
symmetryS S

Article

FlexMonitor: A Flexible Monitoring Framework
in SDN

Binfeng Wang 1,* and Jinshu Su 2

1 College of Computer, National University of Defense Technology, Changsha 410073, China
2 Science and Technology On Parallel and Distributed Processing Laboratory, National University of Defense

Technology, Changsha 410073, China; sjs@nudt.edu.cn
* Correspondence: nwwutong@163.com

Received: 29 October 2018; Accepted: 17 November 2018; Published: 4 December 2018
����������
�������

Abstract: Efficient network monitoring is an important basis work for network management.
Generally, many management applications require accurate and timely statistics about network
states at different aggregation levels at low cost, such as malicious traffic detection, traffic engineering,
etc. Moreover, the network environment to be monitored is constantly changing and expanding,
including not only the data center for cloud computing but also the Internet of Things (IoT) for
smart urban sensing, which requires the intensive study of more fine-grained network monitoring.
As is well known, the development of efficient network monitoring approaches greatly relies on a
flexible monitoring framework. Software defined network (SDN) can provide dramatic advantages
for network management by separating the control plane and data plane. Therefore, it is a good
choice to design a flexible monitoring framework based on the advantages of SDN. However,
most research works only take advantage of the centralized control feature in SDN, which leads
to limited improvement in the flexibility of the monitoring framework. This paper proposes a
flexible monitoring framework named FlexMonitor, which can realize greater flexibility based
on not only the centralized control feature, but also the high programmability in the controller
and the limited programmability in the openflow switches in SDN. There are two key parts in
FlexMonitor, namely the monitoring strategy deployment part and the monitoring data collection
part, which can enrich the deployment methods of monitoring strategies and increase the kinds of
monitoring data sources, respectively. Based on the NetMagic platform, this monitoring framework
was implemented and evaluated through realizing a distributed denial of service (DDoS) detection
approach. The experimental results show that the proposed DDoS detection approach has a better
detection performance compared with other related approaches as well as indirectly show that
FlexMonitor can flexibly support a variety of efficient monitoring approaches.

Keywords: monitoring framework; software defined network; event definition; DDoS

1. Introduction

Obviously, efficient monitoring is an important foundation for network management [1,2]. Many
management applications, such as elephant detection, load balancing, traffic engineering, accounting,
etc., require accurate and timely statistics about network states at different aggregation levels [3,4].
For example, elephant detection may need to collect the related flow statistics about suspected elephant
flows, while accounting application may need to collect all network traffic through the outgoing
switches. In addition, it is also required to minimize the monitoring overhead as it may affect the
normal traffic in the network [5]. These monitoring requirements would bring great challenges to
the design of efficient monitoring approaches. Moreover, the network environment to be monitored
is constantly changing and expanding. On the one hand, there are more and more new network

Symmetry 2018, 10, 713; doi:10.3390/sym10120713 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-3039-9214
http://www.mdpi.com/2073-8994/10/12/713?type=check_update&version=1
http://dx.doi.org/10.3390/sym10120713
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 713 2 of 19

applications deployed in the network, which results in increasingly complex traffic and greater and
greater network scale. On the other hand, the network environment to be monitored is not confined to
traditional networks. It may refer to the data center for cloud computing, the Internet of Things for
smart urban sensing, etc. These new changes in network environment also increase the difficulty of
the design of efficient monitoring approaches.

In this case, it is a good idea to propose a flexible monitoring framework and design new efficient
monitoring approaches based on it according to the specific monitoring requirements. In this way,
the design cost and the deployment cost of efficient monitoring approaches can be greatly reduced.
In terms of the monitoring framework, there should be three characteristics described as follows. Firstly,
this framework should flexibly support the deployment of monitoring strategies to meet different
monitoring requirements. Secondly, this framework could extend the kinds of monitoring data sources.
On the one hand, this can better guarantee the monitoring timeliness and the minimal monitoring
overhead, while, on the other hand, this can make the analysis of monitoring data simpler. Finally,
this framework can be scaled easily without incurring much deployment overhead or monitoring
overhead into the network.

Obviously, by separating the control plane with the data plane, SDN can greatly simplify the
network management. However, the SDN management framework cannot be directly applied to the
network monitoring. The reason for that is the related monitoring mechanisms are not specifically
defined in this framework, which would limit their ability to adequately meet the different monitoring
requirements. Taking a variety of the monitoring requirements into account, this paper fully extends
the monitoring mechanisms in the SDN management framework while maintaining the advantages of
SDN to a great extent. There are mainly four contributions in this paper. (1) This paper proposes a
flexible monitoring framework named FlexMonitor, which can flexibly support the design of efficient
monitoring approaches according to the specific monitoring requirements. (2) This monitoring
framework FlexMonitor extends the kinds of monitoring data sources by introducing the event
triggering mechanism. Leveraging this mechanism, FlexMonitor can reduce the monitoring overhead
and obtain the network states in a timely manner. (3) The monitoring framework FlexMonitor
increases the flexibility of the monitoring strategy deployment. With regard to efficiently carrying
out a monitoring task, FlexMonitor can support selectively using some of the monitoring strategies
including event definition, switch selection and end–host pair selection. (4) This paper proposes a DDoS
(Distributed Denial of Service) detection approach based on the monitoring framework FlexMonitor.
By evaluating the performance using NetMagic [6], this approach shows dramatic advantages on the
DDoS detection. At the same time, the experimental results verify the flexibility and efficiency of the
monitoring framework FlexMonitor.

The rest of this paper is organized as follows. Section 2 describes the traditional monitoring
framework and the related monitoring framework in SDN. Then, the proposed monitoring framework
FlexMonitor is presented in Section 3, where the related monitoring mechanisms are also discussed
including the deployment of monitoring strategy, the collection of monitoring data, the definition of
monitoring request and the scalability of FlexMonitor. Section 4 proposes a DDoS detection approach
based on FlexMonitor. Section 5 makes the performance evaluation to verify the efficiency of the
proposed DDoS detection approach. Finally, Section 6 presents the conclusion.

2. Related Work

Efficient network monitoring is a hot research field and the monitoring framework is studied
continuously as monitoring requirements are changing. As shown in Figure 1, the traditional
monitoring framework mainly covers four functionalities: the collection, aggregation, analysis and
storage of the monitoring data. The collection part is the most basic and important part pf the
monitoring framework because its efficiency can affect the monitoring accuracy to a great extent.
Generally, the monitoring frameworks can be classified into two kinds: distributed frameworks [7] and
centralized frameworks [8]. Distributed frameworks are often applied to very-large-scale networks and



Symmetry 2018, 10, 713 3 of 19

their deployment is rather complex. For the majority of networks, their monitoring frameworks would
adopt the centralized model, based on which all the monitoring agents (e.g., SNMP [9], NetFlow [10],
etc.) would send their monitoring data to the central collector and then the central collector can analyze,
aggregate and store these data in the database according to different monitoring requirements.

Figure 1. Traditional monitoring framework.

Since the SDN management framework [11] itself is a typical centralized framework, it is a
good choice to design the monitoring framework in SDN on the basis of the SDN management
framework. Compared with the traditional networks, there are several advantages in SDN on
the network monitoring. Firstly, the SDN controller can obtain network topology and the routing
information easily because the controller is responsible for the routing computing of the whole network.
The traditional networks often adopt the distributed routing protocols, which makes it hard to obtain
the routing information of the whole network at low cost for the monitoring collector. Secondly, the
SDN switch can provide the monitoring collector with a variety of counters, such as port byte/packet
counters, flow byte/packet counters, flow duration, etc. These counters can make the monitoring data
collection easier without deploying specific monitoring agents. Finally, different from the traditional
networks, the SDN switches are only responsible for the forwarding functionality. Thus, there may
be abundant computing capability in SDN switches which can be used for the network monitoring.
However, the SDN management framework does not focus on the network monitoring specifically
and fails to fully leverage the advantages of SDN on network monitoring. Currently, the collection
of monitoring data mainly relies on the active polling [12] and sampling [13]. On the one hand,
they cannot meet the fine granularity monitoring requirements of typical SDN such as data center
and campus network. On the other hand, they would go against the scalability of the monitoring
framework because of the monitoring overhead.

OpenNetMon [14] and Probe-SDN [15] focus on the tradeoff problem between the monitoring
accuracy and the monitoring overhead. However, the solutions they propose are not universal and
are specific to different certain application scenarios. The former is mainly for traffic engineering
and the latter is mainly for computing the bandwidth utilization. PayLess [16] is a monitoring
framework for SDN, which can provide an abstract view of the network and a uniform way to
request the monitoring data. In addition, it proposes an adaptive flow statistics collection algorithm
that can obtain highly accurate monitoring data in a timely manner while incurring little network
overhead. However, an important assumption of PayLess is that sophisticated and effective monitoring
approaches can be developed only using the monitoring mechanisms provided by OpenFlow such
as active polling, sampling and flow statistics triggering. Obviously, this assumption is not very
reasonable. FlowCover [17] is a low-cost, high-accuracy monitoring scheme which can support various
network management tasks. By leveraging the advantages of SDN, the whole network visibility and



Symmetry 2018, 10, 713 4 of 19

the central control functionality, FlowCover can select the target switches based on the view of all active
flows instead of on per-flow basis. Although FlowCover can reduce the communication overhead to
some extent, it does not innovate on the ways of flow statistics collection from switches. With finer
and finer granularity monitoring requirements, the work of the monitoring mechanisms provided by
OpenFlow is very limited.

Generally, different application scenarios often have different characteristics in terms of the
structure and the communication among each other. Therefore, each application scenario may be
faced with different challenges on the design of monitoring framework. In Internet of Things for
smart urban sensing, an appropriate IoT architecture is badly needed to avoid problems such as
the embedded control intelligence, vendor-dependent interfaces, highly personalized applications,
etc. Liu et al. [18] proposed a software-defined IoT architecture for smart urban sensing, which
successfully extends the spirit of the software-defined approach from network devices to sensor
platforms and the cloud. However, they focused on the improved control feature and only introduced
the basic functionalities of SDN. In data center, adopting the centralized model may result in much
computing overhead on the central monitoring collector and much communication overhead between
the controller and the switches. An appropriate management framework is badly needed to reasonably
distribute the computing overhead on different collectors and the communication overhead on different
links. Xu et al. [19] proposed a management model, in which regional networks on lower layers
are aggregated and viewed as single switches to upper layers. Another interesting application
scenario is the RFID (radio frequency identification)-based smart parking management system.
Tsiropoulou et al. [20] proposed a smart parking system architecture and fully uses the functionality
of passive RFID tags, which realizes not only the power saving but also the constant monitoring of
the parked cars. Given the above, the most important factor of a system or framework is reducing the
related overhead as much as possible while maintaining the convenience of the core functionality.

In terms of the research of the monitoring framework, the core motivation is reducing the overhead
of the whole monitoring process as much as possible while carrying out the monitoring tasks normally.
The monitoring mechanisms in SDN need to be further developed and studied because they are the
key to the efficient work of the monitoring framework.

3. FlexMonitor

In this section, the monitoring framework FlexMonitor is described in detail from the perspective
of the monitoring strategy deployment, the monitoring data collection and the monitoring request
definition. Thereafter, the scalability of FlexMonitor is also discussed.

3.1. Overview

As shown in Figure 2, the monitoring framework FlexMonitor can be regarded as a monitoring
module plugged into the controller. Through the southbound interface, the monitoring module in the
controller can deploy the monitoring strategy and collect the monitoring data. Through the northbound
interface, it can also provide the network view to the upper network management applications.

The functionalities of FlexMonitor can be mainly classified into four parts: the monitoring task
interpretation part, the monitoring strategy deployment part, the monitoring data collection part
and the monitoring data analysis part. The monitoring task interpretation part is responsible for
interpreting the monitoring requests of the upper management applications. Effective interpretation
can be helpful to choose the appropriate monitoring strategies. The monitoring strategy deployment
part is responsible for carrying out the monitoring tasks through deploying the specific monitoring
strategies in the network. The collection part is responsible for collecting the monitoring data accurately
and in a timely manner from the network devices or end hosts using various monitoring approaches.
According to the specific monitoring requirements, the analysis part is responsible for analyzing and
aggregating the raw monitoring data from the collection part.



Symmetry 2018, 10, 713 5 of 19

Figure 2. The monitoring framework FlexMonitor.

Among the four functional parts, the monitoring strategy deployment part and the monitoring
data collection part are the key parts to FlexMonitor. On the one hand, the accuracy, timeliness
and incurred overhead of network monitoring depends on the adopted status or statistics collection
approaches to a great extent. On the other hand, the choice of the status or statistics collection
approaches depends on the adopted monitoring strategy.

3.2. Monitoring Strategy and Data Source

3.2.1. Strategy

Generally, for each monitoring task, not every switch needs to poll the statistics of ports or flows
and not every end–host pair needs to deploy the active measurements. In addition, there may be many
monitoring solutions achieving a specific monitoring goal and different monitoring solutions can cause
different degrees of network overhead. Therefore, adopting the appropriate monitoring strategies
is helpful to better carry out the monitoring tasks. In FlexMonitor, there are three basic monitoring
strategies: switch selection, end–host pair selection and event definition.

Switch selection: Select the optimal targeted switch set to collect the statistics of ports or flows
according to the monitoring requirements. In FlexMonitor, the monitoring strategy deployment
part can use different targeted switch selecting algorithms to obtain the optimal targeted switch set.
Meanwhile, this part can use customized port or flow statistics collection algorithms to efficiently
obtain the monitoring data from the chosen targeted switches. By this way, the communication
overhead between the controller and switches can be greatly reduced during the network monitoring.

End–host pair selection: Select the optimal end–host pair set to collect the end-to-end monitoring
data according to the monitoring requirements. In FlexMonitor, the monitoring strategy deployment
part can use different end–host pair selecting algorithms to obtain the optimal end–host pairs.
Choosing the appropriate end–host pairs can reduce the monitoring overhead incurred by the
active measurements.



Symmetry 2018, 10, 713 6 of 19

Event definition: Abstract some simple network events and define their corresponding event
triggers. For abstracting the network events, mainly two factors need to be determined: (1) the
triggering condition that the corresponding event triggers rely on to work; and (2) the basic monitoring
data that need to be collected and used to judge whether the current network state meets the triggering
condition. If these two factors of a network event can be easily determined, they can be directly
detected through deploying the event triggers. Once the event triggers are deployed in the switches
or end–hosts, the collection unit of each event trigger will continuously collect the required basic
monitoring data. Based on the collected basic monitoring data, the computing unit of the event trigger
will timely evaluate the current network state.

The former two monitoring strategies have been fully studied and been used in a variety of
monitoring environments. Generally, to detect the occurrence of a network event, the monitoring
data collection part often needs to collect the corresponding statistics of ports or flows many times,
which may incur much monitoring overhead in the network. However, for some network events,
their corresponding event triggers can be defined easily and they can be quickly detected at low cost
through deploying the event triggers in the switches or end–hosts. Therefore, the event definition
strategy can be considered as a complementary strategy for the switch selection strategy and the
end–host pair selection strategy. Through combining these three basic monitoring strategies reasonably,
FlexMonitor can realize complex monitoring strategies to meet different monitoring requirements
of upper management applications. For example, the network hot spot detection can be realized
using a hybrid monitoring strategy, which combines the switch selection strategy with the event
definition strategy, as shown in Figure 3. For network hot spot detection, it is obvious that, if every port
statistics or the total traffic of each switch can be acquired, the detection can reach high accuracy easily.
However, detecting network hot spots in this way would be inevitable to cause much monitoring
overhead in the network. Alternatively, the network manager can resolve this problem from two
perspectives: on the one hand, collecting the port statistics or the total traffic only for selected switches
with larger degree; and, on the other hand, for the rest of switches in the network, defining the
network hot spot event and deploying the corresponding triggers into these switches. By this way,
the accuracy of the hot spot detection can be guaranteed while the monitoring overhead can also be
dramatically reduced.

Figure 3. A hybrid monitoring strategy instance.

3.2.2. Data Source

According to the proposed monitoring strategies, there are mainly four kinds of monitoring data
sources in FlexMonitor: the raw packets, the statistics data, the end-to-end measuring data and the
network event triggering messages.



Symmetry 2018, 10, 713 7 of 19

The characteristics of different monitoring data sources are listed as Table 1. Among these four
kinds of monitoring data sources, the network event triggering message is a kind of efficient monitoring
data source. When the collection part listens to the event triggering messages, it can directly obtain the
occurrence information of the network event without further analyzing the event triggering messages.
Through relying on the event triggers in the switches or end–hosts, the network monitoring can realize
the corresponding network event detection, which may only incur limited event triggering messages
into the network. It can be seen that the monitoring overhead can be greatly reduced in this way.
The reduction of monitoring overhead can be reflected from two perspectives: On the one hand, for the
reason that the collection unit of each event trigger would continuously poll the network state and the
computing unit of each event trigger would also continuously judge whether the network condition
meets the deployed event triggers in the targeted switches or end–hosts, the computing overhead in
the controller can be almost entirely reduced. On the other hand, due to the decrease of the port or flow
statistics polling messages, the communication overhead between the controller and switches is also
greatly reduced. In addition, through defining appropriate triggering conditions, using the network
event triggering messages as one of monitoring data sources can be helpful to enhance the real-time
detection of corresponding network events. In practice, many network events can be easily described
into event triggers. These network events include the detection of network congestion, abnormal
traffic, elephant flows, network hot spots, etc. For example, regarding the elephant flow detection,
the triggering condition can be defined as a specific elephant flow threshold and the basic monitoring
data can be defined as the byte statistics for each flow. When there exists a flow where its byte statistics
exceeds the pre-defined threshold, the switch would trigger an elephant flow notification message to
the controller.

Table 1. Different monitoring data sources in FlexMonitor.

Data Source Monitoring
Strategy Approaches Application Scenario Kind of Data

raw packets switch
selection

sampling from the
targeted switches

extract the flow
features or analyze the
content of packets,
such as detecting
malicious traffic, etc.

the header of packet
or the whole packet

statistics data switch
selection

polling or sampling
from the targeted
switches

traffic engineering, hot
spot detection, link
capacity planning, etc.

port packets/bytes,
flow packets/bytes,
etc.

end-to-end
measuring data

end–host
pair
selection

make the active
measurements
between the targeted
end–host pairs

hard to directly obtain
the required statistics
data from the targeted
switches

end-to-end latency,
end-to-to
bandwidth, etc.

network event
triggering
message

event
definition

define the two factors
for network events

some simple network
events, such as large
flow detection, hot
spot detection, etc.

event triggering
messages

According to the specific monitoring requirements of upper management applications,
the collection part would continuously collect monitoring data from these different sources. In addition,
FlexMonitor can use customized analysis algorithms to analyze and aggregate the received monitoring
data. The upper management applications can obtain these required monitoring data through the
northbound interface.

3.3. Monitoring Request

In FlexMonitor, the monitoring requests corresponding to monitoring tasks of upper management
applications can be delivered to the monitoring task interpretation part through the northbound



Symmetry 2018, 10, 713 8 of 19

interface. To make an effective interpretation, the method of monitoring requests is very important for
upper management applications.

Obviously, the definition of monitoring requests is a key step to the efficient network monitoring.
There are mainly two important aspects during the monitoring request definition. One is that the
monitoring request definition needs to accurately and clearly describe the monitoring tasks of upper
management applications; the other is that the monitoring request definition needs to be simple, which
can be helpful to interpret monitoring tasks of upper management applications.

In FlexMonitor, the monitoring tasks can be classified into three major categories. The first
category refers to the basic monitoring tasks, which may include flow statistics collection, jitter,
latency, link utilization, etc. Each basic monitoring task usually corresponds to many classic scheduler
algorithms. In FlexMonitor, the basic monitoring task can choose one of its corresponding scheduler
algorithms as the default scheduler algorithm. Besides this, it can also specify a customized scheduler
algorithm in the monitoring request of this monitoring task. The second category refers to these
monitoring tasks which have been designed considering what monitoring strategies will be adopted
and for the chosen monitoring strategy what scheduler or detection algorithms will be adopted.
Generally, for some classic network events, their corresponding monitoring solutions have been well
studied and corresponding scheduler or detection algorithms tend to be mature and perfect. To simplify
the interpretation of monitoring requests, related monitoring strategies and related scheduler or
detection algorithms can be initially specified in the form of configure files in FlexMonitor for these
monitoring tasks. When the upper management applications need to monitor one of these network
events, FlexMonitor can directly adopt the pre-installed monitoring strategy and scheduler or detection
algorithm to carry out the monitoring task. The three category refers to the complex monitoring tasks,
which belongs to neither the first category nor the second category. If these monitoring tasks are
directly carried out, the monitoring implementation may be complex and the monitoring overhead
may be high. Therefore, if the upper monitoring applications need to monitor a complex monitoring
task, this monitoring task will be broken down into several basic monitoring tasks in FlexMonitor.

In FlexMonitor, the general monitoring request definition for a monitoring task is described in
Figure 4. There are mainly four kinds of information in the monitoring request definition: type,
monitoring strategy, aggregation level and reserved.

Figure 4. The general monitoring request.

Type: The upper management applications specify the type of the monitoring tasks. Considering
each complex monitoring task will be broken down into several basic monitoring tasks, the specification
of the type in monitoring request only involves the monitoring tasks which belong to the first
and second categories. For the first category, the type in monitoring request is the name of the
basic monitoring task. For the second category, the type in monitoring request is the name of its
corresponding monitoring task.

Monitoring strategy: The upper management applications specify the monitoring strategy for
the monitoring task. The monitoring strategy here can be specified as the default value or some of
the three basic monitoring strategies including the switch selection, end–host pair selection and event
definition. If the chosen monitoring strategy does not specify the specific scheduler algorithm in the



Symmetry 2018, 10, 713 9 of 19

monitoring request, FlexMonitor will adopt the default scheduler algorithm of the monitoring strategy.
Each monitoring task can adopt multiple monitoring strategies in order to increase the flexibility of the
network monitoring.

Aggregation level: The upper management applications specify the aggregation level for the
monitoring task. Some monitoring tasks may not be involved in the definition of aggregation
level. In this case, the aggregation level in monitoring request is set to zero, which indicates the
aggregation level of the corresponding monitoring task need not be set. Generally, the aggregation
level definitions of different kinds of monitoring tasks are different from each other. According to the
upper management applications, the aggregation level in monitoring request is set to the value of its
own customized aggregation level. For example, the aggregation level for flow statistics collection
may be set to flow, port, user, switch, etc.

Reserved: The upper management applications can specify other monitoring requirements in this
reserved field.

3.4. Scalability

Generally, the scalability of the monitoring framework FlexMonitor is mainly reflected in two
aspects: (1) the ability to reduce to computing overhead on the controller; and (2) the ability to reduce
the communication overhead between the controller and switches.

During the network monitoring, the computing overhead on the controller is mainly caused by
the analysis of the monitoring data. In FlexMonitor, due to the increase of monitoring data sources,
especially the use of event triggering messages, the monitoring data analysis would become relatively
simpler. Therefore, the computing overhead on the controller is reduced to some extent. Furthermore,
FlexMonitor takes various measures to reduce the communication overhead between the controller
and switches. From the perspective of the controller, it collects the monitoring data only from switches
in the optimal targeted switch set rather than all switches. From the perspective of the switch, it fully
exploits the computing capability of the switches. On the one hand, it introduces the event triggering
message as one of the monitoring data source, which can make the communication overhead minimal
while maintaining the monitoring accuracy. On the other hand, it can send the monitoring data to the
controller after aggregating or compressing it in the switches.

Therefore, the monitoring framework FlexMonitor has good scalability and can be easily extended
to large-scale networks.

4. Example

With the increasing popularity of the Internet and the development of network technology,
DDoS attacks often occur [21–23]. Through using the client/server model, DDoS can combine
thousands of computers as an attack platform to launch an attack on one or more targets, which would
multiply the power of denial of service attacks. Obviously, DDoS attack can lead to legal users no
longer being able to visit the services provided by the attacked server. To avoid being attacked,
the DDoS detection has always been a hot research field [24]. Taking DDoS detection as an example,
this section makes an illustration for the monitoring request definition in FlexMonitor.

4.1. DDoS Detection

In terms of DDoS detection, there are mainly three kinds of approaches. The first is detecting
the DDoS attacks based on the change of the traffic characteristics. The second is detecting the DDoS
attacks based on analyzing the packet content or the packet feature. The third is detecting the DDoS
attacks using the hybrid approach of the former two kinds. In this section, we propose a DDoS
detection approach based on the change of the traffic characteristics. As shown in Figure 5, there
exists dramatic differences between the normal traffic and the DDoS attacked traffic. When a DDoS
attack occurs, the number of visits to the targeted servers or services will suddenly increase by tens,
thousands or even tens of thousands of times. Along with the increased visits, the traffic to the targeted



Symmetry 2018, 10, 713 10 of 19

servers or services will also suddenly increase. In addition, because the purpose of DDoS attacks is to
paralyze the targeted servers or services, the traffic to the servers or services is far more than that from
the servers or services. According to these phenomena of the DDoS attack, this paper defines three
typical variables to characterize the DDoS attack: (1) the visit volume P1 for each targeted server Ns;
(2) the transmission rate P2 for flow traffic; and (3) the ratio P3 of the traffic into the servers and the
traffic out the servers.

Figure 5. The normal and attacked traffic.

Based on these three typical variables P1, P2 and P3, this paper proposes a DDoS detection
approach. In this proposed approach, the detecting process can be divided into two phases: The first
phase is responsible for seeking for the suspected attacked servers based on the evaluation indicator P1

and choosing the corresponding switches to collect the related network status or statistics. The second
phase is responsible for making further identification about the suspected attacked servers based on
the evaluation indicators P2 and P3.

The DDoS detection is a classic monitoring problem and belongs to the second category of
monitoring tasks. Obviously, the computing of the three typical variables is very important and
collecting the related flow statistics is the core monitoring task of the proposed DDoS detection.
According to the detecting process, the adopted monitoring strategy and the adopted detection
algorithm can be designed in advance. The proposed DDoS detection adopts a hybrid monitoring
strategy which involves the switch selection monitoring strategy and event definition monitoring
strategy. To efficiently carry out the monitoring task, the hybrid monitoring strategy uses customized
switch selection algorithm and flow statistics collection algorithm instead of the default algorithm.
The specific monitoring request of the proposed DDoS detection is described in Figure 6. The design
information about the proposed DDoS detection can be initially installed in the form of configure
file in FlexMonitor. In the proposed DDoS Detection, the monitoring task is mainly collecting the
number of active flows to compute the variable P1 and collecting the byte statistics of related flows to
compute the variables P2 and P3. Therefore, the value flow is specified as the aggregation level in the
monitoring request.



Symmetry 2018, 10, 713 11 of 19

Figure 6. The monitoring request for byte statistics of related flows in DDoS attack detection.

4.2. Detection Algorithm

There are mainly two advantages of the proposed DDoS detection approach. Firstly, it can
characterize the DDoS attack more accurately through the defined three typical variables P1, P2 and
P3. Secondly, it can leverage the central control functionality and the event definition strategy of
FlexMonitor to maintain and collect the flow information for DDoS detection, which reduces the
complexity of DDoS detection to a great extent.

Assume T denotes a monitoring period and the proposed approach will compute the three
variables P1, P2 and P3 at the end of each monitoring period. The pseudo-code of the proposed
approach is shown in Algorithm 1. Lines 1–7 describe the first phase of the proposed approach and
Lines 8–16 describe the second phase of the proposed approach. In the first phase, the controller
computes the change rate of the variable P1 according to the real-time active flow list in the controller.
In SDN, when a new flow arrives, the switch will send the corresponding PacketIn packet to the
controller and when a flow is no longer active, the switch will send the corresponding FlowRemoved
packet to the controller. Therefore, the active flow list can be timely maintained by the controller. If the
change rate of the variable P1 for a server or service is greater than the value α, the corresponding server
would be added into the suspected attacked server set. To make further identification, the controller
needs to collect some related status and statistics information from the network. For each suspected
attacked server or service, the controller often pointedly chooses the corresponding nearest edge
switches to make the related status and statistics collection. By this way, the controller can avoid
incurring too much monitoring overhead during the monitoring. In the second phase, the controller
computes the change rate of the variable P2 and P3 for each suspected attacked server or service.
Based on FlexMonitor, the approach can adopt two monitoring methods to collect the network status
and statistics information: deploying the network event triggers and using customized flow statistics
collection algorithm. By combining these two monitoring methods, it can efficiently obtain the required
information for computing the change rate of the variable P2 and P3. Regarding the network event
trigger, the proposed approach defines a specific threshold and its corresponding multiples as the
triggering condition and defines the byte statistics of the traffic which is sent to and originated from
the suspected attacked server as the basic monitoring data. When the byte statistics of the targeted
traffic reaches the triggering condition, the switch would send a triggering message including the
corresponding byte statistics to the controller. In this way, the byte statistics information can be
collected at low cost. Regarding another monitoring way, it is used to overcome the shortage of the
network event trigger in the flow statistics collection. For the suspected attacked servers the total
byte statistics of which do not exceed the defined threshold, deploying network event triggers cannot
collect its corresponding byte statistics. In this case, the proposed approach uses customized flow
statistics collection algorithm to pointedly poll the byte statistics at the end of each monitoring period.
If the change rates of P2 and P3 for the suspected attacked server or service are greater than the values
β and γ, respectively, it is determined that the corresponding server or service is attacked by DDoS.



Symmetry 2018, 10, 713 12 of 19

Algorithm 1 DDoS detection.
Input: Des_List, ActiveFlow_List
Output: Attacked_Target_Set

1: for each destination i in Des_List do
2: Compute the corresponding source list from ActiveFlow_List
3: Compute the change rate for P1i
4: if Rp1i>α then
5: Add destination i into suspected attacked target List
6: end if
7: end for
8: for each target j in suspected attacked target List do
9: Collect the byte statistics Byte_toj that sent to j

10: Collect the byte statistics Byte_fromj that sent from j
11: Compute the change rate for P2j
12: Compute the change rate for P3j
13: if RP2j >β and RP3j >γ then
14: Add target j into Attacked_Target_Set
15: end if
16: end for

Assume n denotes the number of the destinations in the network, which is equals to the size of
the array Des_List, and m denotes the active flows in the network, which is equals to the size of the
array ActiveFlow_List. Considering the suspected attacked target list is conditionally obtained from
the array Des_List, its size is much smaller than the number of the destinations. Therefore, according
to Algorithm 1, its complexity is O(n*m).

5. Evaluation

We implemented the proposed DDoS detection approach and evaluated its detecting performance
based on the NetMagic platform. The experimental results show that the proposed DDoS detection
approach can timely and accurately detect the DDoS attack at low cost. These results also indirectly
show that FlexMonitor has greater flexibility, which can support various monitoring approaches.

5.1. Experimental Settings

In this experiment, we implemented the proposed DDoS detection approach based on NetMagic
platform, which includes two parts: hardware platform and software platform [6]. The hardware
platform is a combination of commodity Ethernet switch chip and FPGA. The former provides the
function of fast data processing and the latter makes NetMagic platform reconfigurable. The software
platform was implemented on the remote host and provided well-defined interface to control the
hardware platform across networks. The communication between the two sub-platforms was complied
to the NMac protocol.

As shown in Figure 7, the experimental topology consisted of a NetMagic platform and three end
hosts including the controller, h1 and h2, respectively. The controller was used to deploy the proposed
DDoS detection approach, which can monitor the traffic through SW1. h1 and h2 were used as the
client and the server, respectively, to simulate network traffic. In this experiment, 110 different clients
were simulated by using 110 different client applications hosted on h1 and three different servers were
simulated by using three different server applications hosted on h2.



Symmetry 2018, 10, 713 13 of 19

Figure 7. The experimental topology.

Assuming all the flows generated during visiting a specific application can be regarded as a
flow group, there were three flow groups in total between h1 and h2. In terms of each flow group,
the number of its corresponding flows was changing over the time and these flows could be classified
into two kinds: (1) the flows originated by the client; and (2) the flows originated by the server.
As shown in Table 2, the simulated three flow groups had different characteristics in terms of the
visiting volume, the traffic rate and symmetry. Specifically, the number of the flows originated by the
client in each flow group changed over time, as shown in Figure 8. In the first 10 s, the increase in the
flow number of each flow group was quite small. Their corresponding flow number was nearly the
same and remained about 5. From the tenth second, the increased flow numbers of Flow Group 1 and
Flow Group 2 increased abruptly and significantly, reaching 70 and 20, respectively. The increased flow
number of Flow Group 3 increased slightly, and was only 1 or 2. From the twentieth second, the flow
number of these three flow groups no longer changed greatly.

Table 2. The characteristics comparison of the three flow groups.

Flow Group
Attribute Visiting Volume Traffic Rate Symmetry

1 High High No
2 High High Yes
3 Low High No

Figure 8. The three groups of simulated flows.

5.2. Evaluation Metrics

The detecting performance was fully analyzed and compared among the proposed approach,
OverWatch [24] and the baseline approach, which is generally based on the two factors (P2 and P3)



Symmetry 2018, 10, 713 14 of 19

to detect DDoS attack and depends on the periodic polling to obtain the flow statistics information.
OverWatch is also based on the two factors (P2 and P3) to detect DDoS attack and also depends on
the periodic polling to obtain the flow statistics information. However, the computing of the two
factors and the collection of flow statistics information in OverWatch are finished in the switches.
The controller in OverWatch would only receive the DDoS attack notification from the switches on
the condition that the switch detects the DDoS attack. Considering the detection mechanism of the
baseline approach and OverWatch is the same, we only discuss the cost of OverWatch with other two
DDoS detection approaches in this section.

5.2.1. Detection Accuracy

In this experiment, the proposed approach computed the three variables (P1, P2 and P3) to detect
the DDoS attack and the change of these three variables is shown in Figure 9. The baseline approach
computed the two variables (P2 and P3) to detect the DDoS attack and the change of these two variables
is shown in Figure 10. As shown in Figure 9a, the variable P1 for Flow Group 3 changed slightly.
The ones for Flow Group 1 and Flow Group 2 changed greatly. Thus, it can be inferred that the DDoS
attack does not exist in Flow Group 3 and the DDoS attack may exist in Flow Group 1 and Flow Group
2. As shown in Figure 9b,c, the variables P2 and P3 for Flow Group 1 changed greatly and for Flow
Group 2 changed slightly over the time, especially after the twentieth second. Thus, it can be inferred
that the DDoS attack exists in Flow Group 1. As shown in Figure 10a,b, the variables P2 and P3 for
Flow Group 1 and Flow Group 3 all changed greatly over the time. Thus, it can be inferred that the
DDoS attack exists in Flow Group 1 and Flow Group 3. However, the DDoS attack actually only exists
in Flow Group 1. Therefore, the baseline approach made an error in the DDoS detection. The three
variables P1, P2 and P3 can completely characterize the DDoS attack and missing any factor will lead
to the possibility of detecting errors.

In addition, the proposed approach can narrow the scope of the detection through computing the
variable P1. By this way, it can detect the DDoS attack pointedly and in a timely manner.

(a) The change rate of visit volume for servers
(services).

(b) The traffic rate for flow groups.

(c) The symmetry for flow groups.

Figure 9. The change of three variables for the proposed approach when threshold =8 KB and T = 2 s.



Symmetry 2018, 10, 713 15 of 19

(a) The traffic rate for flow groups. (b) The symmetry for flow groups.

Figure 10. The change of P2 and P3 for the baseline approach when T = 1 s.

5.2.2. Different Threshold

The appropriate flow statistics threshold is extremely important for obtaining the flow statistics
information from the switches. There are mainly two key functionalities about this value: (1) it can
determine the starting point of the flow statistics collection; and (2) it can indirectly affect the time
interval between the adjacent received flow statistics messages. As shown in Figure 11, if the flow
statistics threshold is too low, the collection of the flow statistics information will be too frequent,
which may be similar to the low-frequent periodic polling. Using this way may cause high network
overhead during the flow statistics collection. As shown in Figure 12, if the flow statistics threshold
is too high, the starting point of flow statistics collection may be delayed, which leads to the small
flows (the flow statistics of them is less than the threshold) to be not monitored. In addition, it may
not capture the traffic burst due to the possible long time interval between the adjacent received flow
statistics messages.

(a) The traffic rate for flow groups. (b) The symmetry for flow groups.

Figure 11. The change of P2 and P3 for the proposed approach when threshold =5 KB and T = 2 s.

(a) The traffic rate for flow groups. (b) The symmetry for flow groups.

Figure 12. The change of P2 and P3 for the proposed approach when threshold =20 KB and T = 2 s.



Symmetry 2018, 10, 713 16 of 19

5.2.3. Different Detection Period

At the end of each monitoring period, the controller will compute the three variables P1, P2 and
P3. Different detection periods can make different effects on the detecting accuracy of the DDoS attack.
The detection period was set to 1 s and 3 s. When it was set to 1 s, the changes of the variables P1, P2

and P3 are as shown in Figure 13. We can see that, when the monitoring period is low, the computing
frequency of the three variables will become high. In this way, the proposed approach can detect
the DDoS attack in a timely manner but may lead to too much computing overhead and the flow
statistics collection overhead. When it is set to 3 s, the changes of the variables P1, P2 and P3 are as
shown in Figure 14. We can see that, when the monitoring period is high, on the one hand the DDoS
detection will lack the timeliness, while, on the other hand, the accuracy of P1, P2 and P3 will be also
decreased. Therefore, choosing an appropriate monitoring period is also important to the proposed
DDoS detection.

(a) The change rate of visit volume for servers
(services).

(b) The traffic rate for flow groups.

(c) The symmetry for flow groups.

Figure 13. The change of three variables for the proposed approach when threshold =8 KB and T = 1 s.

5.2.4. Cost

The cost of these three DDoS detection approaches mainly includes two parts: the computing cost
and the flow statistics collection cost. The former is caused by computing the variable P1, P2 and P3

in the controller or in the switches. The latter is caused by collecting the flow statistics information
from switches. Especially, the cost of the baseline approach is mainly caused by periodically polling
the switches. The cost of the proposed approach is mainly caused by triggering the flow statistics
messages from the switches. In terms of the two part costs, the flow statistics collection cost has a
greater impact on the network than the computing cost. The reason is that the controller usually has
sufficient computing capability, while the bandwidth resource is very limited in the network. Too much
computing cost may bring little impact on the controller but too much flow statistics collection cost



Symmetry 2018, 10, 713 17 of 19

may seriously interfere with the normal network traffic. Therefore, the cost comparison here refers
more to the comparison of the flow statistics collection cost.

(a) The change rate of visit volume for servers
(services).

(b) The traffic rate for flow groups.

(c) The symmetry for flow groups.

Figure 14. The change of three variables for the proposed approach when threshold =8 KB and T = 3 s.

According to the monitoring data in Subsection 5.2.1, the costs of the three DDoS Detection
approaches are shown in Table 3. The cost of OverWatch is almost equal to zero because the computing
and the polling are all carried out in the switches. The advantages on the flow statistics collection cost
of the proposed approach are reflected in three aspects: (1) it pointedly chooses the targeted switches
and the targeted flows through computing the variable P1 in the controller; (2) it customizes the starting
point of the collection by defining an appropriate flow statistics threshold; and (3) it combines the
event triggering mechanism and customized collection algorithm to collect flow statistics information
from the switches. As shown in Figures 9 and 10, the baseline approach collects the flow statistics
information of all the flows from the very beginning. However, the proposed approach only collects
flow statistics information for Flow Group 1 and Flow Group 2 from the eighteenth second. Under the
condition of guaranteeing the detecting accuracy, the proposed approach generates less overhead than
the baseline approach.

Table 3. The cost comparison of the three DDoS detection approaches.

Detection Approach Flow Group 1 Flow Group 2 Flow Group 3 Implementation Complexity

baseline approach 32 32 32 low
OverWatch 1 0 1 high

the proposed approach 8 7 0 low

However, in terms of the implementation complexity, OverWatch is much higher than the other
two approaches. Considering the polling and the computing in OverWatch are accomplished in
the switch, the implementation of OverWatch must modify the switch. Different from OverWatch,
both the polling operation and the triggering operation can be accomplished by the related mechanism
provided by openflow in the baseline approach and the proposed approach. In addition, to improve



Symmetry 2018, 10, 713 18 of 19

the accuracy of the proposed DDoS detection approach, the determined DDoS attack can be made by
further identification through using the flow content analysis algorithms.

6. Conclusions

This paper proposes a flexible monitoring framework named FlexMonitor, which can efficiently
support a variety of network monitoring approaches and be extended to large-scale networks.
FlexMonitor has two key parts: the monitoring strategy deployment part and the monitoring data
collection part, which can enrich the deployment methods of monitoring strategies and increase kinds
of the monitoring data sources, respectively. To demonstrate the effectiveness of FlexMonitor, the paper
proposes a DDoS detection approach based on FlexMonitor. Based on the evaluation and comparison,
the experimental results show that the proposed DDoS detection approach can timely detect the DDoS
attack at low cost. These results also indirectly show that FlexMonitor has greater flexibility which can
support various monitoring approaches.

Our future work is to improve the interpretation of the monitoring tasks of the upper monitoring
applications. Making the monitoring task interpretation simple and universal can not only improve the
interpreting efficiency of the monitoring tasks, but also facilitate the quick deployment of monitoring
strategies. In addition, we make further study on the improvement of the network event definition
to make more and more network events monitored by the way of deploying network event triggers
in switches.

Author Contributions: Conceptualization, B.W. and J.S.; Formal analysis, B.W. and J.S.; Methodology, B.W.;
Validation, B.W.; Writing—original draft, B.W.; and Writing—review and editing, J.S.

Funding: This research was funded by the National Natural Science Foundation of China (Grant #: 61472438 and
Grant #: 61303264).

Acknowledgments: The authors would like to thank the editor and anonymous referees for the constructive
comments in improving the contents and presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mardani, M.; Giannakis, G.B. Estimating Traffic and Anomaly Maps via Network Tomography. IEEE/ACM
Trans. Netw. 2016, 24, 1533–1547. [CrossRef]

2. Kim, J.; Sim, A.; Sang, C.S.; Kim, I. An approach to online network monitoring using clustered
patterns. In Proceedings of the International Conference on Computing, Networking and Communications,
Silicon Valley, CA, USA, 26–29 January 2017; pp. 656–661.

3. Yu, C.; Lumezanu, C.; Zhang, Y.; Singh, V.; Jiang, G.; Madhyastha, H.V. FlowSense: Monitoring Network
Utilization with Zero Measurement Cost. In Proceedings of the International Conference on Passive and
Active Network Measurement, Hong Kong, China, 18–19 March 2013; pp. 31–41.

4. Yang, Z.; Yeung, K.L. An efficient flow monitoring scheme for SDN networks. In Proceedings of the
2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering, Windsor, ON, Canada,
30 April–3 May 2017; pp. 1–4.

5. Shirali-Shahreza, S.; Ganjali, Y. Traffic statistics collection with FleXam. In Proceedings of the ACM
Conference on SIGCOMM, London, UK, 17–21 August 2015; pp. 117–118.

6. Li, T.; Sun, Z.; Jia, C.; Su, Q.; Lee, M. Using NetMagic to observe fine-grained per-flow latency measurements.
ACM SiGCOMM Comput. Commun. Rev. 2011, 41, 466–467. [CrossRef]

7. Xuan, T.P.; Fukuda, K. Adaptive and distributed monitoring mechanism in software-defined networks.
In Proceedings of the International Conference on Network and Service Management, Tokyo, Japan,
26–30 November 2017; pp. 1–5.

8. Shah, S.A.R.; Bae, S.; Jaikar, A.; Noh, S.Y. An adaptive load monitoring solution for logically centralized
SDN controller. In Proceedings of the Network Operations and Management Symposium, Kanazawa, Japan,
5–7 October 2016; pp. 1–6.

http://dx.doi.org/10.1109/TNET.2015.2417809
http://dx.doi.org/10.1145/2043164.2018524


Symmetry 2018, 10, 713 19 of 19

9. Xiao, K. The Research and Application of Simple Network Management Protocol SNMP. China Comput.
Commun. 2018. Available online: http://erlang.org/doc/apps/snmp/snmp.pdf (accessed on 1
October 2018).

10. Li, Y.; Kim, C.; Kim, C.; Yu, M. FlowRadar: A better NetFlow for data centers. In Proceedings of the Usenix
Conference on Networked Systems Design and Implementation, Santa Clara, CA, USA, 16–18 March 2016;
pp. 311–324.

11. Song, P.; Liu, Y.; Liu, T.; Qian, D. Controller-proxy: Scaling network management for large-scale SDN
networks. Comput. Commun. 2017, 108, 52–63. [CrossRef]

12. Megyesi, P.; Botta, A.; Aceto, G. Available bandwidth measurement in software defined networks.
In Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 4–8 April 2016;
pp. 651–657.

13. Tang, F.; Li, L.; Barolli, L.; Tang, C. An Efficient Sampling and Classification Approach for Flow Detection in
SDN-Based Big Data Centers. In Proceedings of the IEEE International Conference on Advanced Information
Networking and Applications, Taipei, Taiwan, 27–29 March 2017; pp. 1106–1115.

14. Adrichem, N.L.M.V.; Doerr, C.; Kuipers, F.A. OpenNetMon: Network monitoring in OpenFlow
Software-Defined Networks. In Proceedings of the Network Operations and Management Symposium,
Krakow, Poland, 5–9 May 2014; pp. 1–8.

15. Henni, D.E.; Hadjaj-Aoul, Y.; Ghomari, A. Probe-SDN: A smart monitoring framework for SDN-based
networks. In Proceedings of the Global Information Infrastructure and NETWORKING Symposium,
Saint Pierre, France, 25–27 October 2017; pp. 1–6.

16. Chowdhury, S.R.; Bari, M.F.; Ahmed, R.; Boutaba, R. PayLess: A low cost network monitoring framework
for Software Defined Networks. In Proceedings of the Network Operations and Management Symposium,
Krakow, Poland, 5–9 May 2014; pp. 1–9.

17. Su, Z.; Wang, T.; Xia, Y.; Hamdi, M. FlowCover: Low-cost flow monitoring scheme in software defined
networks. In Proceedings of the Global Communications Conference, Austin, TX, USA, 8–12 December 2015;
pp. 1956–1961.

18. Liu, J.; Li, Y.; Chen, M.; Dong, W. Software-defined internet of things for smart urban sensing. IEEE Commun.
Mag. 2015, 53, 55–63. [CrossRef]

19. Xu, Y.; Yan, Y.; Dai, Z.; Wang, X. A management model for SDN-based data center networks. In Proceedings
of the Computer Communications Workshops, Toronto, ON, Canada, 27 April–2 May 2014; pp. 113–114.

20. Tsiropoulou, E.E.; Baras, J.S.; Papavassiliou, S.; Sinha, S. RFID-based smart parking management system.
Cyber-Phys. Syst. 2017, 3, 22–41. [CrossRef]

21. Sagduyu, Y.E.; Ephremides, A. A game-theoretic analysis of denial of service attacks in wireless random
access. Wirel. Netw. 2009, 15, 651–666. [CrossRef]

22. Tsiropoulou, E.E.; Baras, J.S.; Papavassiliou, S.; Qu, G. On the Mitigation of Interference Imposed by
Intruders in Passive RFID Networks. In Proceedings of the International Conference on Decision and Game
Theory for Security, New York, NY, USA, 2–4 November 2016.

23. Kandoi, R.; Antikainen, M. Denial-of-service attacks in OpenFlow SDN networks. In Proceedings
of the IFIP/IEEE International Symposium on Integrated Network Management, Ottawa, ON, Canada,
11–15 May 2015; pp. 1322–1326.

24. Yang, X.; Han, B.; Sun, Z.; Huang, J. SDN-based DDoS Attack Detection with Cross-Plane Collaboration and
Lightweight Flow Monitoring. In Proceedings of the GLOBECOM 2017, Singapore, 4–8 December 2017.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://erlang.org/doc/apps/snmp/snmp.pdf
http://dx.doi.org/10.1016/j.comcom.2017.05.002
http://dx.doi.org/10.1109/MCOM.2015.7263373
http://dx.doi.org/10.1080/23335777.2017.1358765
http://dx.doi.org/10.1007/s11276-007-0088-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	FlexMonitor
	Overview
	Monitoring Strategy and Data Source
	Strategy
	Data Source

	Monitoring Request
	Scalability

	Example
	DDoS Detection
	Detection Algorithm

	Evaluation
	Experimental Settings
	Evaluation Metrics
	Detection Accuracy
	Different Threshold
	Different Detection Period
	Cost


	Conclusions
	References

