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Abstract

:

In this paper, a generalization of the modified slash Birnbaum–Saunders (BS) distribution is introduced. The model is defined by using the stochastic representation of the BS distribution, where the standard normal distribution is replaced by a symmetric distribution proposed by Reyes et al. It is proved that this new distribution is able to model more kurtosis than other extensions of BS previously proposed in the literature. Closed expressions are given for the pdf (probability density functio), along with their moments, skewness and kurtosis coefficients. Inference carried out is based on modified moments method and maximum likelihood (ML). To obtain ML estimates, two approaches are considered: Newton–Raphson and EM-algorithm. Applications reveal that it has potential for doing well in real problems.
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1. Introduction


The BS distribution was introduced by Birnbaum and Saunders [1,2]. The aim of this distribution is to model the fatigue in lifetime of certain materials. Nowadays, its use has spread to other contexts such as economic and environmental data. In these new applications, it is quite common to find real datasets in which a BS model with heavier tails would be suitable. Slash models are a good option to deal with this kind of situations, in which heavy tails are a serious problem for the data analyst. This is the main reason slash distributions have received a great deal of attention during the last decades. In this context, we face the problem of improving BS distribution by introducing a generalization able to model more kurtosis than other slash extensions previously proposed in the literature. In these extensions, the emphasis is on kurtosis because, as Moors [3] pointed out, the presence of heavy tails produces high kurtosis. Next, we briefly describe the BS-model and the most relevant slash precedents of our proposal.



1.1. Birnbaum–Saunders Distribution


If a random variable (rv) T>0 follows a BS distribution with shape parameter α>0 and scale parameter β>0, T∼BS(α,β), then T can be expressed as


T=βα2Z+α2Z2+12



(1)




where Z∼N(0,1). From Equation (1), T is a monotone transformation of Z, and its cumulative distribution function (cdf) FT is


FT(t)=Φ(w(t))



(2)




with Φ(·) the cdf of a N(0,1) distribution and


w(t)=wα,β(t)=1αtβ−βt=2αsinhlntβ,t>0.



(3)







The probability density function (pdf) of T is


fT(t;α,β)=t−32(t+β)2αβ12ϕ(w(t))



(4)




where ϕ(·) is the pdf of a N(0,1) distribution (Johnson et al. [4]).



As properties (see, for instance, Leiva [5]), we highlight that the BS distribution is continuous, unimodal and positively skewed (asymmetry to right). β is the median of the distribution. α is a shape parameter that modifies the skewness and kurtosis of the distribution. As α tends to zero, the BS distribution tends to be symmetrical around β and its variability decreases. On the other hand, as α increases, the BS distribution exhibits heavier tails.




1.2. Slash Methodology


To use the BS distribution for modeling data with outliers, Gómez et al. [6] and Reyes et al. [7] proposed extensions of BS model based on the slash (S) and modified slash (MS) distribution. In this way, they got extensions of BS distribution with a high kurtosis coefficient.



The canonic slash distribution was introduced by Rogers and Tukey [8]. This model is defined as the ratio of a N(0,1) and an independent uniform U(0,1) distribution. It is proposed as a model for bell-shaped data with heavier tails than the corresponding normal distribution. Their theoretical properties can be seen, for instance, in Rogers and Tukey [8] or Johnson et al. [4]. The slash model, denoted as S, in which a kurtosis parameter q is introduced, is defined as


S=ZU1q



(5)




with Z∼N(0,1) independent of U∼U(0,1) and q>0. Based on the representation given in Equation (5), Reyes et al. [7] proposed the modified slash (MS) distribution in which the variable at the denominator of Equation (5) is replaced by an exponential distribution of parameter 2, that is, U∼Exp(2). The MS model exhibits greater kurtosis than the S model. A new extension, called generalized modified slash (GMS) distribution, was introduced recently by Reyes et al. [9]. These authors proposed a new slash model where the denominator in Equation (5) is a Gamma distribution of parameters (2q,q) with q>0. The GMS model generalizes the MS model. As main features of the GMS model, we highlight that is a bell-shaped distribution, symmetrical with respect to zero, and exhibits a greater level of kurtosis than its predecessors, thus it can be of interest to study the distribution of the BS extension obtained when Z∼N(0,1) in Equation (1) is replaced by a GMS distribution with kurtosis parameter q>0. This proposal is a generalization of the papers by Gómez et al. [6] and Reyes et al. [7] where slash versions of the BS distribution were considered based on the slash and modified slash distribution, called slash Birnbaum–Saunders (SBS) and modified slash Birnbaum–Saunders (MSBS), respectively.



This paper is outlined as follows. In Section 2, the stochastic representation of the generalized modified slash Birnbaum–Saunders (GMSBS) distribution is introduced, and its probability density function, properties, moments, skewness and kurtosis coefficients are obtained. Section 3 is devoted to estimation methods: modified moment and maximum likelihood estimation (an iterative method and the EM-algorithm are proposed). Section 4 assesses the performance of the MLE using the EM algorithm via a simulation study. Two practical applications are given in Section 5.





2. GMSBS Distributions


In this section, the stochastic representation of a GMSBS distribution is introduced. A closed expression for its pdf is obtained and its properties are studied in depth. Motivated by Equation (1), the stochastic expression proposed for a GMSBS distribution is


T=βα2X+α2X2+12,α>0,β>0,



(6)




where X follows a Generalized Modified Slash distribution, X∼GMS(0,1,q), q>0. It is then said that T follows a GMSBS distribution with parameters α, β, and q, T∼GMSBS(α,β,q). Similar to the BS distribution, α is a shape parameter and β is a scale parameter. It is shown below that the new parameter q allows us to control the kurtosis and skewness of this new model and to obtain distributions with greater level of kurtosis than other slash Birnbaum–Saunders models. This fact allows us to model real datasets in which a BS-model can be appropriate but we have heavy tails, especially on the right.



2.1. Probability Density Function


Since T, introduced in Equation (6), is given as a function X with X∼GMS(0,1,q), to obtain the distribution of T, we need the pdf of X, which is given in next lemma.



Lemma 1.

Let X∼GMS(0,1,q) be defined as X=Z/V with Z∼N(0,1) independent of V∼Ga(2q,q), q>0. Then, the pdf of X is


fX(x;q)=(2q)qΓ(q)∫0∞vqe−2qvϕ(xv)dv,x∈R



(7)




where ϕ() denotes the pdf of a N(0,1) distribution.





Proof. 

It can be seen in Reyes et al. [9]. ☐





Lemma 2.

The following closed expression for Equation (7) can be given


fX(x;q)=q8π,ifx=0q2q/22π1|x|q+2U1+q2,32,2x2,ifx≠0



(8)




where U(·) denotes the confluent hypergeometric function of the second kind (Abramowitz and Stegun [10], p. 505).





Proof. 

It can be seen in Reyes et al. [9]. ☐





Proposition 1.

Let T∼GMSBS(α,β,q). Then, the pdf of T is


fT(t;α,β,q)=2q−1qqt−3/2(t+β)αβ1/2Γ(q)∫0∞vqe−2qvϕ(w(t)v)dv,



(9)




with w(t)=1αtβ−βt and t>0.





Proof. 

From Equation (6)


FT(t)=FX(w(t))



(10)




where FT(·) and FX(·) denote the cdfs of T and X, respectively, and w(t) is given in Equation (3).



From Equation (10), the following relationship for the pdf’s of T and X follows


fT(t)=fX(w(t))w′(t),



(11)




where fX(·) denotes the pdf of a X∼GMS(0,1,q).



Finally, from Equation (11), Lemma 1 and Equation (3), the expression proposed in Equation (9) is obtained. ☐





Corollary 1.

From Equation (11) and (8), we have the following closed expression for fT()


fT(t;α,β,q)=1αβ8π,ift=β2q/2qq+28π(β+t)|t−β|q+2αq+1β(q+1)/2t(q−1)/2U1+q2,32,2q2α2βt(t−β)2,ift≠β



(12)




with t>0, α>0, β>0 and q>0.





The next corollary relates the new model, proposed in Equation (6), to other slash models previously introduced in the literature.



Corollary 2.

For q=1, the pdf given in Equation (12) reduces to the pdf of a modified slash Birnbaum–Saunders distributions, MSBS(α,β,1) proposed in Reyes el al. [11].





Proof. 

This corollary follows from the fact that, for q=1, a Ga(2,1) distribution reduces to an exponential, Exp(2), and the stochastic representation proposed in Equation (6). ☐





Figure 1 illustrates the effect of the parameter q on the tails of our proposal. Plots given in this figure compare the pdfs of several GMSBS models for different values of q. Specifically, the pdfs of a GMSBS(0.3,2,q) distribution for q=8,3,1 are given. Note that a greater level of kurtosis is observed for small values of q. These appreciations are formalized in Section 2.3 where moments are obtained.




2.2. Properties


In this subsection, some properties of GMSBS distributions are deduced.



Proposition 2.

Let T∼GMSBS(α,β,q), with α>0, β>0, q>0. Then,

	1.

	
Let tp be the pth quantile of T, 0<p<1.


tp=βα2xp+α2xp2+12



(13)




where xp denotes the pth quantile of X∼GMS(0,1,q).



In particular, the median of T is β, t0.5=β.




	2.

	
∀b>0, bT∼GMSBS(α,bβ,q).




	3.

	
T−1∼GMSBS(α,β−1,q).











Proof. 

(1). Equation (13) follows from the fact that Equation (6) is a one-to-one transformation from R to R+.



On the other hand, t0.5=β since X∼GMS(0,1,q) is a symmetric distribution around zero, and therefore x0.5=0.



(2) and (3) are immediate from Proposition 1 by properly using the change-of-variable technique. ☐





Next, we show that if q→∞ then GMSBS(α,β,q) model approaches to a Birnbaum–Saunders distribution. The subscript q is included in the notation to highlight this fact.



Proposition 3.

Let Tq∼GMSBS(α,β,q). Then, Tq converges in law to T∼BS(2α,β) as q→∞, that is


Tq⟶LT,q→∞,whereT∼BS(2α,β).



(14)









Proof. 

See Appendix A, Proof of Proposition 3. ☐





Proposition 3 means that, for large q, GMSBS(α,β,q) model can be approached by a Birnbaum–Saunders distribution.




2.3. Moments


Formulae for the moments of order r, r∈Z+, in a GMSBS distribution are given next.



Proposition 4.

Let T∼GMSBS(α,β,q). For r∈Z+, E[Tr] exists if and only if q>2r and


E[Tr]=βr∑y=0r2r2y∑s=0yysα22(r+s−y)2(r+s−y)q2(r+s−y)[2(r+s−y)]!Γ(q−2(r+s−y))(r+s−y)!Γ(q).



(15)









Proof. 

See Appendix A, Proof of Proposition 4. ☐





Remark 1.

From Equation (15), note that ETr is a polynomial in β of degree r, in α of degree 2r (only even powers are obtained), and coefficients that involve rational functions of q (with numerator and denominator of the same degree).





Next, some non-central moments for the GMSBS distribution are given. These expressions involve the Pochhammer symbol or rising factorial, defined for a>0 and k∈Z+ as


(a)k=a(a+1)(a+2)…(a+k−1)=Γ(a+k)Γ(a).



(16)







Corollary 3.

Let T∼GMSBS(α,β,q) and μr=E[Tr]. Then



μ1=β2α2q2(q−2)2+1,q>2 (mean or expected value of T),



μ2=β224α4q4(q−4)4+8α2q2(q−2)2+1,q>4,



μ3=β3480α6q6(q−6)6+144α4q4(q−4)4+18α2q2(q−2)2+1,q>6,



μ4=β413440α8q8(q−8)8+3840α6q6(q−6)6+480α4q4(q−4)4+32α2q2(q−2)2+1,q>8.





Proof. 

The proposed results follow from Proposition 4 and Equation (16). Aditional details can be seen in Appendix A, Proof of Corollary 3. ☐





From Corollary 3, it follows that the variance of T is


Var(T)=4β2α2c2(q)+α4c4(q),q>4



(17)




where


c2(q)=q2(q−2)2c4(q)=6q4(q−4)4−q4{(q−2)2}2.











The skewness coefficient, β1, and the kurtosis coefficient, β2, can be computed by using the previous expressions and the relationships


β1=μ3−3μ1μ2+2μ13(μ2−μ12)3/2.










β2=μ4−4μ1μ3+6μ12μ2−3μ14(μ2−μ12)2.











Next, the behavior of β1 and β2 as functions of the kurtosis parameter q is studied.



Although the convergence in law, in general, does not imply the convergence in moments, in this case, we have such convergence as q→∞. The notation β1(q) and β2(q) is used. The next corollary states explicit results for β1(q) and β2(q), if q→∞, along with others that help us to understand the behavior of these features. The explicit expressions of β1(q) and β2(q), given in Appendix A, Equation (A12), are used.



Corollary 4.

(1) Limit behavior of skewness coefficient


limq→6β1(q)=∞limq→∞β1(q)=48α+352α4{4(1+5α2)}3/2








that is, if q→∞ then the skewness coefficient of a GMSBS(α,β,q) tends to the skewness coefficient of a BS(2α,β) distribution.



(2) Limit behavior of kurtosis coefficient


limq→8β2(q)=∞limq→∞β2(q)=3+24α2+(372α2+41)(20α2+4)2.








that is, if q→∞ then the kurtosis coefficient of a GMSBS(α,β,q) tends to the kurtosis coefficient of a BS(2α,β) distribution.





Proof. 

The proposed results follow from expressions for β1(q) and β2(q) given in Appendix A, Equation (A12), and the moments μr, given in Equation (15). ☐





Remark 2.

Interpretation of parameters in a GMSBS(α,β,q) model.



(i) In the GMSBS model, as in the Birnbaum–Saunders distribution, β>0 is a scale parameter, which is also the median of the distribution (see Equation (6) and Proposition 2).



(ii) It can be seen in Leiva [5] that in the Birnbaum–Saunders distribution α>0 is a shape parameter that modifies the skewness and kurtosis of the distribution. As α tends to zero, the BS distribution tends to be more symmetrical around its median β and its variability decreases. The expressions of the skewness coefficient β1, given in Equations (A12) and (17), suggest that α has a similar interpretation in the GMSBS model.



(iii) As for the parameter q>0, it is proven through this paper that controls the kurtosis and skewness coefficient in the GMSBS model, in such a way that allows us to obtain models with greater level of kurtosis than other slash BS distributions, previously introduced in the literature.





As graphical aid, to show the way in which α and q determine the asymmetry and kurtosis of a GMSBS(α,β,q) model, see plots in Figure 2. Without loss of generality, the scale parameter is taken equal to one, β=1. They illustrate the way in which the asymmetry and kurtosis coefficients depend on both parameters. Plots in Figure 2 suggest that, on the one hand, for increasing values of α, the asymmetry and kurtosis increase. On the other hand, if α is fixed, asymmetry and kurtosis coefficients are decreasing functions of q.



These considerations motivate that GMSBS distribution can be used for modeling more kurtosis than other slash Birnbaum–Saunders distributions previously introduced in the literature such as SBS and MSBS densities. Figure 3 displays the GMSBS pdf plot along with MSBS and SBS densities. Note that the right tail of the GMSBS distribution is heavier than the tails of the other ones.





3. Estimation


Let T1,…,Tn be a simple random sample (srs) from T∼GMSBS(α,β,q), n>3. In this section, we face the problem of estimating (α,β,q). Next, we propose a couple of techniques to tackle this problem.



3.1. Modified Moment Estimation


Following Ng et al. [12], a modified method moment based on Property (3) given in Proposition 2 is next introduced. Thus, we propose to equal E[T], E[T2], and E[1/T] to their corresponding sample moments, that is


E[T]=β1+2α2q2(q−2)2=T¯



(18)






E[T2]=β21+8α2q2(q−2)2+24α2q4(q−4)4=m2



(19)






E1T=1β1+2α2q2(q−2)2=R



(20)




where T¯=∑i=1nTin, m2=∑i=1nTi2n, and R=∑i=1n1Tin.



Note that R=H−1 with H=n∑i=1n1Ti the sample harmonic mean.



The solutions of previous equations for q>4 and α>0 are called the modified moment (MM) estimators, denoted as α^MM, β^MM, and q^MM.




3.2. Maximum Likelihood Estimation


Given a srs T1,T2,…,Tn from a GMSBS(α,β,q) distribution and t1,t2,…,tn their observations, by applying Equation (9), the log-likelihood function is


l(α,β,q)=∑i=1nlogfT(ti;α,β,q)










=n(q−1)log2+nqlogq−32∑i=1nlogti+∑i=1nlog(ti+β)−nlogΓ(q)−nlogα−n2logβ











+∑i=1nlogG(wi) with G(wi)=∫0∞vqe−2qvϕ(wiv)dv and wi=1αtiβ−βti.



To maximize l(α,β,q) in (α,β,q), consider the first derivatives of l(α,β,q) with respect to α, β and q, denoted as l˙α, l˙β and l˙q, respectively. From l˙α=0, l˙β=0 and l˙q=0, we obtain the likelihood equations, whose expressions are given in Appendix B, and can be solved by using iterative Newton–Raphson methods.



Let us denote by d(ti)=∫0∞vq+2e−2qvϕ(wiv)dvG(wi). Then, the following iterative process can be proposed for k≥0


α^(k+1)=1n∑i=1ntiβ^(k)+β^(k)ti−2d(k)(ti)1/2



(21)






β^(k+1)=12(α^(k))2∑i=1ntid(k)(ti)n2β^(k)−∑i=1n1ti+β^(k)+12(α^(k))2∑i=1n1tid(k)(ti)1/2



(22)






q^(k+1)=expψ(q(k))−1−ln2−1n∑i=1n∑i=1nG3(k)(wi)G(k)(wi)



(23)




which needs starting values α^(0), β^(0) and q^(0) to start the recursion. As initial values, the modified moment estimators, previously proposed, can be considered.



Remark 3.

(1) In Equations (21)–(23), d(k)(·), G(k)(·) and G3(k)(·) denote these expressions evaluated at α^(k), β^(k) and q^(k). The expression of G3(·) can be seen in Appendix B.



(2) It can be seen in Leiva [5] p. 41 that in the Birnbaum–Saunders model, BS(α,β), the iterative equations for the MLEs of α^ and β^ are


α^(k+1)=1n∑i=1ntiβ^(k)+β^(k)ti−21/2



(24)






β^(k+1)=12(α^(k))2∑i=1ntin2β^(k)−∑i=1n1ti+β^(k)+12(α^(k))2∑i=1n1ti1/2.



(25)







The effect of introducing the generalized modified slash variable on the BS(α,β) model can be appreciated by comparing Equations (21) and (22) to Equations (24) and (25).






3.3. ML Estimation Using EM-Algorithm


Taking advantage of the stochastic representation of the GMSBS model, we can develop a more attractive iterative method to find the MLEs based on the EM algorithm (Dempster et al. [13]). This is a well-known tool when unobserved (missing) data or latent variables are present while modeling. This algorithm enables the computationally efficient determination of the ML estimates when iterative procedures are required. Looking at the stochastic representation of a generalized modified slash distribution given in Equation (6), we note that the scale factor V depends on the parameter q, thus we consider a re-parameterization to get the EM-algorithm in the GMSBS model. Then, the resulting stochastic representation for T can be expressed as


T=βα2X+α2X2+12,



(26)




where X=U−1/2Z, with Z∼N(0,1) independent of U∼GGq,2q,2, i.e., the generalized gamma distribution whose pdf can be expressed as


h(u)=2q−1qquq/2−1exp{−2qu−1/2}/Γ(q),u>0.











Under the new parameterization, we have the conditional distribution of T, given U=u, follows the BS(α/u,β) distribution. Consequently, the pdf of the T reduces to


fT(t)=t−3/2(t+β)2q−1qqαβ1/2Γ(q)∫0∞uq/2−1exp{−2qu−1/2}ϕuat(α,β)du,t>0,



(27)




where ϕ(·) is the pdf of N(0,1) distribution.



Let T1,…,Tn be a simple random sample of size n of T∼GMSBS(α,β,q). Here, the parameter vector is θ=(α,β,q)⊤, with θ∈Θ⊆R+3. Let ℓc(θ|tc) and Q(θ|θ^)=E[ℓc(θ|tc)|t,θ^] denote the complete-data log-likelihood function and its expected value, respectively. Each iteration of the EM algorithm involves two steps. Note that the above setup can be represented through a hierarchical representation given by


Ti|(Ui=ui)∼BSα/ui,β,



(28)






Ui∼GG(q,2q,2),i=1,…,n.



(29)







Let t=[t1,…,tn]⊤ and u=[u1,…,un]⊤ be observed and unobserved data, respectively. The complete data tc=[t⊤,u⊤]⊤ corresponds to the original data t augmented with u. We now detail the implementation of the ML estimation of parameters of GMSBS distributions by using the EM-algorithm. In this section, the hierarchical representation given in Equations (28) and (29) is useful to obtain the complete log-likelihood function associated with tc, which can be expressed as


ℓc(θ|tc)∝−nlog(α)−n2log(β)−12α2∑i=1nuitiβ+βti−2+∑i=1nlogti+β+ℓc(q|tc),



(30)




where ℓc(q|tc)=n(q−1)log(2)+qlogq−logΓ(q)+(q/2−1)∑i=1nlog(ui)−2q∑i=1nui−1/2.



Letting u^i=E[Ui|ti,θ=θ^], it follows that the conditional expectation of the complete log-likelihood function has the form


Q(θ|θ^)∝−nlog(α)−n2log(β)−12α2∑i=1nu^itiβ+βti−2+∑i=1nlogti+β+Q(q|θ^),



(31)




where Q(q|θ^)=n(q−1)log(2)+qlogq−logΓ(q)+(q/2−1)S1n−2qS2n, with S1n=∑i=1nE[log(Ui)|ti] and S2n=∑i=1nE[Ui−1/2|ti]. As both quantities S1n and S2n have no explicit forms in the context of our model, they have to be computed numerically. Thus, to compute Q(q|θ^), we use a similar approach to that by Lee and Xu (2004, Section 3.1) [14]. Specifically, let {ur;r=1,…,R} be a sample randomly drawn from the conditional distribution U|(T=t,θ=θ^), so the quantity Q(q|θ^) can be approximated as follows:


Q(q|θ^)≈1R∑r=1Rℓc(q|ur).











We then have the EM-algorithm for the ML estimation of the parameters of the GMSBS distributions as follows:



E-step. Given θ=θ^(k)=(α^(k),β^(k),q^(k))⊤, compute ui^(k), for i=1,…,n.



CM-step I: Update α^(k) by maximizing Q(θ|θ^(k)) over α, which leads to the expression:


α^2(k+1)=Su(k)β^(k)+β^(k)Ru(k)−2u¯(k),











CM-step II: Obtain β^(k+1) as the solution of


β^2(k+1)−β^(k+1)K(β^(k+1))+2u¯(k)Ru(k)+Ruu¯(k)K(β^(k+1))+Su(k)=0.











CM-step III: Fix α=α^(k+1) and β=β^(k+1), update q(k) by optimizing


q^(k+1)=argmaxqQ(α^(k+1),β^(k+1),q|θ^(k)).








where


u¯(k)=1n∑i=1nu^i(k),Su(k)=1n∑i=1nu^i(k)ti,andRu(k)=11n∑i=1nu^i(k)ti,








with K(x)=1n∑i=1n1x+ti−1. The iterations are repeated until a suitable convergence rule is satisfied, say |ℓ(θ^(k+1))−ℓ(θ^(k))| sufficiently small. Useful starting values required to implement this algorithm are those obtained under the normality assumption or by using the modified moment estimates α^MM, β^MM and q^MM.



Remark 4.

(1) Note that, if q tends to ∞, then the estimates of α and β in M-step reduce to those when the BS distribution is used.



(2) Note that CM-Step II requires a one-dimensional search for the root of β, respectively, which can easily be achieved by using the “uniroot" function built in R. On the other hand, CM-Step III can be very slow. An alternative is to use the idea by Lin and Liu [15] (Section 3), and it can be defined as:



CML-step: Update q(k) by optimizing the following constrained actual log-likelihood function


q^(k+1)=argmaxqℓ(α^(k+1),β^(k+1),q).











The corresponding standard errors (s.e.) are calculated from the observed information matrix.







4. Simulation


In this section, a simulation study is carried out to illustrate the behavior of EM algorithm to obtain MLEs of the parameters. By using the representation given in Equation (6), it is possible to generate random numbers for the GMSBS(α,β,q) distribution, which leads to the following algorithm.

	
Simulate Zi∼N(0,1),i=1,2,…,n.



	
Simulate Vi∼Ga(2q,q),i=1,2,…,n, with q>0.



	
Compute Xi=ZiVi. Then, Xi∼GMS(0,1,q), i=1,2,…,n.



	
Compute Ti=βα2Xi+α2Xi2+12, α>0, β>0. Ti∼GMSBS(α,β,q) for i=1,2,…,n.








Table 1 shows results of simulation studies, which illustrate the behavior of the MLEs for 1000 samples of sizes n=50, 100, and 200 generated from a population distributed as GMSBS(α,β,q) for different values of α, β and q. For each generated sample, MLEs were computed numerically using a EM-algorithm previously proposed. Bias, standard error (s.e) and MSE of estimates are reported.



Results in Table 1 show that, when the sample size increases, MLEs’ bias tends to zero, and their standard errors and MSE′s decrease. Therefore, they are consistent.




5. Applications


Next, the model is illustrated with two datasets collected by the Department of Mines of the University of Atacama, Chile, representing Neodymium and Nickel levels in samples of minerals.



5.1. Neodymium Dataset


The descriptive summaries are given in Table 2 where t¯ denotes the sample mean, St the sample standard deviation, g1 the sample skewness coefficient, and g2 the sample kurtosis coefficient. GMSBS, MSBS and SBS distributions are fitted to this dataset, the parameters are estimated via maximum likelihood (EM-algorithm), abd their corresponding standard errors are given in parentheses in Table 3. As goodness of fit criteria, the Akaike Information Criterion (AIC) and QQ-plots are considered. Recall that AIC = −2ln(likelihood)+2p where p is the number of parameters to be estimated [16]. The AIC values we obtained are given in Table 3. They suggest that GMSBS model provides the best fit to these data since this model exhibits less AIC.



Figure 4 depicts the histogram for the data with the fitted density and the empirical cdf along with the cdf estimated by GMSBS model, as well QQ-plots given in Figure 5; these also show the good agreement of the GMSBS model for the Neodymium data.




5.2. Nickel Dataset


The descriptive summaries are given in Table 4. GMSBS, MSBS and SBS distributions are fitted to this dataset, the parameters are estimated via maximum likelihood (EM-algorithm), and their corresponding standard errors are given in parentheses in Table 5. The AIC values we obtained are given in Table 5. They suggest that GMSBS model provides the best fit to these data since this model exhibits less AIC.



Figure 6 depicts the histogram for the data with the fitted density and the empirical cdf along with the cdf estimated by GMSBS model. QQ-plots are given in Figure 7. All of them show the good agreement of the GMSBS model for the Nickel data.
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Appendix A. Some Proofs of Results Given in Section 2


In this appendix, details about results dealing with the convergence in law of a GMSBS(α,β,q) model to a BS distribution (q→∞), moments, skewness and kurtosis coefficients for the GMSBS(α,β,q) are given.



Proof of Proposition 3.

To obtain the result proposed in Proposition 3, we must prove that limq→∞FTq(t)=FT(t), with FT() the cdf of a BS(2α,β) model (see, for instance, Rohatgi and Ehsanes Saleh, [17]).



Since Tq∼GMSBS(α,β,q), then we can write Tq=h(Xq) where Xq∼GMS(0,1,q) and h(·) was given in Equation (6). Recall that we have the following relationship for the cdf of Tq


FTq(t)=FXq(w(t))withw(t)=1αtβ−βt.



(A1)







It can be seen in Reyes et al. [9] Proposition 3 that, given Xq∼GMS(0,1,q), then Xq⟶LX as q→∞ where X∼N(0,2), that is,


limq→∞FXq(w)=Φw2,withΦ():cdfofaN(0,1).











So, taking the limit in Equation (A1), we have


limq→∞FTq(t)=limq→∞FXq(w(t))=Φw(t)2=Φ12αtβ−βt



(A2)




that corresponds to the cdf of a BS(2α,β) distribution. Thus, we obtain the proposed result. ☐





Proof of Proposition 4.

By using the stochastic representation given in Equation (6), we have


ETr=βrEα2X+α2X2+12r,








with X∼GMS(0,1,q).



By using the binomial formula


ETr=βr∑k=02r2rkEα2X2+1(k/2)α2X2r−k,



(A3)




and therefore ETr exists iff EX2r exists, that is, iff 2r<q (Reyes et al. [9], Proposition 4). Next we also show that Equation (A3) allows us to obtain the explicit expression of ETr given in Equation (15).



Note that for odd s


Eα2X2+1tα2Xs=0,








and therefore for y=k2 we can write


ETr=βr∑y=0r2r2yEα2X2+1yα2X2(r−y)=βr∑y=0r2r2y∑s=0yysα22(r+s−y)EX2(r+s−y)








where X∼GMS(0,1,q) is such that E[X2j]=2jq2j(2j)!Γ(q−2j)Γ(q) for q>2j, as can be seen in Reyes et al. [9]. Taking j=r+s−y, the result proposed in Equation (15) is obtained. ☐





Proof of Corollary 3.

From Proposition 4, it is straightforward that μ1=β2α2q2Γ(q−2)Γ(q)+1,q>2



μ2=β224α4q4Γ(q−4)Γ(q)+8α2q2Γ(q−2)Γ(q)+1,q>4



μ3=β3480α6q6Γ(q−6)Γ(q)+144α4q4Γ(q−4)Γ(q)+18α2q2Γ(q−2)Γ(q)+1,q>6



μ4=β413440α8q8Γ(q−8)Γ(q)+3840α6q6Γ(q−6)Γ(q)+480α4q4Γ(q−4)Γ(q)+32α2+q2Γ(q−2)Γ(q)+1,q>8,



and, thus, the proposed results follow by using the notation introduced in Equation (16). ☐





Corollary A1 (Central moments).

Let T∼GMSBS(α,β,q). Then,



(1) The variance of T, Var(T), was given in Equation (17).



(2) The central moment of order 3 is


E[(T−μ1)3]=β3α4d4(q)+α6d6(q),q>6,



(A4)




where


d4(q)=72q4(q−4)4−24q4{(q−2)2}2



(A5)






d6(q)=480q6(q−6)6−144q6(q−4)4(q−2)2+16q6{(q−2)2}3.



(A6)







(3) The central moment of order 4 is


E[(T−μ1)4]=β8α4f4(q)+α6f6(q)+α8f8(q),q>8,



(A7)




where


f4(q)=48q4(q−4)4



(A8)






f6(q)=1920q6(q−6)6−576q6(q−4)4(q−2)2+96q6{(q−2)2}3



(A9)






f8(q)=13440q8(q−8)8−3840q8(q−6)6(q−2)2+576q8(q−4)4{(q−2)2}2



(A10)






−48q8{(q−2)2}4.



(A11)









Proof. 

They are obtained by considering the results given in Corollary 3 and the following relationships


Var(T)=μ2−μ12E[(T−μ1)3]=μ3−3μ1μ2+2μ13E[(T−μ1)4]=μ4−4μ1μ3+6μ12μ2−3μ14








☐





Proposition A1 (Skewness and kurtosis coefficient).

For T∼GMSBS(α,β,q) distribution the skewness, β1, and kurtosis, β2, coefficients can be calculated as


β1=μ3−3μ1μ2+2μ13(μ2−μ12)3/2β2=μ4−4μ1μ3+6μ12μ2−3μ14(μ2−μ12)2











From previous expressions, we have that


β1=α8d4(q)+α2d6(q){c2(q)+α2c4(q)}3/2



(A12)






β2=116f4(q)+α2f6(q)+α4f8(q){c2(q)+α2c4(q)}2



(A13)










Appendix B. Likelihood Equations


The likelihood equations are


∑i=1nG1(wi)G(wi)=nα



(A14)






∑i=1nG2(wi)G(wi)=n2β−∑i=1n1ti+β



(A15)






∑i=1nG3(wi)G(wi)=−n(1+log2+logq)+nψ(q)



(A16)




where


G1(wi)=∂G(wi)∂α=1α3tiβ+βti−2∫0∞vq+2e−2qvϕ(wiv)dvG2(wi)=∂G(wi)∂β=12α2β21ti(ti2−β2)∫0∞vq+2e−2qvϕ(wiv)dv










G3(wi)=∂G(wi)∂q=∫0∞(lnv−2v)vqe−2qvϕ(wiv)dv








and ψ(q)=Γ′(q)/Γ(q) is the digamma function.
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Figure 1. GMSMS(α=0.3,β=2,q) pdfs for different values of q. 
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Figure 2. Skewness and kurtosis coefficients for GMSBS(α,β=1,q) model as function of q taking α=0.25,1 and 5. 
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Figure 3. Comparison of right tails of densities for GMSBS, MSBS and SBS models for the same value for parameters α,β and q. 
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Figure 4. (left) Histogram of the Neodymium data with estimated pdf of GMSBS distribution; and (right) empirical cdf (dotted lines) with estimated cdf of GMSBS model. 
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Figure 5. Q-Q plots in Neodymium dataset for: SBS model (left); MSBS model (middle); and GMSBS model (right) 
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Figure 6. (left) Histogram of the Nickel data with estimated pdf of GMSBS distribution; and (right) empirical cdf (dotted lines) with estimated cdf of GMSBS model. 
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Figure 7. Q-Q plots in Nickel dataset for: SBS model (left); MSBS model (middle); and GMSBS model (right) 
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Table 1. Empirical bias, standard error and MSE for the MLEs of α, β, and q using the EM-algorithm.






Table 1. Empirical bias, standard error and MSE for the MLEs of α, β, and q using the EM-algorithm.





	
True Value

	

	
n=50

	
n=100

	
n=200






	
α

	
β

	
q

	
θ^

	
bias

	
s.e.

	
MSE

	
bias

	
s.e.

	
MSE

	
bias

	
s.e.

	
MSE




	
1

	
2

	
2

	
α^

	
0.0578

	
0.2267

	
0.2327

	
0.0455

	
0.1596

	
0.1588

	
0.0373

	
0.1110

	
0.1113




	

	

	

	
β^

	
0.1191

	
0.6707

	
0.7412

	
0.0702

	
0.4794

	
0.4953

	
0.0367

	
0.3273

	
0.3352




	

	

	

	
q^

	
1.0222

	
1.8522

	
3.5878

	
0.3839

	
0.7437

	
1.2601

	
0.1959

	
0.4183

	
0.4789




	
2

	

	

	
α^

	
0.1373

	
0.4633

	
0.4914

	
0.1012

	
0.3235

	
0.3282

	
0.0753

	
0.2290

	
0.2279




	

	

	

	
β^

	
0.1871

	
0.9125

	
1.0495

	
0.0635

	
0.6299

	
0.6729

	
0.0489

	
0.4542

	
0.4677




	

	

	

	
q^

	
1.3715

	
2.2452

	
5.0045

	
0.3781

	
0.7066

	
0.9840

	
0.1812

	
0.4254

	
0.4560




	
3

	

	

	
α^

	
0.2858

	
0.7062

	
0.7504

	
0.1563

	
0.4872

	
0.4798

	
0.1264

	
0.3398

	
0.3385




	

	

	

	
β^

	
0.2776

	
0.9688

	
1.1139

	
0.1234

	
0.6537

	
0.7049

	
0.0535

	
0.4630

	
0.4451




	

	

	

	
q^

	
1.2999

	
2.0412

	
4.3190

	
0.3930

	
0.7107

	
0.9874

	
0.1928

	
0.4161

	
0.4836




	
1

	
1

	
1

	
α^

	
0.1946

	
0.3061

	
0.6894

	
0.1402

	
0.2041

	
0.2457

	
0.1535

	
0.1373

	
0.3721




	

	

	

	
β^

	
0.2621

	
0.4270

	
4.8105

	
0.0401

	
0.2711

	
0.2847

	
0.0333

	
0.1870

	
0.1996




	

	

	

	
q^

	
0.3416

	
0.4464

	
0.6948

	
0.2206

	
0.2528

	
0.3243

	
0.1723

	
0.1647

	
0.2305




	

	
2

	

	
α^

	
0.1741

	
0.3155

	
0.3550

	
0.1443

	
0.2088

	
0.2595

	
0.1461

	
0.1326

	
0.3455




	

	

	

	
β^

	
0.1844

	
0.8233

	
0.9462

	
0.0805

	
0.5533

	
0.5930

	
0.0465

	
0.3566

	
0.3866




	

	

	

	
q^

	
0.3206

	
0.4777

	
0.8124

	
0.2104

	
0.2537

	
0.3223

	
0.1745

	
0.1609

	
0.2323




	

	
3

	

	
α^

	
0.1689

	
0.3042

	
0.4005

	
0.1405

	
0.2041

	
0.3346

	
0.1351

	
0.1348

	
0.2716




	

	

	

	
β^

	
0.3346

	
1.2332

	
2.3262

	
0.1246

	
0.7904

	
0.8285

	
0.0445

	
0.5271

	
0.5435




	

	

	

	
q^

	
0.3351

	
0.4584

	
0.6384

	
0.2132

	
0.2594

	
0.3229

	
0.1701

	
0.1608

	
0.2274




	
0.5

	
1

	
1

	
α^

	
0.0734

	
0.1447

	
0.1658

	
0.0712

	
0.0987

	
0.1625

	
0.0667

	
0.0659

	
0.1430




	

	

	

	
β^

	
0.0314

	
0.1952

	
0.2170

	
0.0091

	
0.1306

	
0.1365

	
0.0064

	
0.0889

	
0.1240




	

	

	

	
q^

	
0.2724

	
0.4067

	
0.5825

	
0.2005

	
0.2432

	
0.3146

	
0.1656

	
0.1588

	
0.2270




	

	

	
2

	
α^

	
0.0196

	
0.1174

	
0.1117

	
0.0173

	
0.0783

	
0.0732

	
0.0183

	
0.0566

	
0.0570




	

	

	

	
β^

	
0.0193

	
0.1848

	
0.1798

	
0.0080

	
0.1237

	
0.1215

	
0.0041

	
0.0879

	
0.0836




	

	

	

	
q^

	
0.9310

	
1.7205

	
4.1727

	
0.2917

	
0.6519

	
0.7662

	
0.1691

	
0.4138

	
0.4612




	

	

	
3

	
α^

	
0.0138

	
0.0993

	
0.0995

	
0.0148

	
0.0695

	
0.0660

	
0.0110

	
0.0488

	
0.0482




	

	

	

	
β^

	
0.0118

	
0.1663

	
0.1742

	
0.0133

	
0.1207

	
0.1182

	
0.0009

	
0.0829

	
0.0832




	

	

	

	
q^

	
2.4498

	
4.3431

	
7.8277

	
0.7645

	
1.4680

	
3.0066

	
0.2994

	
0.7723

	
0.9407
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Table 2. Summary of Neodymium dataset.






Table 2. Summary of Neodymium dataset.





	n
	t¯
	St
	g1
	g2





	86
	35.02
	35.2307
	3.648
	18.216
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Table 3. MLEs for Neodymium dataset, their standard errors (in parenthesis) and AIC values.






Table 3. MLEs for Neodymium dataset, their standard errors (in parenthesis) and AIC values.





	Parameter
	SBS
	MSBS
	GMSBS





	α
	0.289 (0.064)
	0.290 (0.105)
	0.2087 (0.0366)



	β
	27.247 (1.592)
	27.683 (5.983)
	28.1102 (1.4994)



	q
	1.578 (0.426)
	2.009 (0.570)
	2.5661 (0.9489)



	AIC
	743.9906
	741.3566
	739.9394
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Table 4. Summary of Nickel dataset.
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	n
	t¯
	St
	g1
	g2





	85
	21.59
	16.5732
	2.3922
	11.325
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Table 5. MLEs for Nickel dataset, their standard errors (in parenthesis) and AIC values.






Table 5. MLEs for Nickel dataset, their standard errors (in parenthesis) and AIC values.





	Parameter
	SBS
	MSBS
	GMSBS





	α
	0.3877 (0.0918)
	0.3266 (0.0852)
	0.2490 (0.0330)



	β
	17.7982 (1.2464)
	17.6017 (1.1027)
	17.4961 (1.0622)



	q
	2.0118 (0.6967)
	2.0932 (0.6284)
	3.1927 (1.2341)



	AIC
	670.742
	668.251
	666.571











© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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