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Abstract: In this paper, we consider Changhee polynomials of type two, which are motivated from
the recent work of D. Kim and T. Kim. We investigate some symmetry identities for the Changhee
polynomials of type two which are derived from the properties of symmetry for the fermionic p-adic
integral on Zp.

Keywords: Changhee polynomials; Changhee polynomials of type two; fermionic p-adic integral
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1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp and Cp will denote the ring of
p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of Qp.

The p-adic norm | · |p is normalized as | p |p = 1
p .

Let f (x) be a continulus funciton on Zp. Then the fermionic p-adic integral on Zp is defined by
Kim in [1] as ∫

Zp
f (x)dµ−1(x) = lim

N→∞

pN−1

∑
x=0

f (x)µ−1(x) = lim
x→∞

pN−1

∑
x=0

f (x)(−1)x. (1)

For n ∈ N, by (1), we get∫
Zp

f (x + n)dµ−1(x) + (−1)n−1
∫
Zp

f (x)dµ−1(x)

= 2
n−1

∑
`=0

f (`)(−1)n−1−`
(2)

as shown in [2–5]. In particular, if we take n = 1, then we have∫
Zp

f (x + 1)dµ−1(x) +
∫
Zp

f (x)dµ−1(x) = 2 f (0), (3)

which is noted in [6,7].
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In the previous paper [8], D. Kim and T. Kim introduced the Changhee polynomials C̃hn(x) of
type two by the generating function

∞

∑
n=0

C̃hn(x)
tn

n!
=

2
(1 + t) + (1 + t)−1 (1 + t)x. (4)

By exploiting the method of fermionic p-adic integral on Zp, the Changhee polynomials of type

two can be represented by the fermionic p-adic integrals of Zp: for t ∈ Cp with |t|p < p−
1

p−1 ,

∫
Zp
(1 + t)2y+1+2xdµ−1(y) =

2
(1 + t)2 + 1

(1 + t)2x+1

=
∞

∑
n=0

C̃hn(x)
tn

n!

(5)

When x = 0, C̃hn = C̃hn(0) are called the Changhee numbers of type two.
In this paper, we will introduce further generalization of Changhee polynomials of type two,

by using again fermionic p-adic integration on Zp.
We investigate some symmetry identities for the w-Changhee polynomials of type two which

are derived from the properties of symmetry for the fermionic p-adic integral on Zp. Many authors
investigated symmetric properties of special polynomials and numbers. See [9–12] and their references.

We introduce w-Changhee polynomials of type two in Section 3.

2. Changhee Polynomials and Numbers of Type Two

In this section, we use the techniques presented in the articles of C. Cesarano, C. Fornaro [13] and
C. Cesarno [14], in particular the similarity of Chebyshev polynomials.

By using the generating functions of Changhee numbers and polynomials of type two, we have
the following result.

Proposition 1. For n ∈ N and 1 ≤ k ≤ n, we have

C̃hn(x) =
n

∑
m=0

(
n
m

)
(2x)mC̃hn−m, (6)

where (x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1), (x)0 = 1.

Proof of Proposition 1.

∞

∑
n=0

C̃hn(x)
tn

n!
=

2
(1 + t) + (1 + t)−1 (1 + t)2x

=
∞

∑
m=0

C̃hm
tm

m!

∞

∑
`=0

(2x)`
tn

`!

=
∞

∑
n=0

(
n

∑
m=0

(
n
m

)
C̃hm(2x)n−m

)
tn

n!

The Stirling number S1(`, n) of the first kind is defined in [2–5,15] by the generating function

(
log(1 + t)

)n
= n!

∞

∑
`=n

S1(`, n),
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and the Stirling number S2(m, n) of the second kind is given in [4] by the generating function

(et − 1)n = n!
∞

∑
m=n

S2(m, n)
tm

m!
.

As is well known, the Euler polynomials En(x) are defined in [16–18] by the generating function

2
et + 1

ext =
∞

∑
n=0

En(x)
tn

n!
. (7)

When x = 0, En = En(0), (n ≥ 0), are called the n-th Euler numbers, whereas the Euler numbers
E∗n of the second kind are given by the generating function

sech(t) =
2

et + e−t =
∞

∑
n=0

E∗n
tn

n!
(8)

as noted in [16,19].
Before we proceed, we study some relevant relations between the Changhee numbers of type two

and the Euler numbers of the second kind.

Proposition 2. For n ∈ N and 0 ≤ k ≤ n, we have

C̃hn =
n

∑
k=0

E∗k S1(n, k). (9)

Proof of Proposition 2. From the generating functions of Changhee numbers of type two shown in
(8), we have

∞

∑
n=0

C̃hn
tn

n!
=

2
(1 + t) + (1 + t)−1 =

2
elog(1+t) + e− log(1+t)

= sech(log(1 + t))

=
∞

∑
n=0

E∗n
(log(1 + t))n

n!
=

∞

∑
n=0

(
n

∑
k=0

E∗k S1(n, k)

)
tn

n!
.

(10)

Thus we have the result.

The result above helps us to derive some values of Changhee numbers of type two C̃hn’s as follows:
from E∗0 = 1, E∗1 = 0, E∗2 = −1, E∗3 = 0, E∗4 = 5, E∗5 = 0 and S1(n, n) = 0 for n ≥ 0, S1(n, 0) = 0 for
n ≥ 1, S1(2, 1) = 1, S1(3, 1) = 2, S1(4, 1) = 6, S1(5, 1) = 24, S1(3, 2) = 3, S1(4, 2) = 11, S1(5, 2) = 50,
S1(4, 3) = 6, S1(5, 3) = 35, S1(5, 4) = 10,

C̃h0 = E∗0 S1(0, 0) = 1,

C̃h1 = E∗0 S1(1, 0) + E∗1 S1(1, 1) = 0 + 0 = 0,

C̃h2 = E∗0 S1(2, 0) + E∗1 S1(2, 1) + E∗2 S1(2, 2) = 0 + 0− 1 = −1.

C̃h3 = E∗0 S1(3, 0) + E∗1 S1(3, 1) + E∗2 S1(3, 2) + E∗3 S1(3, 3)

= 0 + 0− 3 + 0 = −3,

C̃h4 = E∗0 S1(4, 0) + E∗1 S1(4, 1) + E∗2 S1(4, 2) + E∗3 S1(4, 3) + E∗4 S1(4, 4)

= 0 + 0− 11 + 0 + 5 = −6,

C̃h5 = E∗0 S1(5, 0) + E∗1 S1(5, 1) + E∗2 S1(5, 2) + E∗3 S1(5, 3) + E∗4 S1(5, 4)

+ E∗5 S1(5, 5) = 0 + 0− 50 + 0 + 50 + 0 = 0.
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For the inversion formulas for Proposition 2, we have the following.

Proposition 3. For n ∈ N and 0 ≤ k ≤ n, we have

E∗n =
n

∑
k=0

C̃hkS2(n, k).

Proof of Proposition 3. From (6) and (8), we get the following, by replacing t by et − 1:

2
(1 + t)2 + 1

(1 + t) =
∞

∑
n=0

C̃hn
tn

n!

2
e2t + 1

et =
∞

∑
k=0

C̃hk
1
k!
(et − 1)k

=
∞

∑
n=0

(
n

∑
k=0

C̃hkS2(n, k)

)
tn

n!

=
2

et + e−t =
∞

∑
n=0

E∗n
tn

n!
.

(11)

Now (11) gives us the desired result E∗n = ∑n
k=0 C̃hkS2(n, k).

Also by using the fermionic p-adic integration on Zp, we can represent Changhee numbers of
type two as follows.

Proposition 4 (Witt’s formula for Changhee numbers of type two).

For n ∈ N, we have
C̃hn =

∫
Zp
(2x + 1)ndµ−1(x). (12)

Proof of Proposition 4. First, we observe

∫
Zp
(1 + t)2x+1dµ−1(x) =

∫
Zp

∞

∑
n=0

(2x + 1)n
tn

n!
dµ−1(x)

=
∞

∑
n=0

∫
Zp
(2x + 1)ndµ−1

tn

n!
,

(13)

On the other hand, by the definition of fermionic p-adic integration on Zp,

∫
Zp
(1 + t)2x+1dµ−1(x) =

2
(1 + t)2 + 1

(1 + t) =
∞

∑
n=0

C̃hn
tn

n!
. (14)

Thus, by comparing the coefficients of both sides of (13) and (14), we have the desired result.

3. Symmetry of w-Changhee Polynomials of Type Two

Motivated from D. Kim and T. Kim [20], for w ∈ N, we define w-Changhee polynomials of type
two by the following generating function

2
(1 + t)2w + 1

(1 + t)2wx+1 =
∞

∑
n=0

C̃hn,w(x)
tn

n!
. (15)

When x = 0, C̃hn,w = C̃hn,w(0) are called the w-Changhee numbers of type two. When w = 1,
C̃hn,1(x) = C̃hn(x) are just the Changhee polynomials of type two in (4). For the case of w = 1

2 ,
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the 1
2 -Changhee polynomials of type two are related to the well-known Changhee polynomials of type

two, i.e., C̃hn, 1
2
(x) = C̃hn(x + 1).

The generating function of w-Changhee polynomials of type two can be related with Changhee
polynomials of type two or Changhee numbers of type two as follows.

Proposition 5. For n, w, ` ∈ N and 1 ≤ ` ≤ n, we have

(1) C̃hn,w(x) =
n

∑
`=0

C̃h`(2wx), and

(2) C̃hn,w(x) =
n

∑
`=0

(
n
`

)
(2wx)`C̃hn−`.

Proof of Proposition 5. (1) is immediate from the definition. For (2), we have

∞

∑
n=0

C̃hn,w(x)
tn

n!
=

(
∞

∑
`=0

C̃h`
t`

`!

)
(1 + t)2wx

=

(
∞

∑
`=0

C̃h`
t`

`!

)(
∞

∑
m=0

(2wx)m
tm

m!

)

=
∞

∑
n=0

(
n

∑
`=0

(
n
`

)
(2wx)`C̃hn−`}

)
tn

n!
.

From (3), we can easily derive the following:

2
n

∑
`=0

(−1)`(1 + t)2` =
2{1 + (−1)n+1(1 + t)2(n+1)}

(1 + t)2 + 1
(16)

The left hand side of (16) can be written as

2
n

∑
`=0

(−1)`(1 + t)2` =
∞

∑
n=0

(
n−1

∑
`=0

(−1)`(2`)n

)
tn

n!
(17)

We use the notation of λ-falling factorial in [12,21] for λ ∈ R,

(` | λ)n =

{
`(`− λ) · · · (`− λ(n− 1)), (if n ≥ 1)

1, (if n = 0).

Then the right hand side of (17) can be written as

2
n−1

∑
`=0

(−1)`(1 + t)2` =
∞

∑
n=0

Tm(n; (` | 1
2 ))

tn

n! . (18)

where we denote, for λ ∈ R,

Tm(n; (` | λ)) =
n

∑
`=0

(−1)`(` | λ)m.

For n ∈ N, n ≡ 1 (mod 2), m ≥ 0 we have

∞

∑
m=0

2

(
n

∑
`=0

(−1)`(−2`)m

)
tm

m!
=

2(1 + (1 + t)2(n+1))

(1 + t)2 + 1
. (19)
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On the other hand, by (4) and (18), we have

∞

∑
m=0

(
C̃hm + C̃hm(n + 1)

) tm

m!
=

2(1 + t)
(1 + t)2 + 1

+
2(1 + t)2(n+1)(1 + t)

(1 + t)2 + 1

= 2
n

∑
`=0

(−1)`(1 + t)2`+1

= 2Tm(n; (`+ 1
2 |

1
2 )).

(20)

Now we consider a quotient of fermionic p-adic integrals on Zp,

2
∫
Zp
(1 + t)2w2x2 dµ−1(x2)∫

Zp
(1 + t)2w1w2x1 dµ−1(x1)

=
w1−1

∑
`=0

(−1)(1 + t)2w2`

=
∞

∑
m=0

w1−1

∑
`=0

(−1)`(2w2`)m

=
∞

∑
m=0

w1−1

∑
`=0

(2w2)
m(−1)`

(
` | 1

2w2

)
m

=
∞

∑
m=0

(2w2)
mTm(w1 − 1 |

(
` | 1

2w2

)
),

(21)

where Tm(n | (` | λ)) = ∑n
`=0(−1)`(` | λ)m for λ ∈ R.

For the symmetry of w-Changhee polynomials of type two, we consider the following quotient
form of fermionic p-adic integration on Zp.

T(w1, w2) =
2
∫
Zp

∫
Zp
(1 + t)2w1x1+2w2x2+2dµ−1(x1) dµ−1(x2)∫

Zp
(1 + t)2w1w2x1+1dµ−1(x1)

(1 + t)2w1w2x

=
∫
Zp
(1 + t)2w1x1+1dµ−1(x1)(1 + t)2w1w2x

×

∫
Zp
(1 + t)2w2x2 dµ−1(x2)∫

Zp
(1 + t)2w1w2x1 dµ−1(x1)

=
( ∞

∑
`=0

C̃h`,w1(w2x)
t`

`!

)( ∞

∑
k=0

(2w2)
kTk(w1 − 1 | (k | 1

2w2
))
)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
C̃hn−k,w1(w2x)(2wk)

kTk(w1 − 1 | (k | 1
2w2

))

)
tn

n!
.

(22)

Similarly we have the following identity for T(w1, w2) because T(w1, w2) is symmetric on w1

and w2.

T(w1, w2) =
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
C̃hn−k,w2(w1x)(2w1)

kTk(w2 − 1 | (k | 1
2w1

))

)
tn

n!
. (23)

Thus, by (22) and (23), we have the following theorem.

Theorem 1. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2) and n ≥ 0, we have

n

∑
k=0

(
n
k

)
C̃hn−k,w2(w1x)(2w1)

k Tk(w2 − 1 | (k | 1
2w1

))

=
n

∑
k=0

(
n
k

)
C̃hn−k,w1(w2x)(2w2)

k Tk(w1 − 1 | (k | 1
2w2

)).
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If we take w2 = 1 in Theorem 1, we have the following

Corollary 1. For w1 ∈ N with w1 ≡ 1 (mod 2) and n ≥ 0, we have

C̃hn(w1x) =
n

∑
k=0

(
n
k

)
C̃hn−k,w1(x)2kTk(w1 − 1 | (k | 1

2 )).

From (22), we rewrite T(w1, w2) as follows:

T(w1, w2) =
∫
Zp
(1 + t)2w1x1 dµ−1(x1)(1 + t)2w1w2x

×
2
∫
Zp (1+t)2w2x2 dµ−1(x2)∫

Zp (1+t)2w1w2x1 dµ−1(x1)

=
∫
Zp
(1 + t)2w1x1 dµ−1(x1)(1 + t)2w1w2x

×2 ∑w1−1
`=0 (1 + t)2w2`(−1)`

= 2 ∑w1−1
`=0 (−1)`

∫
Zp
(1 + t)2w1x1+2w1w2x+2w2`dµ−1(x1)

= 2 ∑w1−1
`=0 (−1)`

∫
Zp
(1 + t)2w1x1+2w1w2x+ w2

w1
`dµ−1(x1)

= 2 ∑w1−1
`=0 (−1)` ∑∞

k=0 C̃hk,w1

(
w2x + w2

w1
`
)

tk

k!

= ∑∞
n=0

(
2 ∑w1−1

`=0 (−1)`C̃hn,w1

(
w2
w1
`+ w2x

))
tn

n!

(24)

Similarly, by the symmetry of T(w1, w2), we have the following identity

T(w1, w2) =
∞

∑
n=0

(
2

w2−1

∑
`=0

(−1)`C̃hn,w2

(w1

w2
`+ w1x

)) tn

n!
. (25)

Now from (24) and (25), we have the following theorem.

Theorem 2. For w1, w2 ∈ N with w1 ≡ 1 (mod 2), w2 ≡ 1 (mod 2) and n ≥ 0, we have

w1−1

∑
`=0

(−1)`C̃hn,w1

(w2

w1
`+ w2x

)
=

w2−1

∑
`=0

(−1)`C̃hn,w2

(w1

w2
`+ w1x

)
.

When we take w2 = 1, we have

C̃hn(w1`+ w1x) =
w1−1

∑
`=0

(−1)`C̃hn,w1

( `

w1
+ x
)

.

4. Conclusions

The Changhee polynomials of type two are considered by D. Kim and T. Kim (see [8]) and various
properties on their polynomials and numbers are investigated.

In this paper, we investigate some symmetry identities for the Changhee polynomials of type
two which are derived from the properties of symmetry for the fermionic p-adic integrals on Zp.
The techniques presented in the articles by Cesarano and Fornaro [13,14], paticularly the Chebyshev
polynomials, are used.

Especially we introduce w-Changhee polynomials of type two and investigate interesting
symmetry identities.
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For the cases of w = 1, w = 1
2 and w = 1

4 , the symmetry of the w-Changhee polynomials of type
two are related to the works of Changhee polynomials of type two, those of well-known Changhee
polynomials (see [4,22]), and those of the Catalan polynomials (see [20]) respectively.

Recently, many works are done on some identities of special polynomials in the view point of
degenerate sense (see [15,20,21]). Our result could be developed in that direction also: i.e., on the
symmetry of the degenerate w-Changhee polynomials of type two.

Finally, we remark that our results on symmetry of two variables could be extended to the three
variables case.
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