25°



	MIROC5
	Japan
	0.5–1.4° × 1.4° L50



	MPI-ESM-MR
	Japan
	Approx. 1° × 1° L40
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Table A5. Ship dimensions [57].






Table A5. Ship dimensions [57].





	
Vessel Type

	
IB






	
Deadweight

	
50,000 ton

	
SFOC

	
145.8 g/kWh




	
Payload

	
3800 TEU

	
engine power

	
35,000 kWh




	
Load Factor

	
0.65

	
Engine load

	
0.8




	
L

	
250 m

	
vow

	
24 knots




	
LPAR

	
130 m

	
α

	
23°




	
B

	
32.2 m

	
ϕ

	
90°




	
T

	
12 m

	
μh

	
0.02




	
PD

	
19,600 kW

	
AWF

	
806.5 m2




	
Ke

	
0.78

	
DP

	
7.5 m




	
Kp

	
6.5

	

	










Appendix D


Appendix D.1. Data Related to Economic Cost


An ordinary 3800 TEU container ship, which usually navigates on the open water, should cost 60 million, the equity is 30%, and the interest rate is 3% with a 20-year loan [65]. Therefore, we can obtain the ordinary capital cost by Equation (23): 10,200 USD/day.



On the NSR, an IB-classed 3800 TEU container ship may have extra building cost due to the principal structure and strength, propulsion system, hull form, etc. [59]. Literature related to extra building cost can be seen in Table A6. From Table A6, the range of the extra building cost for IB-classed vessel is from 5% to 35%.



Suppose C is a new ship price, eq is the equity, r is the interest rate and i is the term of loan.
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Table A6. Extra building cost for a commercial ice-classed vessel.






Table A6. Extra building cost for a commercial ice-classed vessel.





	Ice Class Category Considered
	Extra Building Cost
	Resource





	CAC3
	+30%
	[58]



	IAS
	+20%
	[53]



	IB
	+7.5%
	[66]



	PC7 to PC4 1
	+20%
	[56]



	Ice class
	+30%
	Expert suggestions



	IA-IAS
	+5%–7%
	[67]



	IB
	+20%–30%
	[59]



	Ice class
	+10%–35%
	[68]







1 According to approximate equivalence of ice class classification systems made by [44], PC6 is equal to 1AS and PC7 is equal to 1A.
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