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Abstract: Because of the cyclic symmetric structure of rolling bearings, its vibration signals are regular
when the rolling bearing is working in a normal state. But when the rolling bearing fails, whether
the outer race fault or the inner race fault, the symmetry of the rolling bearing is broken and the
fault destroys the rolling bearing’s stable working state. Whenever the bearing passes through the
fault point, it will send out vibration signals representing the fault characteristics. These signals are
often non-linear, non-stationary, and full of Gaussian noise which are quite different from normal
signals. According to this, the sub-modal obtained by empirical wavelet transform (EWT), secondary
decomposition is tested by the Gaussian distribution hypothesis test. It is regarded that sub-modal
following Gaussian distribution is Gaussian noise which is filtered during signal reconstruction.
Then by taking advantage of the ambiguity function superiority in non-stationary signal processing
and combining correlation coefficient, an ambiguity correlation classifier is constructed. After training,
the classifier can recognize vibration signals of rolling bearings under different working conditions,
so that the purpose of identifying rolling bearing faults can be achieved. Finally, the method effect
was verified by experiments.

Keywords: rolling bearings; fault diagnosis; empirical wavelet transform; Gaussian noise;
ambiguity function

1. Introduction

Rolling bearings are widely applied in rotating parts of various mechanical equipment, often as
core components. Its fault will cause very serious consequences in the entire system. It is very difficult
and inefficient to identify faults via disassembling inspection in the event of a fault. The vibration
signal of rolling bearing contains a wealth of dynamics characteristics. In particular, corresponding
impact signal will show in case of rolling bearing fault [1–3]. Therefore, a research hot spot is to identify
the working condition of the rolling bearing by analyzing vibrational signal of the rolling bearing, and
then identify the fault [4–6].

Vibration signals of rolling bearings are generally non-stationary, nonlinear [7–9], often in
non-Gaussian distribution [10,11]. Meanwhile, there are a large number of noise signals owing
to the complex working environment, and these noises are mainly Gaussian noise [12,13]. In view of
such characteristics, we need to find an analysis method that can effectively analyze non-stationary
nonlinear signals and also overcome Gaussian noise interference. Wavelet transform is a good tool for
processing non-stationary signals, and many scholars have studied the failure of rolling bearings by
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using wavelet transform. Reference [14] mainly studies the fault diagnosis of local defects of rolling
bearings based on wavelet feature extraction. In Reference [15], the feature of rolling bearing signals is
extracted by using the time bound integral of continuous wavelet transform coefficient. But wavelet
decomposition is constrained by wavelet basis functions [14–16], and the number of decomposition
layers and thresholds of wavelets will affect the noise filtering effect during noise filtering [13,16].
Empirical mode decomposition (EMD) is a very good method for analyzing non-stationary signals,
which enjoys many applications in fault diagnosis of rolling bearings [17,18]. However, EMD has
problems such as modal mixture and endpoint effects [19,20]. Combining EMD’s adaptability and
theoretical framework of wavelet analysis, Gilles proposed a new signal processing method, namely
empirical wavelet transform (EMT) [21]. The method adaptively divides the signal frequency spectrum
into several frequency bands by extracting maximum value point of the frequency domain, and
constructs a suitable orthogonal wavelet filter bank to separate each frequency band. Each separated
frequency band corresponds to a signal in the time domain. This signal is referred to as a modal of
the original signal. This method avoids the problems of EMD modal in aliasing and endpoint effects,
while inheriting the strength of EMD and wavelet analysis methods, thus it is a very good method for
processing non-stationary signals.

According to the above analysis, we propose a novel rolling bearing fault diagnosis method
based on an empirical wavelet transform (EWT) sub-modal hypothesis test and ambiguity correlation
classification. First, rolling bearing vibration signals are subjected to EWT decomposition to obtain
each modal. Each modal often still contains very complicated information. To obtain more detailed
information, each modal is subjected to secondary EWT decomposition to obtain a sub-modal of each
modal. Hypothesis test of Gaussian distribution is performed for all sub-modals one by one, and a
sub-modal identified as following Gaussian distribution is regarded as Gaussian noise. All sub-modals
following Gaussian distribution, i.e., noise, are deleted to reconstruct the signal. Ambiguity function
has the characteristics of high resolution and strong clutter suppression ability, and can deal with
non-stationary signals very well. [22] Then, an ambiguity correlation classifier is constructed by taking
advantage of ambiguity function and combining correlation coefficients. The ambiguity correlation
coefficients of the signals to be identified and three types of known sorting signals (normal signal, outer
ring fault signal, inner ring fault signal) are separately calculated. Then, classification of the signals to
be identified is provided to achieve the purpose of identifying the working state of the rolling bearing.

Next, we will introduce the implementation process of this method in detail: in Section 2, the
basic principles of EWT will be introduced, noise will be filtered, and signals will be reconstructed
via the hypothesis test. In Section 3, the basic principles of ambiguity correlation classifier will be
introduced. In Section 4, the effectiveness of the method in rolling bearing fault diagnosis will be
verified by experiments. Finally, conclusions will be drawn in Section 5.

2. Denoising Method Based on EWT and Hypothesis Test

2.1. Basic Principles of EWT

Gilles. J et al. [23] put forward the EWT method in 2013. The method first assumes that frequency
spectrum of the signal f (t) is compactly supported into N continuous parts ∆n = [ωn−1, ωn], (ω0 = 0,
ωn = π). Where, ωn indicates boundary between different parts, ∪N

n=1∆n = [0, π]. The partition graph
is a transition section with ωn as the center and 2τn as the thickness. After determining the segmentation
interval, the method defines band-pass filter on each segmentation interval ∆n. According to this
concept, Gilles reconstructs the empirical wavelet using the Meyer wavelet reconstruction method.
When any n is greater than 0, empirical scale function φ̂n(ω) and empirical wavelet function ψ̂n(ω)

can be denoted in formulas as follows:

φ̂n(ω)


1, |ω| ≤ (1− γ)ωn

cos[π
2 β( 1

2γωn
(|ω|))], (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise
(1)
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ψ̂n(ω)


1, (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos[π
2 β( 1

2γωn
(|ω|))], (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

sin[π
2 β( 1

2γωn
(|ω| − (1− γ)ωn))], (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise

(2)

In the formula:
τn = γωn (3)

β(x) = x4(35− 84x + 70x2 − 20x3) (4)

γ < min(
ωn+1 −ωn

ωn+1 + ωn
) (5)

where τn is width, β(x) is related function, γ is a parameter.
Traditional wavelet transform is adopted to construct EWT by assuming F[.] and F−1[.]

respectively as Fourier transform and its inverse transform. The high frequency component of empirical
wavelet is obtained via inner product of signal and empirical wavelet function, with its mathematical
expression shown as follows:

We
f (n, t) =< f (t), ψn(t) >=

∫
f (τ)ψn(τ − t)dτ

= F−1[ f (ω)ψ̂(ω)
] (6)

The low-frequency component can be obtained by calculating the inner product of the signal and
empirical scale function, with its mathematical expression shown as follows:

We
f (0, t) =< f (t), φ1(t) >=

∫
f (τ)φ1(τ − t)dτ

= F−1[ f (ω)φ̂1(ω)
] (7)

The reconstructed original signal is obtained via high-frequency component and low-frequency
component, with its mathematical expression shown as follows:

f (t) = We
f (0, t)× φ1(t) +

N
∑

n=1
We

f (n, t)× ψn(t)

= F−1[Ŵe
f (0, ω)φ̂1(t) +

N
∑

n=1
Ŵe

f (n, ω)× ψ̂n(ω)]
(8)

The Fourier transform of We
f (0, t) and We

f (n, t) in Equation (8) is Ŵe
f (0, ω) and Ŵe

f (n, ω), and then
mathematical expression of frequency-amplitude modulation signal fk(t) is obtained:

f0(t) = We
f (0, t)× φ1(t) (9)

fk(t) = We
f (k, t)× ψk(t) (10)

The final original signal can be represented by its various modes:

f (t) =
N

∑
k=0

fk(t) (11)

There is a signal f(t) expression as follows:
f1(t) = (1 + 0.3 cos(10πt)) sin(20πt + sin(15πt))
f2(t) = cos(60πt + sin(15πt))
f3(t) = cos(460πt + sin(70πt))
f(t) = f1(t) + f2(t) + f3(t)

(12)
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Its waveform is shown in Figure 1.

Symmetry 2018, 10, 730 4 of 15 

 

0 1( ) (0, ) ( )e
ff t W t t   (9) 

( ) ( , ) ( )e
k f kf t W k t t   (10) 

The final original signal can be represented by its various modes: 

0

( ) ( )
N

k
k

f t f t


   (11) 

There is a signal ( )f t  expression as follows: 

1

2

3

1 2 3

( ) (1 0.3cos(10 )) sin(20 sin(15 ))
( ) cos(60 sin(15 ))
( ) cos(460 sin(70 ))
( ) ( ) ( ) ( )

f t t t t
f t t t
f t t t
f t f t f t f t

  
 
 

  
  
  


    

(12) 

Its waveform is shown in Figure 1. 

 

Figure 1. Signal time domain simulation. 

The spectrum of signals is reached by Fourier transform. Then, according to EWT theory, its 

spectrum is divided, and eight bands are obtained. As shown in Figure 2. 

 

Figure 2. The spectrum divided by empirical wavelet transform (EWT). 

Figure 1. Signal time domain simulation.

The spectrum of signals is reached by Fourier transform. Then, according to EWT theory, its
spectrum is divided, and eight bands are obtained. As shown in Figure 2.
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The time domain signal corresponding to each frequency band is a modal of the original signal,
that is, the signal f(t) has eight modals, f1(t), f2(t), . . . f8(t). As shown in Figure 3.
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2.2. Filtering Method Based on EWT Sub-Modal Hypothesis Test

In the frequency spectrum of signal, characteristic of some frequency bands is mainly provided
by useful signals, but that of some frequency bands is mainly provided by noise. Empirical wavelet
transform divides the frequency spectrum into frequency bands according to the frequency spectrum
characteristics of signals. The time domain signal corresponding to each frequency band is a modal
of the original signal. Whether a modal follows Gaussian distribution is judged from hypothesis
test of Gaussian distribution of each modal. If yes, the modal is considered as Gaussian noise.
Useful signal components in rolling bearing vibration signal do not follow Gaussian distribution,
while noise follows Gaussian distribution. This method is proposed exactly based on this feature.
Under normal circumstances, the modals obtained from EWT decomposition of signals still contain
abundant information. To obtain more detailed information, each mode is separately subjected to
secondary EWT decomposition to obtain a sub-modal of the modal. The sub-modal is a component with
detailed signal. In the hypothesis test of Gaussian distribution of the sub-modal, if it is determined
as Gaussian distribution, it can then be determined as Gaussian noise which should be deleted.
Afterwards, the signal is reconstructed to obtain a filtered signal. The basic process is shown in
Figure 4.
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2.3. Simulation Experiment

Effectiveness of the method in Gaussian noise filtering is verified by simulation signals. Simulation
signal is set as y(t) = f(t) + αn(t). Where, f(t), as shown in Formula (12), is a pollution-free signal.
To avoid generality loss, n(t) is assumed as mixed Gaussian noise, which is a mixture of Gaussian
signals with mean and variance of (0, 1), (2, 5), (4, 10). α is noise weight. When α are respectively [0.01,
0.05, 0.09, 0.18, 0.48], the corresponding signal-to-noise ratios (SNRs) are respectively [13.5392, 5.5804,
0.4700, −5.5456, −14.065].

Let us take α= 0.01, signal-to-noise ratio SNR1 = 13.5392 as an example. The time domain
waveforms of the three signals f(t), αn(t), y(t) are shown in Figure 5, and the frequency spectrum, i.e.,
frequency domain waveform, is shown in Figure 6.
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Figure 6. Frequency of the signals: (a) original signal; (b) noise; (c) contaminated signal.

Signal y(t) is subjected to EWT decomposition, with its frequency spectrum divided into 12
continuous frequency bands ∆1, ∆2, . . . ∆12. As shown in Figure 7 each segment of frequency spectrum
corresponds to a modal of the time domain. That is, y(t) consists of 12 modals represented as
F1, F2, . . . F12.
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For each modal of y(t), secondary EWT decomposition is performed to obtain sub-modal of
each modal. Gaussian distribution hypothesis test with a 95% confidence level is performed for each
sub-modal. The test results are shown in Table 1. Where, “1” indicates that the sub-modal satisfies the
hypothesis of “not following Gaussian distribution” and needs to be retained; while “0” represents an
opposite result, with it identified as noise that needs to be filtered.

Table 1. Hypothesis test results of sub-modals.

Modal
Sub-Modal

1 2 3 4 5 6 7 8

F1 1 1 1 0
F2 0 1 1 1 1 0 1
F3 0 0 1 0
F4 1 0 0 1 0 1
F5 0 1 1 0 0 0 0
F6 1 1 1 1 0 1 1 0
F7 0 0 1 0
F8 1 0 1 0 1
F9 0 1 0 0

F10 0 0 0 1 0
F11 0 0 0 0
F12 0 1 0 0 1 0

For example, among the four sub-modals of modal F1, the 4th one is judged as satisfying Gaussian
distribution and identified as Gaussian noise. Therefore, only the first three modals are summed in F1
reconstruction, and the 4th sub-modal is filtered. Signal can be reconstructed after filtering sub-modal
identified as noise. Most of the traditional filtering methods have problems in parameter selection.
For example, median filtering needs order setting, moving average filtering needs the setting of the
number of moving points, and wavelet filtering needs threshold setting. However, there is no problem
of parameter selection in the noise filtering method, and good self-adaptability is demonstrated.
The filtering effects obtained by comparing various methods under different signal-to-noise ratios are
shown in Table 2.

Table 2. The filtering results with different signal-to-noise ratios (SNRS).

Original
SNR

SNR after Filtering

Median
Filter 6
Order

Median
Filter 3
Order

Moving
Average Filter

5 Point

Moving
Average Filter

2 Point

Wavelet
Filter Soft
Threshold

Wavelet Filter
Hard

Threshold

EWT
Sub-Modal

Hypothesis Test

13.5392 3.3115 9.3115 3.3679 13.5392 5.9103 14.713 14.0713
5.5804 1.8441 5.6641 2.5437 5.5804 0.3794 5.5804 7.9106
0.4700 0.4619 1.8384 1.0831 0.4750 −0.3066 0.4750 6.1843
−5.5456 −2.7814 −3.4708 −2.4105 −5.5456 −2.4269 −5.5456 −2.2995
−14.065 −9.9563 −11.6723 −3.2688 −14.0650 −8.5990 −14.0650 −8.2256

Table 2 shows that the selection of parameters in different SNRs of the common filtering methods,
such as median filter, moving average filter, and wavelet filter, greatly affects the filtering effect.
Meanwhile, this scheme based on the EWT sub-modal hypothesis test does not require parameter
adjustment, and the filtering effect is obvious in different SNRs.

3. Ambiguity Correlation Classifier

3.1. Ambiguity Correlation Theory

Ambiguity function has the characteristics of high resolution and strong clutter suppression
ability, and can deal with non-stationary signals very well. Many scholars have used it to study radar
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signals [24–26]. Correlation coefficient is a good way to measure the similarity of two signals, and it is
simple in computation. The combination of these two methods not only reduces calculation amount,
but also avoids the interference from cross terms of ambiguity function. With two signals x(t) and y(t),
the steps of calculating the ambiguity correlation coefficients between them by using the ambiguity
correlation classifier are as follows:

(1) Calculate correlation function of the ambiguity function of the two signals x(t) and y(t)

ρxy(τ, θ) = max
τ0,θ0

∣∣∣∣∫ +∞

−∞

∫ +∞

−∞
Ax(τ, θ)Ay(τ − τ0, θ − θ0)dτdθ

∣∣∣∣ (13)

(2) Calculate the normalized correlation coefficient using correlation function, with mathematical
expression shown as follows:

ρxy(τ, θ) =

max
τ0,θ0

∣∣∣∫ +∞
−∞

∫ +∞
−∞ Ax(τ, θ)Ay(τ − τ0, θ − θ0)dτdθ

∣∣∣
[
∫ +∞
−∞

∫ +
−∞ A2

x(τ, θ)dτdθ

∫ +∞
−∞

∫ +
−∞ A2

y(τ, θ)dτdθ ]
1
2

(14)

(3) Take the correlation coefficient when τ = 0 or θ = 0

ρxy(0, θ) =

max
τ0,θ0

∣∣∣∫ +∞
−∞

∫ +∞
−∞ Ax(0, θ)Ay(0− τ0, θ − θ0)dτdθ

∣∣∣
[
∫ +∞
−∞

∫ +
−∞ A2

x(0, θ)dτdθ

∫ +∞
−∞

∫ +
−∞ A2

y(0, θ)dτdθ ]
1
2

(15)

ρxy(τ, 0) =
max
τ0,θ0

∣∣∣∫ +∞
−∞

∫ +∞
−∞ Ax(τ, 0)Ay(τ − τ0, 0− θ0)dτdθ

∣∣∣
[
∫ +∞
−∞

∫ +
−∞ A2

x(τ, 0)dτdθ

∫ +∞
−∞

∫ +
−∞ A2

y(τ, 0)dτdθ ]
1
2

(16)

(4) Calculate the ambiguity correlation coefficient

ρ =

√
ρ2

xy(0, θ) + ρ2
xy(τ, 0)

2
(17)

3.2. Basic Principles of Classifiers

Ambiguity correlation classifier belongs to one-to-one classifier.
Firstly, EWT is used to decompose the signal into sub-modes, and the Gaussian distribution

hypothesis test was carried out one-by-one for all sub-modals. The sub-modals which are judged
to obey Gaussian distribution, namely Gaussian noise, are removed to reconstruct the signal.
Then suppose class A signal and class B signal are classified and calculate the ambiguity correlation
coefficients of test signal C and class A and class B, respectively. For which ever correlation coefficient
is higher, the signal C belongs to that type. The basic process can be represented in Figure 8.
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4. Experimental Research

Experimental Data Collection

In this paper, the data of Case Western Reserve University was adopted for analysis and collected
vibration signals were applied for detection. The test bearing was the drive end bearing of a deep
groove ball bearing, model SKF6205. Inner and outer rings of the bearing were locally damaged
manually using an electric discharge machine, and piezoelectricity plus a sensor mounted on the
upper end of motor output support bearing was used to collect the data. The field acquisition device is
shown in Figure 9.
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Bearing speed was 1797 r/min. At 12 kHz sampling frequency, the collected data length N was
3500 points. They were normal signals, outer ring fault signal and inner ring fault signal. Respectively,
as shown in Figure 10.
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Figure 10. The collected vibration signals: (a) normal signal; (b) outer race fault signal; and (c) inner
race fault signal.

In order to illustrate the effect of this scheme on noise processing, the mean and standard deviation
of ambiguity correlation coefficients based on EWT and EMD are calculated respectively. The results
are shown in Tables 3 and 4.
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Table 3. The mean and standard deviation based on EMD.

Different Groups 1# 2# 3#

Different Working Conditions Normal State Outer Race Fault Inner Race Fault

Normal state mean value
standard deviation

0.5074
0.0630

0.4664
0.0719

0.4042
0.0853

Outer race fault mean value
standard deviation

0.4664
0.0719

0.2415
0.0540

0.3650
0.0710

Inner race fault mean value
standard deviation

0.4042
0.0853

0.3650
0.0710

0.2789
0.0552

Table 4. The mean and standard deviation based on EWT.

Different Groups 1# 2# 3#

Different Working Conditions Normal State Outer Race Fault Inner Race Fault

Normal state
mean value 0.7563 0.2934 0.0925

standard deviation 0.0235 0.1064 0.0909

Outer race fault
mean value 0.2934 0.6407 0.0585

standard deviation 0.1064 0.0205 0.0493

Inner race fault
mean value 0.1025 0.0685 0.4353

standard deviation 0.0869 0.0494 0.0372

There were three sets of data 1#, 2#, and 3#, whose types were known as normal state signal,
outer race fault signal, and inner race fault signal, respectively. The ambiguity correlation coefficients
between normal working state signal and three known types of signals were calculated, and the
mean and variance of the correlation coefficients were counted. Similarly, the ambiguity correlation
coefficients between the outer race fault signal, the inner race fault signal, and the three known types
of signals were calculated, respectively, and the mean and variance of the correlation coefficients were
counted. The mean and standard deviation based on EMD are shown in Table 3, and the mean and
standard deviation based on EWT are shown in Table 4. Comparing the data in Tables 3 and 4, we
find that in Table 4, the correlation coefficient between the rolling bearing signal and the same type of
data set is always the largest, regardless of the working conditions of the rolling bearing. On the other
hand, in Table 3, the identification of the bearing’s working condition is not obvious. Even when the
rolling bearing is in the outer race fault state, the correlation coefficient between the rolling bearing
signal and the 1# data set (the normal signal data set) is greater than that between the rolling bearing
signal and the 2# data set (outer race fault data set). That is to say, the probability of identifying errors
is very large at this time. The modal aliasing phenomenon exists in the decomposed signals by EMD,
so the ambiguity correlation coefficients of the three decomposed signals are not distinguished clearly,
and even produce errors. The information obtained by EWT decomposition is more effective, and
the classification of signals can be clearly separated by ambiguity correlation coefficient. The normal
distribution curves of the above results are shown in Figures 11 and 12.
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Figures 11 and 12 show more clearly the two methods for the identification of the three working
conditions of the rolling bearing: the center of normal distribution of correlation coefficient based on
EWT can well identify the signals produced by rolling bearings in different working conditions, while
the normal distribution curve discrimination based on EMD correlation coefficient is not obvious or
even wrong in signal recognition.

Both back propagation (BP) neural network and support vector machine (SVM) are commonly
used classifiers. We compared the proposed scheme with the two, taking 20 sets of data for training
and testing, 15 of which were trained and five of which were used as test data. The test results are
shown in Table 5.

Table 5. The classification accuracy of three classifiers.

Different Working
Conditions Different Methods

Different Groups

1# 2# 3# 4# 5#

Normal state
The proposed method 91.5% 93.6% 100% 98.3% 100%

BP 88.1% 82.8% 89.5% 80.0% 80.0%
SVM 87.2% 83.2% 88.5% 80% 77.8%

Outer race fault
The proposed method 96.2% 96.2% 100% 98.1% 100%

BP 88.9% 82.9% 82.0% 84.6% 80.0%
SVM 84.5% 76.0% 86.1% 84.6% 78.2%

Inner race fault
The proposed method 91.5% 95.5% 100% 98.0% 100%

BP 77.5% 82.5% 87.0% 84.0% 85.0%
SVM 87.5% 87.0% 82.2% 77.5% 82.0%

As can be seen from Table 5, the method proposed in this paper is superior to BP and SVM
classifiers in classification accuracy. At the same time, the method proposed in this paper has short
training time and no parameter adjustment problems, and can diagnose different working states of
rolling bearings.

5. Conclusions

According to the non-linear and non-stationary characteristics of rolling bearing signals mixed
with a large number of Gaussian noises, the method presented in this paper has the following
characteristics:

(1) Using EWT to decompose the vibration signal, the exact component can be obtained, and the
mode aliasing phenomenon can be eliminated compared with EMD decomposition.

(2) The sub-modes of EWT are tested by Gaussian distribution hypothesis to identify Gaussian noise.
This method does not have parameter selection and has good adaptability.

(3) Aiming at the shortcomings of traditional BP and SVM classifiers, such as too many parameters
and slow convergence speed, the proposed classifier does not need parameter settings, and the
calculation is simple. The experimental results show that the classifier can monitor different
working conditions of rolling bearings, and the recognition rate is higher than BP and SVM.
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