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Abstract: In this paper, we have investigated Noether symmetries of the Lagrangian of Kantowski–Sachs
spacetime. The associated Lagrangian of the Kantowski–Sachs metric is used to derive the set of
determining equations. Solving the determining equations for several values of the metric functions,
it is observed that the Kantowski–Sachs spacetime admits the Noether algebra of dimensions 5, 6,
7, 8, 9, and 11. A comparison of the obtained Noether symmetries with Killing and homothetic
vectors is also presented. With the help of Noether’s theorem, we have presented the expressions for
conservation laws corresponding to all Noether symmetries. It is observed that the positive energy
condition is satisfied for most of the obtained metrics.
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1. Introduction

Einstein’s field equations (EFEs), Gab = kTab, are ten-tensor equations, which describe the
gravitational effects produced by a given mass in a spacetime. In these equations, the stress-energy
tensor Tab gives the distribution of energy and momentum, k represents the gravitational constant,
while Gab expresses the spacetime curvature and is known as the Einstein tensor. Moreover, the Einstein
tensor Gab can be expressed as Gab = Rab − R

2 gab, where Rab = the Ricci tensor, gab = the metric tensor,
and R = the Ricci scalar.

The quantities Rab and R appearing in the EFEs are built up from gab and its partial derivatives.
In this way, the EFEs form a system of partial differential equations. A Lorentz metric gab is regarded
as an exact solution of EFEs if it is obtained by solving the EFEs exactly in closed form and is
conformable to a physically realistic Tab. Finding the exact solutions of EFEs is not an easy task
unless some simplifying assumptions are employed. Therefore, only a few physically meaningful
solutions of these equations are found in the literature [1]. Among the approaches followed for
obtaining the exact solutions of EFEs, the most popular is to use some symmetry restrictions on the
tensor gab. These restrictions are mathematically expressed as LX gab = 0, where X is called a Killing
vector (KV) and L denotes the Lie derivative operator. It is well known that every KV corresponds
to a conservation law. A large body of the literature is devoted to the investigation of KVs and
corresponding conservation laws in spacetimes [1–3].

The symmetries of tensors other than the metric tensor are usually referred to as collineations.
Some examples of collineations include curvature collineations (LXRa

bcd = 0), Ricci collineations
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(LXRab = 0), and matter collineations (LXTab = 0). These collineations have also been thoroughly
discussed [4–9].

Apart from the conventional symmetries defined above, the idea of another type of symmetry,
known as Noether symmetry (NS), was given by Emmy Noether [10]. According to Noether’s theorem,
if the Lagrangian of a system admits a continuous symmetry, then this symmetry corresponds
to a conservation law. Consequently, if a system remains unchanged under time translation and
spacial translations and rotations, this theorem yields the conservation of energy and linear and
angular momenta.

The study of NS is important due to the fact that it usually provides the additional conservation
laws, not given by KVs. If the Killing and Noether algebras are denoted by K(M) and N(M),
respectively, then K(M) ⊆ N(M). The NS have also a close link with homothetic vectors (HVs).
In fact, if X is an HV, that is LX gab = 2ψgab; ψ being a constant, then X + 2ψu∂u is a Noether symmetry
associated with X. Here, u is the geodesics parameter of the world line of a point particle moving in
a spacetime. Conversely, if X + 2ψu∂u is an NS, then X is an HV, provided that X is independent of
u [11]. A Noether symmetry that is neither a KV, nor associated with an HV is known as a proper
Noether symmetry.

NS and their comparison with Killing and homothetic vectors have been studied for some
well-known spacetimes. A comparative study of KVs and NS for the conformally-flat Friedmann
metric was provided in [12], and it was concluded that this metric admits proper NS. Considering
some specific spherically-symmetric metrics, Bokhari et al. [13] conjectured that the NS of the
Lagrangian provide additional conservation laws. The NS of some other physically-important
spacetimes were examined by different authors. Camci [14] studied the NS of geodesic motion
for the geodesic Lagrangian of the metric of Gödel spacetimes. Camci and Yildirim [15] worked on
the NS of the geodesic Lagrangian for some classes of pp-wave spacetimes. Hickman and Yazdan [11]
studied NS in Bianchi type II spacetimes. They have shown that the Noether algebra of Bianchi type II
spacetimes contain Killing, as well as homothetic vectors. Ali et al. [16–18] worked on the classification
of different spacetimes via NS including static plane, static spherical, and static cylindrically-symmetric
spacetimes. Jamil et al. [19,20] worked on the complete classification of non-static plane and non-static
spherically-symmetric spacetimes via NS. Paliathanasis et al. [21] established a relation between the Lie
symmetries of the Klein–Gordon equation and conformal Killing vectors of the underlying geometry,
where they also stated that the resulting Lie symmetries of the conformal algebra are also NS. Tsamparlis et
al. [22] stated that for dynamical system whose equations of motion are of the form ẍa + Γa

bcẋbẋc + f (xa);
f (xa) being an arbitrary function of its argument, the computation of Lie and Noether symmetries reduces
to the problem of finding the special projective collineations. Recently, the Bianchi type V and non-static
plane symmetric spacetimes were completely classified via their NS [23,24].

It is important to mention here that the formulation of conservation laws may not require the
Lagrangian of the system. As an example, one can see the work of Ma et al. [25], who have recently
established a result giving the direct formulation of conservation laws for differential equations
including the heat equation, Burgers’ equation, and the Korteweg–de Vries (KdV) equation, regardless
of the existence of a Lagrangian. The same authors also discussed the existence of lump solutions
involving free parameters for some nonlinear partial differential equations that present Lie symmetries
and that may generate associated conservation laws [26].

The Kantowski–Sachs spacetime describes a spatially-homogeneous and anisotropic universe
model that admits an isometry group G4 acting on homogeneous spacelike hypersurfaces. As the
Kantowski–Sachs metric is of great interest and there is a great deal of information about this
metric scattered throughout the literature, it would be useful to investigate the NS possessed by
the Lagrangian of this metric and their relation with Killing and homothetic vectors.

For a physically-realistic spacetime, its energy density, represented by T00, must be non-negative.
This condition is usually referred to as the positive energy condition. The positive energy condition is
important because if one allows both positive and negative energy regions, the empty vacuum may become
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unstable. In this paper, we classify the Lagrangian of the Kantowski–Sachs metric according to its NS and
check the positive energy condition for the obtained models admitting different algebras of NS.

2. Determining Equations

The Kantowski–Sachs metric is given by [27]:

ds2 = dt2 − λ2(t)dr2 − v2(t)
(

dθ2 + sin2 θdφ2
)

, (1)

where the functions λ(t) 6= 0 and v(t) 6= 0 depend on t only. The minimum KVs admitted by the
above metric are:

X1 = ∂r, X2 = ∂φ,

X3 = sin φ∂θ + cot θ cos φ∂φ,

X4 = − cos φ∂θ + cot θ sin φ∂φ. (2)

One may use the EFEs with k = 1 to get the following non-zero components of Tab.

T00 =
1

λ3v2

(
v′2λ3 + 2λ2vλ′v′ + λ3

)
,

T11 = − 1
v2

(
2vλ2v′′ + λ2v′2 + λ2

)
,

T22 = − v
λ3

(
λ3v′′ + λ2v′λ′ + vλ2λ′′

)
,

T33 = sin2 θ T22, (3)

where the primes on metric functions denote their derivatives with respect to t. The usual Lagrangian
L corresponding to the Kantowski–Sachs metric (1) is given by:

L = ṫ2 − λ2(t)ṙ2 − v2(t)
(

θ̇2 + sin2 θφ̇2
)

, (4)

where the dot represents the derivative with respect to the parameter u of the world line of a point
particle moving in Kantowski–Sachs spacetime. The Lagrangian for this point particle, given in (4),
represents the square of the Lagrangian for the action principle that leads to geodesics by minimizing

the spacetime metric
∫

ds =
√

gab
dxa

du
dxb

du du [28]. It may be noted that the coefficients of the quadratic

terms in dxµ

du
dxν

du represent the components of the metric.
A vector field X = η ∂

∂u + Xi ∂
∂xi

is called an NS if the Lagrangian of a physical system remains
invariant under the action of X such that the following condition holds:

X(1)L + L(Dη) = DF, (5)

where:
X(1) = X + Xi

u
∂

∂ẋi
(6)

is the first prolongation of X such that Xi
u = DXi − ẋiDη. Here, D denotes the total differential

operator, given by:

D =
∂

∂u
+ ẋi

∂

∂xi
. (7)

Moreover, η, Xi, and F all depend on the variables (u, xi), where xi = (t(u), r(u), θ(u), φ(u)).
The function F is known as the gauge function. Once we find the NS and corresponding gauge function,
we can use Noether’s theorem to find the corresponding conservation laws in the following way:
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I = ηL +
(

Xi − ẋiη
) ∂L

∂ẋi
− F. (8)

We use the Lagrangian given in Equation (4) in the equation defining the NS, that is Equation (5),
to get the following set of 19 equations.

F,u = η,φ = η,θ = η,r = η,t = 0, (9)

2X0
,t = η,u, (10)

2λ′X0 + 2λX1
,r = λη,u, (11)

2v′X0 + 2vX2
,θ = vη,u, (12)

X0
,r − λ2X1

,t = 0, (13)

X0
,θ − v2X2

,t = 0, (14)

X0
,φ − v2 sin2 θX3

,t = 0, (15)

λ2X1
,θ + v2X2

,r = 0, (16)

λ2X1
,φ + v2 sin2 θX3

,r = 0, (17)

X2
,φ + sin2 θX3

,θ = 0, (18)

2v′X0 + 2v cot θX2 + 2vX3
,φ = vη,u, (19)

2X0
,u = F,t, (20)

2λ2X1
,u = −F,r, (21)

2v2X2
,u = −F,θ , (22)

2v2 sin2 θX3
,u = −F,φ. (23)

The solution of the above system of equations would give the values of the components of
the vector field generating NS and the metric functions λ and v. Consequently, the corresponding
Kantowski–Sachs metrics may represent the exact solutions of EFEs. We omit writing the basic
calculations and present the list of metrics, their NS, Lie algebras, and the corresponding conservation
laws of all symmetries in the forthcoming sections. The bounds for the positive energy condition and
the singularity of the Ricci scalar are also discussed for all the obtained metrics.

3. Five Noether Symmetries

The minimal set of NS admitted by the Lagrangian of the Kantowski–Sachs metric is:

X0 = ∂u, X1 = ∂r, X2 = ∂φ,

X3 = sin φ∂θ + cot θ cos φ∂φ,

X4 = − cos φ∂θ + cot θ sin φ∂φ. (24)

Out of these five NS, four are the basic KVs of the Kantowski–Sachs metric and X0 is the symmetry
corresponding to the Lagrangian. Here, X0 represents the translation of geodesics parameter u and X1

is the translation of spatial coordinate r. The generators X2, X3 and X4 form a Lie subalgebra for the
rotation group SO(3). The values of the Kantowski–Sachs metric functions for which the corresponding
Lagrangian admit the above minimal NS are given in the following Table 1:
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Table 1. Exact form of metrics admitting five Noether symmetries (NS).

No. λ(t) v(t)

3a λ′ 6= 0 v′′ 6= 0 and v 6= cosh t
3b λ 6= sinh t v = cosh t
3c (λλ′)′′ 6= 0 v = const. = ξ

3d λ =
√

at2 + 2bt + c; a 6= 0, v = const. = ξ

3e λ =
√

2bt + c v = const. = ξ

The corresponding Lie algebra for generators given in Equation (24) is:

[X3, X2] = X4, [X2, X4] = X3, [X4, X3] = X2, [Xi, Xj] = 0, otherwise.

Using Equation (8), the conserved forms of these NS become:

I0 = −ṫ2 + λ2(t) ṙ2 + v2(t) θ̇2 + v2(t) sin2 θ φ̇2,

I1 = −2λ2(t) ṙ2,

I2 = −2v2(t) sin2 θ φ̇,

I3 = −2v2(t)
(
sin φ θ̇ + cos θ cos φ sin θ φ̇

)
,

I4 = −∂I3

∂φ
. (25)

The energy density and the Ricci scalar for Models 3a and 3b are obtained as T00 = 1+v′2
v2 + 2λ′v′

vλ

and R = − 2
v2λ

(
2vλv′′ + v2λ′′ + 2vv′λ′ + λv′2 + λ

)
. One can observe that the positive energy condition

is satisfied if λ′
λ and v′

v have the same signs. Moreover, the Ricci scalar remains non-singular for t→ 0.
For the remaining three models, the energy density and the Ricci scalar are given by:

T00 =
1
ξ2 , R = −2

(
λ′′

λ
+

1
ξ2

)
, (26)

such that the energy remains positive for any arbitrary non-zero ξ and the Ricci scalar is regular for
any function λ.

4. Six Noether Symmetries

The Lagrangian of the following Kantowski–Sachs metric admits six NS:

ds2 = dt2 − γ2dr2 − v2(t)
(

dθ2 + sin2 θdφ2
)

, (27)

where γ is a non-zero constant, v′′ 6= 0 and v 6= cosh t. Out of these six NS, five are the same as given
in Equation (24) and one extra Noether symmetry is given by:

X5 =
u
γ2 ∂r, F = −2r.

The conserved form for this symmetry is I5 = −2(uṙ − r). The corresponding non-zero
commutator is [X0, X5] =

1
γ2 X1.

The metric (27) is non-conformally flat, and its energy density is obtained as T00 = 1+v′2
v2 , which is

always positive. The Ricci scalar is given by R = − 2
v2

(
1 + v′2 + 2vv′′

)
, which has no singularity at

the origin.

5. Seven Noether Symmetries

There are seven metrics whose Lagrangian admit a seven-dimensional algebra of NS. Table 2
contains all these metrics along with the two extra NS, other than the minimal NS given in (24), their Lie
algebra, and the corresponding conserved quantities.
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Table 2. Metrics admitting seven Noether symmetries.

No. λ(t) ν(t) Noether Symmetries Invariants Lie Algebra

7(i) sin(βt); β 6= 0 γ 6= 0
X5 = cosh(βr)∂t − cot(βt) sinh(βr)∂r I5 = 2 cosh(βr)ṫ + 2 cos(βt) sin(βt) sinh(βr)ṙ [X1, X5] = βX6, [X1, X6] = βX5,

X6 = sinh(βr)∂t − cot(βt) cosh(βr)∂r I6 = 1
β

∂I5
∂r [X6, X5] = βX1.

7(ii) cos(βt) γ 6= 0
X5 = cosh(βr)∂t + tan(βt) sinh(βr)∂r I5 = 2 cosh(βr)ṫ− 2 cos(βt) sin(βt) sinh(βr)ṙ Same as in case 7(i)

X6 = sinh(βr)∂t + tan(βt) cosh(βr)∂r I6 = 1
β

∂I5
∂r

7(iii) sinh(βt); β 6= 0 γ 6= 0
X5 = cosh(βr)∂t − coth(βt) sinh(βr)∂r I5 = 2 cosh(βr)ṫ + 2 cosh(βt) sinh(βt) sinh(βr)ṙ Same as in case 7(i)

X6 = sinh(βr)∂t − coth(βt) cosh(βr)∂r I6 = 1
k

∂I5
∂r

7(iv) cosh(βt) γ 6= 0
X5 = cos(βr)∂t − tanh(βt) sin(βr)∂r I5 = 2 cos(βr)ṫ + 2 cosh(βt) sinh(βt) sin(βr)ṙ Same as in case 7(i)

X6 = sin(βr)∂t + tanh(βt) cos(βr)∂r I6 = 1
β

∂I5
∂r

7(v) eβt γ 6= 0
X5 = ∂t − βr∂r I5 = 2ṫ + 2βre2βt ṙ [X5, X1] = βX1, [X1, X6] = X5,

X6 = r∂t − e−2βt

2β ∂r − βr2

2 ∂r I6 = 2rṫ + ṙ
β + βr2e2βt ṙ [X6, X5] = βX6

7(vi) c1t + c2 ν = λ
X5 = u2

2 ∂s +
u(c1t+c2)

2c1
∂t; F = t(c1t+2c2)

2c1
I5 = u2

2 L + u(c1t+c2)ṫ
c1

− t2

2 −
c2t
c1

[X0, X5] = X6, [X0, X6] = X0,

V6 = u∂u + c1t+c2
2c1

∂t I6 = uL + (c1t+c2)ṫ
c1

[X6, X5] = X5.

7(vii)
(c1t + c2)

α−2β
α ;

c1t + c2

X5 = u∂u + c1t+c2
2c1

∂t I5 = uL + (c1t+c2)ṫ
c1

[X0, X5] = X0, [X1, X6] = X1,

α 6= 0 X6 = r∂r I6 = −2r(c1t + c2)
2(α−2β)

α ṙ [X6, X1] = X5
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The metric 7(i) is non-conformally flat, whose NS other than the minimal set of NS are KVs. Here,
the generators X1, X5 and X6 form a Lie algebra for the rotation group SO(3).

Similarly, the metric 7(ii) is non-conformally flat, and it admits seven NS, five of which are the
same as given in (24), and the remaining two are KVs, represented by X5 and X6.

The energy density and the Ricci scalar for the models 7(i) and 7(ii) are obtained as T00 = 1
γ2 and

R = 2
(

β2 − 1
γ2

)
. The positive energy condition clearly holds, and the spacetimes remain regular at

the origin, as the Ricci scalar is constant.
The non-conformally-flat metric 7(iii) admits five NS as given in (24) along with two extra KVs,

which are represented by X5 and X6.
The Weyl tensor for the metric 7(iv) has non-zero components, and hence, it is non-conformally

flat. This metric possesses seven NS, out of which five are the same as given in (24) and the extra two
are KVs.

The metric 7(v) is non-conformally flat, which admits two extra NS X5 and X6, which are KVs.
The energy density T00 and the Ricci scalar R for the models 7(iii), 7(iv), and 7(v) are:

T00 =
1

γ2 , R = −2
(

β2 +
1

γ2

)
, (28)

such that the positive energy condition is satisfied and the Ricci scalar is non-singular at the origin.
There exist two extra NS other than the minimal set of five NS for the non-conformally-flat metric

7(vi). The Noether symmetry X6 corresponds to a homothetic vector c1t+c2
2c1

∂t, with the homothetic
constant ψ = 1

2 . For this model, the energy density and the Ricci scalar become:

T00 =
1 + 3c2

1
(c1t + c2)2 , R = −

2(3c2
1 + 1)

(c1t + c2)2 . (29)

For any non-zero values of c1 and c2, the energy density is positive and the Ricci scalar remains
non-singular at t→ 0.

Finally, the metric 7(vii) is non-conformally flat, which admits the minimal set of five NS along
with two extra NS X5 and X6. Here, X6 is a KV, and X5 corresponds to a homothetic vector c1t+c2

2c1
∂t,

with the homothetic constant ψ = 1
2 . The energy density and Ricci scalar for this metric are given as:

T00 =
α + 3c2

1α− 4c2
1β

α(c1t + c2)2 , R = −
2(3c2

1α2 − 6c2
1αβ + 4c2

1β2 + α2)

α2(c1t + c2)2 . (30)

For c2 6= 0, the Ricci scalar has no singularity when t → 0. The energy density may vary for
different values of the constants involved in T00. The following two graphs in Figure 1 show positive
and negative energy density for some particular choices of the values of these constants.

As far as the case in which the positive energy condition is not met, it could represent an
accelerated phase of expansion that may possibly be attributed to the dark energy.
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(a) α = β, c1 = 0.5 and c2 = 1 (b) c1 = α = c2 = 1 and β = 2

Figure 1. Graphs of T00.

6. Eight Noether Symmetries

The following is only one Kantowski–Sachs metric whose Lagrangian admits eight NS:

ds2 = dt2 − γ2dr2 − (αt + β)2
(

dθ2 + sin2 θdφ2
)

, (31)

where α 6= 0 and γ 6= 0. The Weyl tensor for the above metric has non-vanishing components,
and it is non-conformally flat. The set of eight NS for this metric contains the set of minimal five NS,
given in (24), and the remaining three symmetries are:

X5 =
u2

2
∂u +

u(αt + β)

2α
∂t +

ur
2

∂r; F =
t2

2
+

βt
α
− r2γ2

2
,

X6 =
u
γ2 ∂r; F = −2r,

X7 = u∂u +
αt + β

2α
∂t +

r
2

∂r. (32)

Out of the above three NS, X7 corresponds to a homothetic vector, given by αt+β
2α ∂t +

r
2 ∂r.

The conserved form for these symmetries and Lie algebra are listed below:

I5 =
u2

2

(
−ṫ2 + γ2ṙ2 + (αt + β)2(θ̇2 + sin2 θφ̇2)

)
+

u(αt + β)ṫ
α

− urγ2ṙ− t2

2
− βt

α
+

r2γ2

2
,

I6 = −2uṙ + 2r,

I7 = u
(
−ṫ2 + γ2ṙ2 + (αt + β)2(θ̇2 + sin2 θφ̇2)

)
+

(αt + β)ṫ
α

− rγ2ṙ. (33)

[X0, X5] = X7, [X0, X7] = X0 , [X0, X6] =
1

γ2 X1, [X1, X5] =
γ2

2 X6,

[X1, X7] =
1
2 X1, [X7, X5] = X7, [X7, X6] =

1
2 X6.

The energy density and the Ricci scalar for Model (31) are respectively given by T00 = 1+α2

(αt+β)2 and

R = − 2
(αt+β)2 . Here, the positive energy condition holds, and for t→ 0, the scalar R remains regular

if β 6= 0.
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7. Nine Noether Symmetries

Here, we present some Kantowski–Sachs metrics, whose Lagrangian admits nine NS.

(1). ds2 = dt2 − β2dr2 − cosh2 t
(

dθ2 + sin2 θdφ2
)

, (34)

where β 6= 0. The Weyl tensor for the above metric vanishes, and hence, it is conformally flat. The set
of NS for this metric contains the minimal set of five symmetries given in (24), and four extra NS are
admitted, which are listed below:

X5 = u∂r; F = −2r,

X6 = sin θ sin φ∂t + tanh t cos θ sin φ∂θ + csc θ tanh t cos φ∂φ,

X7 = − sin θ cos φ∂t − tanh t cos θ cos φ∂θ + csc θ tanh t sin φ∂φ,

X8 = − cos θ∂t + tanh t sin θ∂θ . (35)

Here, X6, X7, and X8 are KVs, while X5 is a non-trivial Noether symmetry. The Lie algebra in this
case gives:

[X0, X5] = X1, [X6, X2] = [X4, X8] = X7, [X2, X7] = [X3, X8] = X6,
[X6, X3] = [X7, X4] = X8, [X6, X7] = X2, [X6, X8] = X3, [X7, X8] = X4,

and the conservation laws are:

I5 = −2(uβ2ṙ− r),

I6 = 2 sin θ sin φṫ− 2 sinh t cosh t(cos θ sin φθ̇ + sin θ cos φφ̇),

I7 = −2 sin θ cos φṫ + 2 sinh t cosh t(cos θ cos φθ̇ − sin θ sin φφ̇),

I8 = −2 cos θ ṫ− 2 sinh t cosh t sin θθ̇. (36)

The energy density and Ricci scalar for the metric (34) are respectively given by T00 = 1 and
R = −6, such that the positive energy condition is satisfied and R is regular at the origin.

(2). ds2 = dt2 − α2dr2 − β2(dθ2 + sin2 θdφ2), (37)

where α 6= 0 and β 6= 0. For the above metric, the Weyl tensor has non-zero components. The extra
four NS other than the minimal set of NS, given in (24), for this metric are:

X5 = ∂t,

X6 = −u∂t; F = −2t,

X7 =
u
α2 ∂r; F = −2r,

X8 = r∂t +
t

α2 ∂r. (38)

Here, X5 and X8 are KVs, while X6 and X7 are non-trivial NS. The Lie algebra and the conserved
quantities are given as:

[X6, X0] = [X8, X1] = X5, [X0, X7] = [X5, X8] =
1
α2 X1,

[X8, X6] = X7, [X8, X7] =
1
α2 X6.

I5 = 2ṫ, I6 = −2uṫ + 2t, I7 = −2uṙ + 2r,

I8 = 2rṫ− 2tṙ. (39)

The corresponding T00 and R for the above metric are given by T00 = 1
β2 and R = − 2

β2 . Clearly,
the energy density is positive for any value of β, and the Ricci scalar is regular at the origin.
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(3). ds2 = dt2 − (αt + β)2dr2 − ξ2(dθ2 + sin2 θdφ2), (40)

where ξ 6= 0. The above metric is non-conformally flat, and it admits the following four NS along with
five minimal symmetries, given in Equation (24).

X5 = −u cosh(αr)∂t +
u

αt + β
sinh(αr)∂r; F = −2β

α
cosh(αr),

X6 = −u sinh(αr)∂t +
u

αt + β
cosh(αr)∂r; F = −2β

α
sinh(αr),

X7 = cosh(αr)∂t −
sinh(αr)

αt + β
∂r,

X8 = sinh(αr)∂t −
cosh(αr)

αt + β
∂r. (41)

From the above, one can see that X5 and X6 are non-trivial NS, while X7 and X8 are KVs. In this
case, the Lie algebra becomes:

[X5, X0] = X7, [X6, X0] = X8, [X1, X5] = αX6,
[X1, X6] = αX5, [X1, X7] = αX8, [X1, X8] = αX7.

The conserved forms of the symmetries are given as follows:

I5 = −2u (cosh(αr)ṫ + (αt + β) sinh(αr)ṙ) +
2β

α
cosh(αr),

I6 =
1
α

∂I5

∂r
,

I7 = 2 (cosh(αr)ṫ + (αt + β) sinh(αr)ṙ) ,

I8 =
1
α

∂I7

∂r
. (42)

For the above model, we have T00 = 1
ξ2 and R = − 2

ξ2 such that the energy density is positive and
the Ricci scalar has no singularity at the origin.

8. Eleven Noether Symmetries

For λ = sinh t and v = cosh t, we have the following Kantowski–Sachs metric, whose Lagrangian
admits eleven NS:

ds2 = dt2 − sinh2 t dr2 − cosh2 t(dθ2 + sin2 θdφ2). (43)

This metric has a zero Weyl tensor, and hence, it is conformally flat. The energy density and
the Ricci scalar for the above model are obtained as T00 = 3 and R = −12. Here, the positive energy
condition is clearly satisfied, and R is non-singular at the origin. The extra six NS (KVs) for the above
metric are as follows:

X5 = sin θ sin φ(sinh r ∂t − coth t cosh r ∂r) + tanh t sinh r(cos θ sin φ ∂θ + csc θ cos φ ∂φ),

X6 = same as X5 with sinh r ↔ cosh r

X7 = − sin θ cos φ(sinh r∂t − coth t cosh r∂r)− tanh t sinh r(cos θ cos φ∂θ − csc θ sin φ∂φ),

X8 = same as X7 with sinh r ↔ cosh r

X9 = − cos θ(sinh r∂t − coth t cosh r ∂r) + tanh t sinh r sin θ∂θ ,

X10 = same as X9 with sinh r ↔ cosh r (44)

One may easily simplify Equation (8) to find the expressions for the corresponding conservation
laws for the above generators. The Lie algebra in this case is obtained as:
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[X1, X5] = X6, [X1, X6] = X5, [X1, X7] = X8, [X1, X8] = X7, [X1, X9] = X10,
[X1, X10] = X9, [X5, X2] = X7, [X6, X2] = X8, [X2, X7] = X5, [X2, X8] = X6,
[X5, X3] = X9, [X6, X3] = X10, [X3, X9] = X5, [X3, X10] = X6, [X7, X4] = X9,
[X8, X4] = X10, [X4, X9] = X7, [X4, X10] = X8, [X5, X6] = X1, [X7, X5] = X2,
[X9, X5] = X3, [X6, X8] = X2, [X6, X10] = X3, [X7, X8] = X1, [X9, X7] = X4,
[X8, X10] = X4, [X9, X10] = X1,

9. Summary and Discussion

In this paper, we have classified the Lagrangian of the Kantowski–Sachs metric via its NS. The set
of determining equations is obtained and then integrated in several cases. It is observed that the
Kantowski–Sachs metric admits a 5-, 6-, 7-, 8-, 9-, or 11-dimensional Lie algebra of NS for different
values of the metric functions. The number of non-trivial NS for this metric is shown to be one, two,
or three, while the number of KVs is found to be 4, 5, 6, 7, or 10.

We have found five different metrics, each admitting the minimal set of five NS, out of which
four are the minimum KVs of the Kantowski–Sachs metric and one is a non-trivial Noether symmetry,
which is ∂u. The gauge function is trivial here.

There is only one metric (27) that admits six NS. This set of six NS contains the minimal set of five
NS along with one extra Noether symmetry with the gauge function F = −2r.

In the case of seven-dimensional Noether algebra, we have obtained seven different metrics.
For the first five metrics, 7(i)–7(v), we have six KVs and one Noether symmetry ∂u, with a trivial gauge
function. For metric 7(vi), we have the minimal set of NS along with two extra NS, given by X5 and X6.
The gauge function corresponding to X5 is found to be F = t(c1t+2c2)

2c1
. It can bee seen that the Noether

symmetry X6 for this metric corresponds to an HV c1t+c2
2c1

∂t, with homothetic constant ψ = 1
2 . Similar

results are obtained for the metric 7(vii). Here, the number of KVs is five.
There exists only one metric (31) possessing eight NS, of which five are the minimal NS for the

Kantowski–Sachs metric, and three extra NS are obtained, which are presented in (32). One of these
three NS, denoted as X7, corresponds to an HV αt+β

2α ∂t +
r
2 ∂r. The number of KVs for this metric is

only four.
In the case of the nine-dimensional Lie algebra of NS, we have found three metrics (34), (37),

and (40). For the metric (34), we have the minimal set of five NS along with four extra symmetries,
of which three are KVs and one is a non-trivial Noether symmetry u∂r with the gauge function F = −2r.
The number of KVs in this case is seven. For the remaining two metrics (37) and (40), we have six KVs
along with three non-trivial NS.

Finally, we have only one metric (43) where the dimension of the algebra of NS is 11. Out of eleven
NS, ten are the KVs, and there is only one non-trivial Noether symmetry, given by ∂u.

For almost all the obtained metrics, it is observed that the positive energy condition is satisfied,
and the corresponding Ricci scalar has no singularity at the origin.
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