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Abstract: Deep neural networks (DNNs) have demonstrated remarkable performance in machine
learning areas such as image recognition, speech recognition, intrusion detection, and pattern analysis.
However, it has been revealed that DNNs have weaknesses in the face of adversarial examples, which
are created by adding a little noise to an original sample to cause misclassification by the DNN.
Such adversarial examples can lead to fatal accidents in applications such as autonomous vehicles
and disease diagnostics. Thus, the generation of adversarial examples has attracted extensive research
attention recently. An adversarial example is categorized as targeted or untargeted. In this paper, we
focus on the untargeted adversarial example scenario because it has a faster learning time and less
distortion compared with the targeted adversarial example. However, there is a pattern vulnerability
with untargeted adversarial examples: Because of the similarity between the original class and
certain specific classes, it may be possible for the defending system to determine the original class by
analyzing the output classes of the untargeted adversarial examples. To overcome this problem, we
propose a new method for generating untargeted adversarial examples, one that uses an arbitrary
class in the generation process. Moreover, we show that our proposed scheme can be applied to
steganography. Through experiments, we show that our proposed scheme can achieve a 100% attack
success rate with minimum distortion (1.99 and 42.32 using the MNIST and CIFAR10 datasets,
respectively) and without the pattern vulnerability. Using a steganography test, we show that our
proposed scheme can be used to fool humans, as demonstrated by the probability of their detecting
hidden classes being equal to that of random selection.

Keywords: deep neural network; adversarial example; untargeted adversarial example;
random selection

1. Introduction

Command and control (C2) systems are being transformed into unmanned artificial intelligence
systems with the development of informational operating paradigms for unmanned aerial vehicles,
scientific monitoring systems, and surveillance systems. Artificial intelligence technology plays an
important role in networks for enhancing such unmanned scientific monitoring systems. In particular,
deep neural networks (DNNs) [1] provide superior performance for services such as image recognition,
speech recognition, intrusion detection, and pattern analysis.

However, Szegedy et al. [2] introduced the concept of an adversarial example in image recognition:
An image that is transformed slightly so it will be incorrectly classified by a DNN even when the

Symmetry 2018, 10, 738; doi:10.3390/sym10120738 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-1169-9892
http://dx.doi.org/10.3390/sym10120738
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/12/738?type=check_update&version=2


Symmetry 2018, 10, 738 2 of 17

changes are too small to be easily recognized by humans. Such adversarial examples are a serious
threat to DNNs. For example, if an adversarial example is applied to a right-turn sign image so that
it will be misclassified by a DNN as a U-turn sign image, an autonomous vehicle with a DNN may
incorrectly classify the modified right-turn sign as a U-turn sign, whereas a human would correctly
classify the modified sign as a right-turn sign.

Adversarial examples are divided into two categories according to the purpose of their generation:
Targeted adversarial examples and untargeted adversarial examples. The purpose of generating a
targeted adversarial example is to cause the target model to classify the adversarial example as a
specific class chosen by the attacker, whereas the purpose of generating an untargeted adversarial
example is to cause the target model to classify the adversarial example as any wrong class. Because
the untargeted adversarial example has faster learning time and less distortion than the targeted
adversarial example, our study focuses on the untargeted adversarial example. However, there is a
disadvantage associated with the untargeted adversarial example, called pattern vulnerability. This is
because certain classes will have higher similarity to the original sample; for example, in MNIST [3],
the original sample “7” is similar to the “9” image, so an untargeted adversarial example based on the
original sample “7” is more likely to be misclassified as the “9” class. This pattern vulnerability allows
the original class used in generating the untargeted adversarial example to be accurately detected by
analyzing the similarity between the original class and the specific classes.

To overcome the pattern vulnerability problem, we propose a random untargeted adversarial
example in this paper. The proposed scheme uses a random class other than the original class when
generating an untargeted adversarial example. This paper is an extended version of our previous
work [4] presented at the Military Communications (MILCOM) 2018 conference. For MILCOM 2018,
we focused on methods for generating a random untargeted adversarial example. The contributions of
this paper are as follows.

• We systematically organize the framework of the proposed scheme. We present the random
untargeted adversarial example and use it to verify the usefulness of a steganography [5] scheme
and evaluate its security.

• We analyze the confusion matrix of the untargeted adversarial example and the proposed scheme
in order to analyze recognition classes by each original class. We also analyze the recognition and
detection rates of the proposed technique, using human subjects to test the method’s application
to steganography.

• Through an experiment using the MNIST and CIFAR10 [6] datasets, we show the effectiveness of
our proposed method. In addition, we point out the possibility of applying the proposed method
to steganography without the pattern vulnerability.

The remainder of this paper is structured as follows. In Section 2, we review the related
work and background: Section 2.1 describes neural networks, Section 2.2 describes the principle
of generating adversarial examples, Sections 2.3–2.6 describe the four ways adversarial example
attacks are categorized (by target model information, recognition target for the adversarial example,
distance measure, and generation method), and Section 2.7 describes the latest methods used by
different models to recognize different classes. The problem definition is addressed in Section 3, and
our proposed scheme is presented in Section 4. Section 5 describes the experiments and provides
evaluations, and a steganography evaluation is presented in Section 6. Section 7 discusses the proposed
method. Finally, conclusions are presented in Section 8.

2. Background and Related Work

Several issues have been discussed by Barreno et al. [7] regarding security in machine learning.
They classified machine learning attacks into causative attacks [8] and exploratory attacks [2]. Causative
attacks affect the training process of the machine by adding malicious training data to attack the
machine. Exploratory attacks, on the other hand, cause misclassification by the machine, but they do
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not affect the training process of the machine. In terms of assumptions, an exploratory attack is more
realistic than a causative attack because gaining access to training data is not easy. As a well-known
type of exploratory attack, the adversarial example [2] threatens the security of the neural network.
The first research on adversarial examples was performed by Szegedy et al. [2]. The purpose of the
adversarial example is to cause a misclassification by the DNN; a human, however, will be unable to
tell the difference between the adversarial example and the original sample.

2.1. Neural Networks

A neural network [1] is a combination of synapses that form a network; a neuron changes the
synaptic bond strength through learning.

Such a structure is typically used when estimating and approximating functions obscured by many
input and activation functions, as shown in Figure 1. It is usually represented as an interconnection of
neural systems suitable for calculating values from inputs and performing machine learning such as
for pattern recognition. For example, a neural network for image recognition is defined as having a set
of input neurons that are activated by the pixels of the input image. After the variants and weights
of the function are applied, activation of the neurons is transferred to other neurons. This process is
repeated until the last output neuron is activated. The output is determined when the image is read.

Figure 1. Architecture of a neural network.

2.2. Adversarial Example Generation

To generate an adversarial example, the transformer element needs a target model, an original
sample x, and the original class y. First, the transformer accepts the original sample x and the original
class y as input data. The transformer then generates a transformed example x∗ = x + w by adding a
little noise w to the original sample x. The transformer provides the generated example x∗ to the target
model and receives the class probability results for that as feedback. According to this feedback, the
transformer modifies x∗ = x + w by adjusting w. To optimally minimize distortion distances between
x∗ and x, the transformer repeats the above process while optimally adjusting the minimum noise
value w until the other class probability is higher than the original class probability.

2.3. Categorization by Target Model Information

Adversarial examples fall into one of two categories, white-box [2,9,10] or black-box [2,11,12]
attacks, depending on the amount of information available about the target model. It is considered a
white-box attack when the attacker possesses detailed information about the target model’s parameters,
architecture, and output class probabilities. Therefore, white-box attacks have almost 100% attack
success. Some recent articles [13] have shown that it is very difficult to defend DNNs against white-box
attacks [14,15].
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On the other hand, it is considered a black-box attack when the attacker can only know the
output value of the target model against the input value and does not possess the target model
information. There are two representative types of black-box attack: the transfer attack [2,12] and
the substitute network attack [11]. The first type, the transfer attack [2], is based on the fact that an
adversarial example generated by an arbitrary local model can attack other models as well. A variety
of studies [16,17] have been conducted using the transferability concept. In order to improve the
transferability, researchers [18] have recently proposed an ensemble method that uses several models
to attack other models. The second representative type, the substitute method, repeats the query
process to create a substitute network similar to the target model. Once an alternative network is
created, a white-box attack is possible using this new network.

2.4. Categorization by Recognition Target for Adversarial Example

Adversarial examples fall into two categories, targeted adversarial examples and untargeted
adversarial examples, according to the recognition target for the adversarial example. A targeted
adversarial example is designed to induce the target model to recognize the adversarial image as the
target class chosen by the attacker. The targeted adversarial example is mathematically expressed as
follows: Given original sample x ∈ X, target class y∗, and a target model, we solve the optimization
problem to determine a targeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) such that f (x∗) = y∗ (1)

where L(·) means the distance between transformed example x∗ and original sample x, y∗ is the target
class, argminx F(x) is the x value that minimizes the function F(x), and class results for the input
values is provided by an operation function f (·).

On the other hand, an untargeted adversarial example allows the target model to recognize the
adversarial image as any wrong class, that is, any class other than the original class. The untargeted
adversarial example is mathematically expressed as follows: Given original sample x ∈ X, original
class y, and a target model, we solve the optimization problem to determine an untargeted adversarial
example x∗:

x∗ : argmin
x∗

L(x, x∗) such that f (x∗) 6= y (2)

The targeted adversarial example is a sophisticated attack that allows an attacker to control the
perception of the class to the attacker’s choice. However, the untargeted adversarial example has the
advantage of shorter learning time and less distortion compared to the targeted adversarial example.

2.5. Categorization by Distance Measure

There are three formulas for measuring the distance between the original sample and the
adversarial example [9,13]: L0, L2, and L∞. The first, L0, represents the sum of all changed pixels:

n

∑
i=0
|xi
∗ − xi| (3)

where xi
∗ is the ith pixel of the adversarial example and xi is the ith pixel of the original sample.

The second, L2, is the Euclidean standard, meaning the sum of the square roots of the squared
differences between each pair of corresponding pixels, as follows:

n

∑
i=0

√
(xi
∗ − xi)2 (4)

The third, L∞, means the maximum distance between xi and xi
∗ among all pixels.



Symmetry 2018, 10, 738 5 of 17

Because it depends on the case, it is difficult to make a general statement about which of the three
methods is superior. However, the smaller the values of the three distance measures, the greater the
similarity between the original sample and the adversarial example.

2.6. Methods of Adversarial Example Attack

There are four representative methods of creating adversarial examples: The fast-gradient sign
method (FGSM) [19], iterative FGSM (I-FGSM) [20], the Deepfool method [10], and the Carlini &
Wagner (CW) method [9]. The first, FGSM, uses the L∞ distance measure to generate adversarial
example x∗. This method is simple and effective.

x∗ = x + ε · sign(5lossF,t(x)) (5)

where t is a target class, F is an operation function, and lossF,t(x) is the loss function based on t and F.
The gradient of the loss function must be calculated because the loss function is minimized when the
gradient of the loss function is minimized. At each iteration of the FGSM, the gradient is optimally
minimized by updating ε from the original x, and x∗ is retrieved by optimization.

The second, I-FGSM, is an updated version of FGSM. At every step, the value of ε in FGSM is
further refined, so a smaller amount called α is updated, and this value is eventually clipped by the
same ε.

xi
∗ = xi−1

∗ − clipε(α · sign(5lossF,t(xi−1
∗))) (6)

where clip(·) performs per-pixel clipping of the input; it is a function that subdivides the clipped area
in order to prevent a large change. I-FGSM has improved performance over FGSM.

The third, the Deepfool method, uses the L2 distance measure to generate an untargeted
adversarial example. It generates an adversarial example x∗ by constructing a neural network and
using a linear approximation. This method generates an adversarial example that is as close as possible
to the original image and was created as a way to generate an adversarial example more efficiently
than the FGSM. However, this method requires considerable repetition compared to FGSM in order to
create an adversarial example because the neural network is not completely linear.

The fourth, the CW method, is a state-of-the-art method that provides better performance than
FGSM and I-FGSM. Of note, this method has a 100% success rate against the latest defense method [21].
The idea behind the method is to use a different objective function:

D(x, x∗) + c · f (x∗) (7)

The method searches for the appropriate binary c value by modifying the existing objective
function D(x, x∗) to achieve 100% attack success and minimum distortion. As shown in the following
equation, this method also increases the attack success rate against the latest defense methods, even if
the distortion is increased by adjusting the confidence value:

f (x∗) = max(Z(x∗)t −max {Z(x∗)i : i 6= t} ,−k) (8)

where i indicates the class, k is the confidence value, t is the target class, and Z(·) is the pre-softmax
classification result vector.

The model described in this paper is constructed by applying the CW attack rather than FGSM,
I-FGSM, or Deepfool because CW is the state-of-the-art method. The proposed method uses L2 as the
distance measure.

2.7. Recognition as Different Classes in Multiple Models

Recently, as applications of the adversarial example, two methods for achieving recognition as
different classes in different models using one image modulation have been introduced. The first
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method, designed for use in a military environment where enemy and friendly forces are mixed
together, is a friend-safe adversarial example [22] for protecting friendly models and deceiving enemy
models. This method can generate a friend-safe adversarial example with 100% attack success and
minimal distortion by using feedback from the enemy model and the friendly model. In addition,
this method has applicability as a covert channel by switching the roles of the enemy model and the
friendly model. The second method generates a multi-targeted adversarial example [23] that incorrectly
recognizes different classes for multiple models as an extension of the friend-safe adversarial example.
This method has a high attack success rate because of its use of feedback from multiple models, and at
the same time it minimizes distortion. In this study, the attack success and the distortion according to
the number of models are analyzed.

3. Problem Definition

An untargeted adversarial example will be misclassified as any class other than the original class;
it could be expressed as follows. Given a target model, original sample x ∈ X, and original class y ∈ Y,
the following is an optimization problem for generating an untargeted adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) such that f (x∗) 6= y (9)

where y ∈ Y is the original class. Because the condition is f (x∗) 6= y, an untargeted adversarial example
is quickly generated that satisfies the misclassification as some class other than the original class.

Figure 2 shows the confusion matrix for an untargeted adversarial example for MNIST, the result
of testing 100 untargeted adversarial examples for each original class, which were generated using
the CW method. As seen in the figure, for a given original class, certain classes have higher numbers
than other classes. Therefore, it can be seen that there is a pattern vulnerability. Untargeted adversarial
examples concentrate around certain classes for a given original class because it is easier to satisfy
misclassification to those classes.

Figure 2. Confusion matrix for an untargeted adversarial example in MNIST [3].

Because a defense system might be able to correctly determine the original class used in generating
an untargeted adversarial example by analyzing the pattern’s characteristics, the need may arise
to generate an untargeted adversarial example that can overcome this pattern vulnerability. Thus,
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in this study, we propose the random untargeted adversarial example, which can overcome the
pattern vulnerability.

4. Proposed Scheme

4.1. Assumption

The assumption of the proposed method is that the attacker has white-box access to the target
model. That is, the attacker knows the target model parameters, architecture, and output classification
probabilities. This is a feasible and conservative assumption because a white-box attack can be applied
to the case of a black-box model by the construction of a substitute model [11]. By repeating a
query process, the method in [11] can be used to generate a substitute network that is similar to the
black-box model.

4.2. Proposed Method

Figure 3 shows the proposed architecture for generating a random untargeted adversarial example.
The proposed architecture consists of a transformer and a model D of the classifier. The transformer
accepts the original sample x, original class y, and random class r (not the original class) as input
values. The transformer then generates a transformer example x∗ and provides it to model D. Model D
does not change during the generation process. Model D takes the transformed example x∗ as an input
value and provides the loss function results to the transformer.

Figure 3. Proposed architecture.

The purpose of our architecture is to generate a transformed example x∗ that will be misclassified
as the random class by model D while minimizing the distance between the transformed example
x∗ and the original sample x. In the mathematical expressions, the operation function of model D
is denoted as f (x). Given the pretrained model D, original sample x, original class y, and random
class r (not the original class), we solve the optimization problem to determine a random untargeted
adversarial example x∗:

x∗ : argmin
x∗

L(x, x∗) such that f (x∗) = r (10)

where L(·) is the distance between transformed example x∗ and original sample x. To achieve the
objective that the pretrained model D correctly classify the original sample x as original class y, the
following equation is used:

f (x) = y ∈ Y (11)

The transformer generates a random untargeted adversarial example x∗ by taking the original
sample x, original class y, and random class r as the input values. For our study, the transformer
presented in [9] was modified as follows:

x∗ = x + δ (12)
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where δ is the noise. Model D takes x∗ as the input value and outputs the loss function result to the
transformer. Then, the transformer calculates the total loss lossT and repeats the above procedure
to generate a random untargeted adversarial example x∗ while minimizing lossT. This total loss is
defined as follows:

lossT = lossdistortion + c · lossattack (13)

where lossdistortion is the distortion of the transformed example, lossattack is a classification loss function
of D, and c is the weighting value for lossattack. The initial value of c is set to 1. lossdistortion is the L0

distance between the transformed example x∗ and the original sample x:

lossdistortion = δ (14)

To satisfy f (x∗) 6= y, lossattack must be minimized.

lossattack = g(x∗) (15)

where g(k) = max
{

Z(k)j : j 6= r
}
− Z(k)r. Here, r is the random class other than the original class

y, and Z(·) [9,24] indicates the probabilities of the classes being predicted by model D. By optimally
minimizing lossattack, f (x∗) predicts the probability of the random class to be higher than the probability
of the other classes. The procedure for generating the random untargeted adversarial example is given
in more detail in Algorithm 1.

Algorithm 1 Random untargeted adversarial example

Input:
original sample x, original class y, random class (other than original class) r, number of iterations l

Random untargeted adversarial example generation:
δ← 0
t← r (not y)
x∗ ← x
for l step do

g(x∗)← max {Z(x∗)i : i 6= t} − Z(x∗)t

loss← w + c · g(x∗)
Update δ by optimally minimizing the gradient of loss
x∗ ← x + δ

end for
return x∗

5. Experiments and Evaluations

Through experiments, we show that the proposed method can generate a random untargeted
adversarial example that will be misclassified as a random class other than the original class by model
D while minimizing the distortion distance from the original sample. As the machine learning library,
we used TensorFlow [25], and we implemented the method on a Xeon E5-2609 1.7-GHz server.

5.1. Datasets

As datasets in the experiment, MNIST [3] and CIFAR10 [6] were used. MNIST contains
handwritten digit images (0∼9) and is a standard dataset. It has the advantages of fast processing
time and ease of use in experiments. CIFAR10 contains color images in ten classes: Airplane, car, bird,
etc. The MNIST dataset has 60,000 training data and 10,000 test data, and the CIFAR10 dataset has
50,000 training data and 10,000 test data.
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5.2. Pretraining of Target Models

The target models pretrained on MNIST and CIFAR10 were common convolutional neural
networks (CNNs) [26] and a VGG19 network [27], respectively. Their model architectures and model
parameters are shown in Tables A1–A3 in the Appendix A. For MNIST, 60,000 training data were used
to train the target model. In the MNIST test, the pretrained target model [26] correctly recognized the
original samples with 99.25% accuracy. In the case of CIFAR10, 50,000 training data were used to train
the target model. In the CIFAR10 test, the pretrained target model [27] correctly recognized the original
samples with 91.24% accuracy.

5.3. Generation of Test Adversarial Examples

To evaluate the performance of the untargeted adversarial examples, the proposed scheme
was used to generate 1000 random untargeted adversarial examples from 1000 random test data.
The proposed method is a box constraint method. After narrowing the image range to 0∼1 for
each element, the method finds a point causing misclassification through several iterations. In the
proposed method, Adam was used as an optimizer of the parameters of the transformer that generates
adversarial examples. For MNIST, the learning rate was 0.1, the initial value was 0.001, and the number
of iterations was 500. For CIFAR10, the learning rate was 0.01, the initial value was 0.001, and the
number of iterations was 6000.

5.4. Experimental Results

Figures 4 and 5 show the confusion matrix for a random untargeted adversarial example that is
classified as a wrong class by the target model D in MNIST and CIFAR10, respectively. In these figures,
it is seen that the wrong classes are evenly distributed for each original class. From these results, it can
be seen that the proposed scheme eliminates the pattern vulnerability.

Figure 4. Confusion matrix of a target model for a random untargeted class in MNIST.
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Figure 5. Confusion matrix of a target model for a random untargeted class in CIFAR10: “0-airplanes,”
“1-cars,” “2-birds,” “3-cats,” “4-deer,” “5-dogs,” “6-frogs,” “7-horses,” “8-ships,” and “9-trucks.”

Table 1 shows the number of iterations required and the distortion for MNIST and CIFAR10
when the attack success rate of the proposed scheme is 100%. The distortion is defined as the sum of
the square root of each pixel’s difference squared (the L2 distance measure). In this table, it is seen
that CIFAR10 has more distortion and requires more iterations than MNIST to generate a random
untargeted adversarial example. Table 2 shows a sampling of random untargeted adversarial examples
that are misclassified by model D when the attack success rate is 100%. To human perception, the
random untargeted adversarial examples are similar to their original samples, as shown in Table 2.
In addition, Table 3 shows a sampling of random untargeted adversarial examples that are misclassified
by model D as each wrong class for original class 1 in MNIST and CIFAR10. In this table, we can see
that to the human eye, each adversarial example is similar to the original class 1, although the degree
of distortion is different for each image.

Thus, it has been demonstrated that the proposed method can generate a random untargeted
adversarial example without pattern vulnerability while maintaining an attack success rate of 100%
and human imperception of the change.

Table 1. Comparison of MNIST and CIFAR10 with 100% attack success. SD is standard deviation.

Characteristic MNIST CIFAR10

Number of iterations 500 6000
Maximum distortion 5.494 177.4
Minimum distortion 0.025 0.004

SD of distortion 0.713 24.580
Mean distortion 1.99 42.324
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Table 2. Sampling of random untargeted adversarial examples. CIFAR10 has “0-airplanes,” “1-cars,”
“2-birds,” “3-cats,” “4-deer,” “5-dogs,” “6-frogs,” “7-horses,” “8-ships,” and “9-trucks.”

Wrong Class 0 1 2 3 4 5 6 7 8 9

MNIST

CIFAR10

Table 3. Sampling of random untargeted adversarial examples in class 1. CIFAR10 has “0-airplanes,”
“1-cars,” “2-birds,” “3-cats,” “4-deer,” “5-dogs,” “6-frogs,” “7-horses,” “8-ships,” and “9-trucks.”

Wrong Class 0 2 3 4 5 6 7 8 9

MNIST

CIFAR10

5.5. Comparison with the State-of-the-Art Methods

The performance of the proposed method is compared with the state-of-the-art method, CW.
Because the CW method is the latest method to improve performance over the known FGSM, I-FGSM,
and Deepfool method, this method has 100% attack success and minimal distortion. The CW method
can take three forms according to the distortion function used: CW-L0, CW-L2, and CW-L∞. “L0,” “L2,”
and “L∞” refer to the measures of distance between the adversarial example and the original sample,
described in Section 2.5.

Table 4 shows untargeted adversarial examples generated on MNIST by the proposed method,
the CW-L0 method, the CW-L2 method, and the CW-L∞ method. As seen in the table, because the
method of applying distortion differs for each method, the image distortion with each method is
slightly different. However, with all four methods, the adversarial examples generated are similar to
the original sample in terms of human perception. Table 5 shows untargeted adversarial examples
generated on CIFAR10 by the proposed method, the CW-L0 method, the CW-L2 method, and the
CW-L∞ method. In the table, as with Table 4, although distortion is produced differently by each
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method, it can be seen that it is difficult to detect with the human eye. Unlike MNIST, with CIFAR10 it
is difficult to distinguish noise in the color images. Therefore, CIFAR10 is better than MNIST in terms
of human perception. The results displayed in Tables 4 and 5 show that the proposed method has
performance similar to that of CW in terms of similarity with the original image for the MNIST and
CIFAR10 datasets.

Table 4. A sampling of the untargeted adversarial examples generated on MNIST by the proposed
method, the CW-L0 method, the CW-L2 method, and the CW-L∞ method.

Original

Proposed

CW-L0

CW-L2

CW-L∞

Table 5. A sampling of the untargeted adversarial examples generated on CIFAR10 by the proposed
method, the CW-L0 method, the CW-L2 method, and the CW-L∞ method.

Original

Proposed

CW-L0

CW-L2

CW-L∞

Table 6 shows the average distortion, attack success rate, and presence of pattern vulnerability for
the proposed method and the CW-L0, CW-L2, and CW-L∞ methods. As seen in the table, in terms of
average distortion, the proposed scheme produces greater distortion than the CW-L2 method but less
distortion than the other two methods, CW-L0 and CW-L∞. However, as seen in Figures 2, 4, and 5,
the proposed method has the advantage that it does not have a specific pattern vulnerability, unlike
the other three methods.
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Table 6. Comparison of the proposed scheme, CW-L0 method, CW-L2 method, and CW-L∞ method.

Characteristic
MNIST CIFAR10

Proposed CW-L0 CW-L2 CW-L∞ Proposed CW-L0 CW-L2 CW-L∞

Average distortion 1.99 2.51 1.40 2.16 42.32 49.92 27.41 47.21
Attack success rate 100% 100% 100% 100% 100% 100% 100% 100%

Pattern vulnerability? No Yes Yes Yes No Yes Yes Yes

6. Steganography

The proposed adversarial example can be applied to steganography, as shown in Figure 6.
Steganography is a data hiding method by which hidden information is inserted into files, messages,
images, and video. Typically, conventional steganography methods insert hidden information using
unused bits, frequency transforms, and spatial transforms. Adversarial examples can also be applied
to steganography, even though they differ from the conventional steganography methods. By adding
small amounts of noise that are not detected by humans, adversarial examples can add hidden
information that can only be recognized by the machine. In particular, as the proposed method
generates an adversarial example from which a specific pattern is removed, its use in steganography is
an improvement over that generated by the use of a conventional untargeted adversarial example.

Figure 6. Steganography scheme using the proposed adversarial example.

In order to evaluate the performance of the steganography, we randomly generated 100 adversarial
examples using the proposed method with the MNIST and CIFAR10 datasets to test the images on
30 people. Thirty students and researchers from Korea Military Academy and Kongju National
University were tested to ascertain the human recognition and detection rates. Figure 7a shows the
rates of recognition of 100 original samples and 100 proposed adversarial examples by 30 people.
The recognition rate is the proportion of matches between the class identified by human recognition
and the original class. The figure shows that the rate of recognition of the proposed adversarial example
is similar to the rate of recognition of the original sample. In the case of MNIST, the rate of recognition
of the proposed adversarial example is only 2.2% less than the rate of recognition of the original sample.
In the case of CIFAR10, the rate of recognition of the proposed adversarial example is almost the same
as that of the original sample. For CIFAR10, the rate of recognition of the original sample is about
85% because there is sometimes confusion between a cat and a dog, a deer and a horse, or a car and a
truck. Figure 7b shows the rates of detection of 100 original samples and 100 proposed adversarial
examples by 30 people. The detection rate is the proportion of matches between the class identified
by human detection and the actual class hidden within the image. The detection rate experiment was
to ascertain how well a person could detect a hidden image if the proposed adversarial example had
a hidden image. As seen in this figure, the detection rate for the proposed adversarial example was
similar to random selection (about an 11.1% probability of choosing one of nine classes), because of the
low level of distortion from the original sample. In the case of MNIST, as the image is black and white,
the distortion is slightly visible to the human eye, and the detection rate is slightly higher than random,
by about 3 percentage points. In case of CIFAR10, on the other hand, as the image is three-dimensional,
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the hidden information is undetected by humans. The above results show that it is possible to apply
the proposed method to steganography.

(a) Recognition (b) Detection

Figure 7. Average recognition and detection rates for the random untargeted adversarial example in
human testing.

7. Discussion

Attack considerations. The proposed method is useful when an attacker wants to remove
pattern vulnerabilities from untargeted adversarial examples. If there is no need to eliminate
the pattern vulnerability, a conventional untargeted adversarial example can be used. In military
scenarios, however, security issues are more important than system performance because an enemy
is being confronted. For this reason, the proposed scheme of generating a random untargeted
adversarial example could be used to effectively attack enemy DNNs because it overcomes the
pattern vulnerability.

Datasets. We used MNIST and CIFAR10 datasets for our experiments. The MNIST dataset
produces less distortion and requires fewer iterations than CIFAR10 because MNIST samples are
one-dimensional monochromatic images, and therefore the transformers need fewer generation
processes to produce an adversarial example. We have shown that both datasets can be used to
generate random untargeted adversarial examples.

The rate of human recognition depends on the characteristics of the dataset. In the case of MNIST,
as this dataset consists of numerical images, the recognition rate for the proposed adversarial example
is almost 100%. With CIFAR10, however, there can be confusion between a cat and a dog, a deer
and a horse, or a car and a truck, so the recognition rates for the proposed adversarial example and
the original sample are reduced to 85%. Considering that the CIFAR10 model D accuracy is 91% on
CIFAR10, the rate of recognition by the CIFAR10 model D is higher than that by humans.

Distortion. As the distortion rate is the sum of the square roots of each pixel of difference
between the adversarial example and the original sample, it is very likely that the distortion will
depend on the number of pixels or the dimensionality. For example, each CIFAR10 sample consists of
3072 pixels (32, 32, 3) as a 3D image, and each MNIST sample consists of 784 pixels (28, 28, 1) as a 1D
image. Therefore, a CIFAR10 image is more distorted than an MNIST image. However, in the case of
CIFAR10, the human eye cannot detect the noise because it is a three-dimensional image. Therefore,
the distortion is related to the characteristics of the dataset and is not absolutely proportional to the
human recognition rate.

Applications. The proposed method can be applied to road signs. For example, with the use
of a random untargeted adversarial example, an enemy vehicle can be caused to misclassify an
altered U-turn sign as a random sign that is not a U-turn sign. The proposed scheme can also be
applied to steganography. Steganography using the proposed method has the advantage that arbitrary
information can be inserted without the weakness of the pattern vulnerability. However, to include
information about a particular class, it may be necessary to create a targeted adversarial example to
provide information about a particular class.
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8. Conclusions

In this study, we proposed the random untargeted adversarial example in order to overcome the
pattern vulnerability problem. The proposed method uses an arbitrary class rather than concentrating
around specific classes for a given original class when generating an adversarial example. We also
presented a steganography application of the proposed scheme. Experimental results show that the
proposed method can generate a random untargeted adversarial example without pattern vulnerability
while keeping distortion to a minimum (1.99 and 42.32 with MNIST and CIFAR10, respectively) and
maintaining a 100% attack success rate. For steganography, the proposed scheme can fool humans,
as demonstrated by the probability of their detecting hidden classes being equal to that of random
selection. To human perception, the proposed adversarial example is also similar to the original sample.
In future research, our experiments will be extended to audio [28] and video domains. A future study
will be devoted to developing a defense system for the proposed method.
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Appendix A

Table A1. Target model architecture for MNIST; “Conv.” is a convolution.

Type of Layer Shape

Conv. + ReLU [3, 3, 32]
Conv. + ReLU [3, 3, 32]
Max pooling [2, 2]
Conv. + ReLU [3, 3, 64]
Conv. + ReLU [3, 3, 64]
Max pooling [2, 2]
Fully connected + ReLU [200]
Fully connected + ReLU [200]
Softmax [10]

Table A2. Target model specifications.

Item MNIST CIFAR10

Learning rate 0.1 0.1
Momentum 0.9 0.9
Delay rate - 10 (decay 0.0001)
Dropout 0.5 0.5
Batch size 128 128
Epochs 50 200
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Table A3. Target model architecture [27] for CIFAR10; “Conv.” is a convolution.

Type of Layer Shape

Conv. + ReLU [3, 3, 64]
Conv. + ReLU [3, 3, 64]
Max pooling [2, 2]
Conv. + ReLU [3, 3, 128]
Conv. + ReLU [3, 3, 128]
Max pooling [2, 2]
Conv. + ReLU [3, 3, 256]
Conv. + ReLU [3, 3, 256]
Conv. + ReLU [3, 3, 256]
Conv. + ReLU [3, 3, 256]
Max pooling [2, 2]
Conv. + ReLU [3, 3, 512]
Conv. + ReLU [3, 3, 512]
Conv. + ReLU [3, 3, 512]
Conv. + ReLU [3, 3, 512]
Max pooling [2, 2]
Conv. + ReLU [3, 3, 512]
Conv. + ReLU [3, 3, 512]
Conv. + ReLU [3, 3, 512]
Conv. + ReLU [3, 3, 512]
Max pooling [2, 2]
Fully connected + ReLU [4096]
Fully connected + ReLU [4096]
Softmax [10]
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