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Abstract: Shadows and normal light illumination and road and non-road areas are two pairs
of contradictory symmetrical individuals. To achieve accurate road detection, it is necessary to
remove interference caused by uneven illumination, such as shadows. This paper proposes a
road detection algorithm based on a learning and illumination-independent image to solve the
following problems: First, most road detection methods are sensitive to variation of illumination.
Second, with traditional road detection methods based on illumination invariability, it is difficult to
determine the calibration angle of the camera axis, and the sampling of road samples can be distorted.
The proposed method contains three stages: The establishment of a classifier, the online capturing of
an illumination-independent image, and the road detection. During the establishment of a classifier,
a support vector machine (SVM) classifier for the road block is generated through training with the
multi-feature fusion method. During the online capturing of an illumination-independent image,
the road interest region is obtained by using a cascaded Hough transform parameterized by a parallel
coordinate system. Five road blocks are obtained through the SVM classifier, and the RGB (Red,
Green, Blue) space of the combined road blocks is converted to a geometric mean log chromatic space.
Next, the camera axis calibration angle for each frame is determined according to the Shannon entropy
so that the illumination-independent image of the respective frame is obtained. During the road
detection, road sample points are extracted with the random sampling method. A confidence interval
classifier of the road is established, which could separate a road from its background. This paper
is based on public datasets and video sequences, which records roads of Chinese cities, suburbs,
and schools in different traffic scenes. The author compares the method proposed in this paper with
other sound video-based road detection methods and the results show that the method proposed
in this paper can achieve a desired detection result with high quality and robustness. Meanwhile,
the whole detection system can meet the real-time processing requirement.

Keywords: Intelligent transportation; online road detection; illuminant invariance; learning-based;
SVM; shadow removed

1. Introduction

Road detection based on vision in the advanced driving assisted system is an important and
challengeable task [1]. The vision data can provide abundant information about the driving scenes [2],
provide an explicit route plan, and can gain both obstacle detection and road profile estimate
information precisely. Therefore, the systems that are vision-based have huge potential in complex
road detection scenes [3].

In recent years, road detection has been extensively studied as a key part of automated driving
systems, especially in vision-based road detection [4–7]. Kong et al. [8] applied the vanishing point
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detection algorithm to road detection, using the Gabor filter to obtain the pixel texture orientation,
and the vanishing point position estimation algorithm of an adaptive soft voting scheme and the road
region segmentation algorithm with a vanishing point constraint were proposed. Munajat et al. [9]
proposed a road detection algorithm based on an RGB histogram filtering and boundary classifier.
The RGB image horizontal projection histogram was used to obtain the approximate area of the road,
and the cubic spline interpolation was used to obtain the road boundary, which was combined to
obtain the road detection result. Somawirata et al. [10] proposed a road detection algorithm that
combined the color space and cluster connecting. The color space was used to obtain the initial road
area, and the wrong road area was removed by cluster connecting to achieve accurate road detection.
Lu et al. [11] proposed a layer-based road detection method, which used the multipopulation genetic
algorithm to realize road vanishing point detection, fused vanishing point, and the clustering strategy
at the super pixel level to realize road seed point selection; used the GrowCut algorithm to obtain
the initial road contour, and used the conditional random field model correction to obtain accurate
road detection results. Wang et al. [12] proposed a road detection algorithm based on parallel edge
features and a fast road rough segmentation method based on edge connection, and comprehensively
applied the parallel edge and road location information, achieving road detection. Yang et al. [13]
proposed a road detection algorithm that combined image edge and region features, and used the
custom difference operator and region growing method to obtain the edge and region features of the
image, respectively, realizing road detection. However, the above studies did not fully consider the
effects of illumination changes and shadows on road detection results. In addition, there is a lack
of necessary road datasets with a shaded road as an effective verification. As a result, the detection
results are more restrictive.

Nowadays, with the rapid development of deep learning and the maturity of its application
fields [14,15], road detection methods based on deep learning have emerged, which have a good
detection effect on shaded road surfaces [16,17]. Geng et al. [18] proposed a road detection algorithm
combining the convolutional neural network (CNN) and Markov random field (MRF), using simple
linear iterative cluster (SLIC) to segment the original image into a super pixel map, training CNN to
automatically learn road features to obtain road regions, and using MRF to optimize road detection
results. Han et al. [19] proposed a semi-supervised and weakly supervised road detection algorithm
based on generative adversarial networks (GANs). For semisupervised road detection, GANs was
used directly to train unmarked data to prevent overfitting. For weakly supervised road detection,
the road shape was used as an additional restriction for conditional GANs. Unfortunately, most deep
learning-based approaches have a high execution time and hardware requirements, and only a few
of them are suitable for real-time applications [20]. Therefore, it is not advisable to implement road
detection through a deep learning-based approach and apply it to practical applications. So, how to
effectively remove the effects of illumination changes and shadows on road detection results and
obtain higher detection results?

Based on the above, Alvarez et al. [21] introduced the illumination invariance theory into road
detection. Alvarez et al. [21] and Frémont et al. [22] systematically analyzed the application of
illumination invariance theory to road detection (II-RD). Du et al. [23] proposed a modified illumination
invariant road detection method, which combines illumination invariance and random sampling to
realize road detection (MII-RD). the above methods not only can effectively eliminate the influence
of illumination changes and shadows on road detection results, but was also not limited by a long
execution time and expensive hardware requirements. However, the methods of II-RD and MII-RD
simply removed the sky area when obtaining the camera axis calibration angle. The remaining area
was mixed with a large number of non-road areas, such as vehicles and vegetation, and the vehicle had
large bumps and jitters during driving, which caused obvious errors in the obtained angle, and the
road detection results were inaccurate. At the same time, II-RD fixedly sampled nine blocks with
10 × 10 pixel sizes in the safe distance area before the vehicle. This fixed position sampling method
lacked the randomness of sample selection. When the fixed position was covered with different
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degrees of traffic markings, manhole covers, spills, cracks, pits, overhauls, ruts, etc. caused by road
defects, the sampling of road samples were invalid, and the road detection results had more error.
While MII-RD used a random sampling method to collect road sample sets, however, taking the
previous frame detection area of the frame as a reference, a frame detection failure was likely to cause
continuous detection errors, and the calculation efficiency was low.

Therefore, in this paper, we propose implementation of an online road detection process on a
shaded traffic image using a learned illumination-independent image (OLII-RD). We manually calibrate
the road block and non-road block of the image sequence, and use the multi-feature fusion method to
obtain the road block and non-road block color information matrix and the gray level co-occurrence
matrix feature vector to establish the road block SVM classifier. A cascading Hough transform
parameterized by a parallel coordinate system is used to acquire a road region of interest, and blocks
of 30 × 30 pixels are randomly extracted from the region of interest. We use the SVM classifier to
determine the five road blocks and combine them, and convert the RGB space of the combined road
block into a geometric mean log chromatic space, and determine the camera axis calibration angle for
each frame according to Shannon entropy, and then calculate illumination-independent images for the
respective frames. The road sample points are extracted by the random sampling method in the safety
distance area of the vehicle, and the road confidence interval classifier is established. The final road
detection result is obtained by the road confidence interval classifier.

In brief, this paper has three main contributions:

(1) It comes up with a learning-based illuminant invariance method, which greatly solves the
influences of the major interference of shadow detection in the road images and gains more
accurate, robust road detecting results.

(2) This paper proposes an online road detection method, which avoids partial detection in the
offline detection, achieves subtle detection on every shaded frame of the road images, and gains
more effective and robust results.

(3) Compared with the advanced methods of II-RD and MII-RD based on common open image sets,
by using the methods proposed in this paper, we could gain more precise and robust detecting
results. Besides these advantages of this detecting method based on the common open datasets,
we can gain the same effective results by using our own images and datasets.

The contents of each part of our paper are as follows. The second part describes theoretical models
based on the proposed illuminant invariant image. The third part introduces online learning-based
precise capture processing of the theta angle proposed in this paper. The forth part particularly
illustrates the accurate steps of the road detecting algorithm proposed in this paper. The fifth part
mainly describes the experiments, including datasets, doctrines, compared methods, results, and
necessary discussions. The last part summarizes the full text and describes the next research directions
and work content.

2. Illumination-Independent Image

The traditional optical sensor model shows that the data acquired by the image acquisition device
is the energy result of the spectral power distribution of the light source, the surface reflection of the
object, and the imaging of the spectral sensor.

The spectral power distribution is represented by E(λ), the surface reflection function is
represented by S(λ), and the camera sensitization function is represented by Qk(λ). Then, the RGB
color image has three channel values:

Rk = σ
∫

Qk(λ)E(λ)S(λ)dλ, k = R , G , B (1)

The σ in the formula is Lambertian shading [24].
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Supposing the camera photoreceptor function, Qk(λ), is a Dirac δ function [25], i.e., Qk =

qkδ(λ− λk). Then, Formula (1) becomes:

Rk = σE(λk)S(λk)qk , k = R , G , B. (2)

Suppose the illumination approximates the Planckian Rule [24], i.e.:

E(λ , T) ∼= Ik1λ−5e−
k2
Tλ (3)

where k1 and k2 are constants, T is the illumination color, and I is the total illumination intensity.
Approximately, RGB has three channels, Rk (k = R, G, B or k = 1, 2, 3), which can be obtained by

Equation (3).

Rk = σIk1λk
−5e
− k2

Tλk S(λk)qk (4)

Let Cre f be the geometric mean of the three channels, Rk, of the RGB:

Cre f =
3
√

R× G× B. (5)

Then, the chromaticity is:
ck = Rk/Cre f . (6)

After taking the logarithm on both sides:

ρk = log(ck). (7)

In the geometric mean log chromaticity space of Equation (7), ρ and u = 1/
√

3(1, 1, 1)T are
orthogonal (i.e., ρ · u = 0), and convert the ρ space into a two-dimensional χ space using the coordinate
system transformation.

χ = Uρ , χ is 2× 1
I − uuT = UTU

(8)

where χ is a two-dimensional column vector, U = [v1 , v2]
T, v1 =

(
1/
√

2 , −1/
√

2 , 0
)T

,

v2 =
(
−1/
√

6 , −1/
√

6 , 2/
√

6
)T

.
Thus, the illumination-independent image can be obtained from Equation (9):

Iθ = χ1 cos θ + χ2 sin θ (9)

where θ is the camera axis calibration angle.

3. Learning-Based Online θ Calibration

Ideally, the θ direction is an inherent parameter of the camera ranging from 1 to 180. It is
the presented result on the basis of these three assumptions: a Planckian light, Lambertian surface,
and narrow-band sensor [24]. However, there are many limits while using the assumptions because
most image sensors are not compatible with a narrow band. Additionally, the θ value of each image
frame is unstable because the camera in the car might be shaking while the car is moving on different
road conditions. Therefore, it is necessary to confirm the value of θ of each image frame online to make
sure that each frame of the image is as close as possible to its optimal state.

In this paper, a learning-based method is proposed to determine the θ of each frame image online.
The algorithm flow chart is shown in Figure 1.
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Figure 1. Online acquisition process for the angle of camera calibration.

3.1. Road Block Feature Extraction with Multi-Feature Fusion

The selected training set image sequence, N, should be big enough to contain different illumination
environments, weather conditions, and images under different traffic scenes. We select several parts
from each image frame to attain the road parts and the non-road parts, which, respectively, can be
considered as the positive sample and negative sample. The feature extraction methods based on the
multi-feature fusion proposed in this paper have effectively distinguished between the road parts
and the non-road parts by using the feature vector of the color information matrix and gray level
co-occurrence matrix.

The color information mainly scatters in low-level matrices. It can validly present the color
distribution of images by extracting color information matrices, including color distance, first-level
matrices, second-level matrices, and third-level matrices.

Color distance:

dp =
√(

Ci ,R − Cj ,R
)2

+
(
Ci ,G − Cj ,G

)2
+
(
Ci ,B − Cj ,B

)2. (10)

Among them, Ci and Cj represent pixel i and pixel j, and R, G, and B correspond to three channels.
First moment:

µi =
1
N

N

∑
j=1

pi ,j. (11)

Second moment:

σi =

(
1
N

N

∑
j=1

(
pi ,j − µi

)2
) 1

2

. (12)
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Third moment:

si =

(
1
N

N

∑
j=1

(
pi ,j − µi

)3
) 1

3

. (13)

where pi,j is the probability of occurrence of a pixel whose gradation is j in the ith color channel
component of the color image, and N represents the number of pixels.

The color information matrix characteristics of the image are expressed as follows:

FCM =
(
dp , µR , σR , sR , µG , σG , sG , µB , σB , sB

)
. (14)

Except the color feature, the texture feature is also an important part of characterizing object
features. Using the gray level co-occurrence matrix to obtain feature descriptions, such as the contrast,
energy, entropy, and homogeneity, to describe object texture features [26].

(1) Contrast: Is the measure of how much the local change is in the image, which reflects the
sharpness and the texture groove depth of the image. The deeper the texture groove is, the clearer
the result is. On the contrary, the contrast value is smaller, then the groove is shallower and the
result is more blurred:

Con = ∑
i

∑
j
(i− j)2P(i , j). (15)

where i and j represent horizontal and vertical coordinates, and p(i, j) refers to a normalized gray
level co-occurrence matrix.

(2) Energy: Is the measure of stability of the image texture grayscale change, which reflects the
image distribution uniformity and texture thickness. A high energy value reflects that the current
texture change is more stable:

Asm = ∑
i

∑
j

P(i , j)2. (16)

(3) Entropy: Is a measure of the randomness of an image containing the amount of information. It
shows the complexity of the gray level distribution of the image. The larger the entropy value,
the more complicated the image:

Ent = −∑
i

∑
j

P(i , j) log P(i , j). (17)

(4) Homogeneity: Is the similarity of the gray level of the image in the row or column direction,
reflecting the local gray correlation. The larger the value, the stronger the correlation:

Corr =

[
∑

i
∑

j
((ij)P(i , j))− µxµy

]
/σxσy (18)

where µx and µy represent the average of the horizontal and vertical coordinates, respectively,
and σx and σy represent the average of the horizontal and vertical coordinates, respectively.

The gray level co-occurrence matrix features of the image are expressed as follows:

FGM = (Con , Asm , Ent , Corr). (19)

3.2. SVM Road Block Classifier

SVM was first proposed by Cortes and Vapnik in 1995. It has unique advantages in solving small
sample, nonlinear, and high-dimensional pattern recognition. It has good generalization ability and is
incomparable to other machine learning [27]. SVM uses the separation hyperplane as a linear function
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of the separation training data to solve the nonlinear classification problem. The optimization function
for obtaining the optimal classification surface is as follows:

max
∂

W = ∑n
i=1 ∂i − 1

2 ∑n
i=1 ∑n

j=1 ∂i∂jyiyjK(xi, xj)

s.t.∑n
i=1 ∂iyi = 0; 0 ≤ ∂i ≤ C, i = 1, 2, . . . , n

(20)

In the formula, x is the sample, n is the number of samples, y is the category number, ∂ is the
Lagrange coefficient when the function is optimized, c is the penalty function, and K(•) is the kernel
function that satisfies the Mercer condition.

The SVM discriminant function is:

f (x) = sgn

(
n

∑
i=1

∂iK(x, xi) + b

)
. (21)

When SVM is used for classification, the key lies in the choice of kernel function, K(•).
The parameter optimization related to the kernel function is the key factor affecting the classification
effect [28]. The form of the kernel function and the determination of its associated parameters determine
the type and complexity of the classifier. At present, the most commonly used kernel functions are
linear kernel functions, polynomial kernel functions, radial basis RBF kernel functions, and S-shaped
kernel functions. We select the RBF kernel function based on experimental data and experience, and the
expression form is:

sgn

[
n

∑
k=1

ωk exp
(
−gamma ‖υk − υ‖2

)]
+ b. (22)

In the formula, b = −model.rho is the bias term, gamma is the parameter, g, of the kernel function,
n = model.total_SV is the number of support vectors, wk = model.SV_coe f (k) is the coefficient of the
support vector, vk = model.SVS is the support vector, and v = test.data is the sample to be predicted.

The experimental data of SVM is a matrix composed of rows of feature vectors. In the experiment,
the matrix is normalized first, and then Libsvm [29] is used to realize classification. In this paper,
we use the method of Section 3.1 to extract the road block and non-road block color information matrix
and the gray level co-occurrence matrix as the feature vector for SVM training, and generate the SVM
road block classifier.

3.3. Minimum Entropy Solution

In order to obtain the θ of the road block, the Shannon entropy theorem [24] is introduced in
this paper:

η = −∑ pi(Iθ) log(pi(Iθ)) (23)

where η is the entropy value and pi is the probability that the gray value in the Iθ gray histogram falls
within the ith bin. The bin-width of the gray histogram is determined by Scott’s law [24]:

bin-width = 3.5 std(Iθ)N−1/3 (24)

where N is the size of the image.
According to the definition of entropy, if there are more bins in the Iθ gray histogram, the smaller

pi is, the larger the entropy value is. Therefore, the angle corresponding to the minimum entropy is
the θ angle of the frame image.

4. Road Detection Algorithm

4.1. Region of Interest Extraction

(1) Sky removal
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The literature [22] points out that non-sky areas (roads, vehicles, buildings, vegetation, pedestrians,
etc.) conform to the Lambert reflection, and the sky area conforms to Rayleigh scattering, and its
model is as shown in Equation (25). The log chromaticity of the sky region does not follow the axis
calibration theorem:

I(λ)scat = const ∗ I(λ)inc/λ4 (25)

where Iscat represents the intensity of the scattered light, Iinc represents the intensity of the incident
light, and λ represents the wave.

At the same time, there are many kinds of road line. According to the type of road longitudinal
section, the road line can be divided into parallel road, uphill, and downhill. In the case of uphill
and downhill, as Figure 2a,b shows, it might cause the missing road surface area and larger non-road
areas by using the sky removal method with a fixed coordinate position to influence the accuracy of
the results. Therefore, we propose to use the cascaded Hough transform method based on parallel
coordinate system parameterization proposed in this paper to obtain the vanishing point of the
road [30]. Firstly, we use the cascaded-Hough transform algorithm to transform originally infinite
space into a limited diamond space. Then, we rasterize the space, and use the voting method to find
the vanishing point. After the vanishing point is determined, the horizontal line where it is located
is the horizon position sought, and the area below the horizon in the image is the area of interest for
road detection.

(2) Hood removal

Due to problems, such as the camera erection position and camera shooting angle, the actual
collected traffic road image often has a hood. The hood occupies the road area in the image and later
interferes with the selection of road sampling points in Section 4.3, which in turn affects the detection
of the road. Considering that the camera erection position is relatively fixed, we use the manual
calibration method to remove the front part, as shown in Figure 2b,c. The specific steps are as follows:

(1) Determining different road image data sets Seq1, Seq2, . . . , Seqn;
(2) Randomly extract 20 frames from the dataset Seq1, calculate the head position Dis(i), i = 1, 2, ...,

20, and calculate the Dis(i) mean value to determine the final split position, Dis_head;
(3) Mark the video sequence according to the calculated Dis_head to remove the hood area of the

vehicle; and
(4) Repeat steps (2) and (3) for data sets, Seq2, . . . , Seqn.

Symmetry 2018, 10, 707 8 of 20 

 

According to the definition of entropy, if there are more bins in the θI  gray histogram, the 
smaller ip  is, the larger the entropy value is. Therefore, the angle corresponding to the minimum 
entropy is the θ  angle of the frame image. 

4. Road Detection Algorithm 

4.1. Region of Interest Extraction 

(1) Sky removal 

The literature [22] points out that non-sky areas (roads, vehicles, buildings, vegetation, 
pedestrians, etc.) conform to the Lambert reflection, and the sky area conforms to Rayleigh scattering, 
and its model is as shown in Equation (25). The log chromaticity of the sky region does not follow the 
axis calibration theorem: 

( ) ( ) 4/ λλλ incscat IconstI ∗=  (25)

where scatI  represents the intensity of the scattered light, incI  represents the intensity of the 
incident light, and λ  represents the wave. 

At the same time, there are many kinds of road line. According to the type of road longitudinal 
section, the road line can be divided into parallel road, uphill, and downhill. In the case of uphill and 
downhill, as Figure 2a,b shows, it might cause the missing road surface area and larger non-road 
areas by using the sky removal method with a fixed coordinate position to influence the accuracy of 
the results. Therefore, we propose to use the cascaded Hough transform method based on parallel 
coordinate system parameterization proposed in this paper to obtain the vanishing point of the road 
[30]. Firstly, we use the cascaded-Hough transform algorithm to transform originally infinite space 
into a limited diamond space. Then, we rasterize the space, and use the voting method to find the 
vanishing point. After the vanishing point is determined, the horizontal line where it is located is the 
horizon position sought, and the area below the horizon in the image is the area of interest for road 
detection. 

(2) Hood removal 

Due to problems, such as the camera erection position and camera shooting angle, the actual 
collected traffic road image often has a hood. The hood occupies the road area in the image and later 
interferes with the selection of road sampling points in Section 4.3, which in turn affects the detection 
of the road. Considering that the camera erection position is relatively fixed, we use the manual 
calibration method to remove the front part, as shown in Figure 2b,c. The specific steps are as follows: 

(1) Determining different road image data sets Seq1, Seq2, …, Seqn; 
(2) Randomly extract 20 frames from the dataset Seq1, calculate the head position Dis(i), i = 1, 2, ..., 

20, and calculate the Dis(i) mean value to determine the final split position, Dis_head; 
(3) Mark the video sequence according to the calculated Dis_head to remove the hood area of the 

vehicle; and 
(4) Repeat steps (2) and (3) for data sets, Seq2, … , Seqn. 

   
(a) (b) (c) 

Figure 2. Results of sky and hood removal. (a) Effect comparison of the sky removal method on
the uphill section, (b) effect comparison of the sky removal method and hood removal, (c) sky and
hood removal.

4.2. Illumination-Independent Image Acquisition

Obtaining the θ angle of the road image of each frame online is the basis for obtaining the
illumination-independent image and realizing road surface detection. We propose to randomly select
three 30 × 30 area blocks in the region of interest, and calculate the eigenvalues corresponding to the
color information matrix and the gray level co-occurrence matrix. The road block classifier established
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in Section 3.2 determines whether it is a road block, and then calculates the θ of the road block.
Finally, the illumination-independent image of the corresponding frame is obtained by the calculated θ.
A more detailed description of the illumination-independent image acquisition algorithm is presented
in Algorithm 1:

Algorithm 1. Illumination-independent image acquisition

Require: Number of road blocks n = 3, color information matrix feature, gray level co-occurrence matrix
feature, SVM road block classifier
Ensure: Illumination-independent image corresponding to a certain frame
1: for k = first frame do last frame
2: for i = 1 do N (number of blocks, N ≥ 3)
3: Randomly extract a block of 30 × 30 pixel, and n = 1;
4: Extract the region block feature color information matrix, gray level co-occurrence matrix and input its into
the SVM road block classifier;
5: if road block then
6: Store road blocks in a 150 × 30 matrix, and n = n + 1;
7: else
8: i = i + 1, Repeat steps 3~6;
9: end if
10: Compose new image with 90 × 30 pixels;
11: Calculate the new image online θ angle by the minimum entropy algorithm;
12: Obtain the illumination-independent image using the illumination-independent image theory;
13: end for
14: end for

The illumination-independent image obtained by the learning method is shown in Figure 3:
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Figure 3. The result shows the illumination-independent image. (a) Shaded road image,
(b) illumination-independent image, (c) shadow area road detection result.

4.3. Road Sample Set

Choosing the appropriate road sampling method is an important part of extracting road features,
constructing road models, establishing confidence intervals, and determining road areas. II-RD samples
nine sample areas of a 10 × 10 pixel size at a fixed position in the safety distance area of the vehicle,
as shown in Figure 4a. For MII-RD, based on the safety distance area in front of the vehicle in the
current frame, the road detection area of the previous frame is used as a reference to determine the
current frame sampling set, as shown in Figure 4b. However, we propose that 900 sampling points are
randomly selected based on the safe distance field in front of the vehicle in the frame (current frame),
as shown in Figure 4c.
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respectively. x = y = 10 pixels, n = 900 pixels. (b) MII-RD sampling method. Combine the sample sets,
Si, and Si−1, Si indicates the safety distance area in front of the vehicle, Si−1 indicates the area for the
previous frame road detection result, n = 900 pixels. (c) Our sampling method (OLII-RD), where W and
H represent the length and width of the safe area, respectively. n = 900 pixels.

To clearly describe the sampling method of our method (OLII-RD), the following mathematical
symbols are defined:

Fi represents the ith frame image in the video, and Si represents the Fi frame road sample set.
N is a constant, representing the total number of pixels in the road sample area of the Fi frame, and n
represents the number of road sample points in the Fi frame.

Current frame vehicle safety distance area sample collection. The safety distance area in front of
the vehicle is roughly the road area, the size is W × H, and there are N pixels, as shown in Figure 4c.
We use this as the road sampling area, and uses the simple random non-return sampling method to
extract n sampling points (for a finite population, when n/N < 0.1, it can be approximated as a simple
random sample) as the Fi frame road sampling sets, Si.

4.4. Road Classifier

In this paper, the normal distribution model is used to fit the road sample set, and the road
confidence interval classifier is established. Taking 90% of the data in the center of the normal
distribution represents the chromaticity characteristics of the road, and the confidence interval,
([λ1, λ2] = [µ− 1.65 ∗ σ , µ + 1.65 ∗ σ]), of the road is determined by the percentile method. Points
with eigenvalues in the range of [λ1, λ2] are road areas, and vice versa are backgrounds or obstacles
(such as roads, vehicles, buildings, vegetation, pedestrians, etc.). The road detection confidence interval
classifier is defined as: {

IR = 1, Road , i f λ1 ≤ I(p) ≤ λ2

IR = 0, nonRoad , otherwise
. (26)

5. Experimental Results

In this chapter, we use several experiments to evaluate the performance of the road detection
system proposed in this paper. Under different illuminating conditions, weather conditions, and
traffic scenes, we test several moving-vehicle video sequences captured on city streets and suburban
roads. In order to further evaluate the performances of our system, we also compare our method
with other state of art methods with II-RD [21] and MII-RD [23]. The reason why we chose II-RD [21]
and MII-RD [23] is that we have our considerations. II-RD [21] introduced illumination invariance
theory into road detection, and systematically analyzed the application of illumination invariance
theory to road detection. As the first systematic argumentation analysis, the importance of II-RD [21]
is self-evident. MII-RD [23] proposed a modified illumination invariant road detection method, and
it is also the latest research results, so timeliness is guaranteed. The method proposed by us is also
related to the theory of illumination invariance, so we chose to compare II-RD [21] and MII-RD [23],
which are most closely related to the theory and application of illumination invariance and best reflect
the advantages of the proposed method.
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5.1. The Experiment of the CVC Public Dataset

The experimental image set uses the common dataset, CVC [21], which contains a large number
of road video image sequences. The sequence is acquired by an onboard camera based on the Sony
ICX084 sensor. The camera is equipped with a microlens with a focal length of 6 mm and an image
frame acquisition rate of 15 fps.

The experiment uses three different image sequences among them. The first image sequence,
SS, contains 350 frames of different scene road images for road block feature extraction and SVM
road block classifier training. The second sequence of images, dry road sequence (DS), includes
450 images of sunny shadows, supporting the presence of shadows. The third sequence of images,
rainy road sequence (RS), consists of 250 images, which are road images after the rain and the road is
wet. The resolution of the three image sequences is 640 × 480, and each pixel is 8 bits. The DS and RS
sequences are dry and wet environment road pavements with various forms and complicated scenes,
and the vehicles are driving on the road.

Public dataset image sequences are available online: http://www.cvc.uab.es/adas/databases/.
We compared this with the methods of II-RD [21] and MII-RD [23] on this dataset.

5.1.1. Sampling Method Experiment

For II-RD, nine fixed-area, fixed-size (10 × 10) road blocks are collected as sampling points in
the safe distance area in front of the vehicle. MII-RD determines that the current frame, Fi, has a
size of 250 × 30 area, Si, and randomly selects 500 sampling points from Si, and 400 sampling points
are randomly selected from the previous frame, Fi−1, road detection result, Si−1. Finally, a total of
900 sampling points are extracted. However, in this paper, we directly select 900 sampling points
from Si.

The data collected by II-RD, MII-RD, and OLII-RD are, respectively, fitted with normal distribution,
as shown in Figure 5. The sampling method’s error calculation results of II-RD, MII-RD and OLII-RD
are shown in Table 1.
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Figure 5. After getting sampling points through II-RD, MII-RD, and OLII-RD, normal distribution
fitting situations are compared for sampling points. From left to right: Normal distribution fitting for
DS and RS video sequences, respectively.

Table 1. Error comparison of the sampling methods with II-RD, MII-RD, and OLII-RD.

Sequence Approach Mean SD

DS
II-RD 90.5175 3.0271

MII-RD 90.1478 1.2052
OLII-RD 90.1139 0.9924

RS
II-RD 90.8848 2.3918

MII-RD 90.5733 1.1070
OLII-RD 90.3438 1.0593

It can be seen from Figure 5 and Table 1 that the mean value of our sampling method is closer to
90%, and the sampling standard deviation is significantly lower than for II-RD and MII-RD. For II-RD,
the sampling method of the fixed position in the safe distance area in front of the vehicle lacks the

http://www.cvc.uab.es/adas/databases/
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randomness of sample selection, and it is easy to sample traffic signs, manhole covers, spills and road
defects, cracks, pits, ruts, etc., which causes that road sample to be invalid, and the road detection
result has a large error. For MII-RD, the upper and lower frame joint sampling method is adopted,
the sampling distribution range is wide, and the probability of collecting non-road surface area is
increased. If a frame detection fails, the error of the result is easily expanded. The sampling method
proposed by us can effectively avoid the limitations of the fixed position sampling, and can also greatly
reduce non-road interference, and can get better and more robust results.

5.1.2. Qualitative Road Detection Result

We systematically test the CVC public datasets. Figure 6 shows some typical detection results of
DS and RS video sequences. Among them, 1~3 lines are the detection results of many vehicles on the
road; 4~6 lines are the results of the detection of obvious sunlight and road shadows; 7~9 lines are
the detection results of irregular road lines and complex scenes. Each line shows the original image,
groundtruth map, II-RD detection results, MII-RD detection results, and OLII-RD detection results.
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5.1.3. Result Evaluation Index

This paper uses the precision, recall, and comprehensive evaluation index, F, to quantitatively
evaluate the road detection results [31].

The definition is as follows: 1© Accuracy rate, P, 2© recall rate, R, 3© comprehensive evaluation
index, F. Let ς be the real area of the road, and ξ be the actual detection result of the road surface,
then P = (ς ∩ ξ)/ξ, R = (ς ∩ ξ)/ς, F = 2PR/(P + R), PRF ∈ [0, 1]. P and R are complementary, F is
the weighted harmonic average of P and R, and can reconcile and comprehensively reflect the accuracy,
P, and the recall rate, R. The closer F is to 1, the better the road detection effect. Because we use the
random sampling method, the P, R, F values have slight fluctuations, and the standard deviation of the
fluctuation is σ. The comparison of the performance indexes of the three methods is shown in Table 2.
The comprehensive evaluation index, F, curve of the three methods for each frame image detection
result is shown in Figure 7.

Table 2. Performance comparison of detection algorithms for CVC datasets.

Sequence Approach P±σ R±σ F±σ

DS
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±0.0034
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0.9337
±0.0008
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5.2. The Experiment of the Self-Built Video Sequence

To further illustrate the robustness of our detection system, we also test the road datasets that are
taken by our own car outdoors. Similarly, we also compare our method with II-RD and MII-RD on
these self-built datasets.

The test video sequence is the actual road dataset of China obtained by the driving recorder,
named visual road recognition (VRR). The VRR is shot by the SAST F620 driving recorder. The wide
angle is 170◦ and the frame rate is 30 frames per second. It is mounted on the top of the car about
1.5 m from the road surface. The original resolution is 1920 × 1080. For experimental purposes, the test
video sequence selects one frame of the road image every five frames, and the original image of each
frame obtained is normalized by downsampling with a resolution of 640 × 360.

Two of the video sequences, Sequence1, Sequence2 (hereinafter referred to as S1, S2), are selected
for testing experiments. The sequence, S1, is collected from the Liuxue section of the Weihe River in
Xi’an, Shaanxi Province. The video sequence duration is 3 m 9 s, and the effective frame number is
1130 frames. The road is a two-way two-lane road, the road video is intensely illuminated, the shadow
contrast is obvious, and the vehicle passes frequently. S2 is collected from the Mingguang section
of Weiyang District, Xi’an City, Shaanxi Province. The video sequence duration is 2 m 25 s and the
effective frame number is 870 frames. The road video is dark and the road surface is similar to the
surrounding features.

5.2.1. Qualitative Road Detection Result

We systematically test the self-built VRR datasets. Figure 8 shows some typical detection results
for the two video sequences, S1 and S2, where each row shows the comparison detection results of the
three detection methods of the same image frame.
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5.2.2. Result Evaluation Index

The road detection results are quantitatively evaluated using the same evaluation indicators
as in Section 5.1.3, and the precision, recall, and F index of the detection results are calculated.
The comparison of the performance of the three methods is shown in Table 3. The index F curve of the
results of the three methods of each frame image is shown in Figure 9.

Table 3. Performance comparison of detection algorithms for VRR datasets.

Sequence Approach P±σ R±σ F±σ

S1

II-RD 0.6846 0.7250 0.7042

MII-RD 0.8438
±0.0029

0.8068
±0.0012

0.8222
±0.0017

OLII-RD 0.9162
±0.0017

0.8873
±0.0012

0.9016
±0.0014

S2

II-RD 0.9122 0.8515 0.8808

MII-RD 0.9908
±0.0001

0.8833
±0.0003

0.9340
±0.0002

OLII-RD 0.9755
±0.0001

0.9219
±0.0002

0.9479
±0.0001

Symmetry 2018, 10, 707 15 of 20 

 

Figure 8. Comparison of road detection results for VRR datasets. From left to right: Original image, 
groundtruth map, result of II-RD, result of MII-RD, result of our method, respectively. 

5.2.2. Result Evaluation Index 

The road detection results are quantitatively evaluated using the same evaluation indicators as 
in Section 5.1.3, and the precision, recall, and F index of the detection results are calculated. The 
comparison of the performance of the three methods is shown in Table 3. The index F curve of the 
results of the three methods of each frame image is shown in Figure 9. 

Table 3. Performance comparison of detection algorithms for VRR datasets. 

Sequence Approach σP ±  σR ±  σF ±  

S1 

II-RD 0.6846 0.7250 0.7042 

MII-RD 0.8438 
±0.0029 

0.8068 
±0.0012 

0.8222 
±0.0017 

OLII-RD 
0.9162 

±0.0017 
0.8873 

±0.0012 
0.9016 

±0.0014 

S2 

II-RD 0.9122 0.8515 0.8808 

MII-RD 
0.9908 

±0.0001 
0.8833 

±0.0003 
0.9340 

±0.0002 

OLII-RD 0.9755 
±0.0001 

0.9219 
±0.0002 

0.9479 
±0.0001 

 
Figure 9. Comparison graph of F value for detection algorithms for VRR datasets. From left to right: 
F curve for S1 and S2 video sequences, respectively. 

In addition to the two video sequences (S1 and S2) tested above, the remaining five video 
sequences were also tested. The video sequences, 3 and 4, are captured in a suburban environment, 
the video sequence, 5, is captured in a school road environment, and the video sequences, 6 and 7, 
are captured in an urban road environment. We save the detection results on each frame, and after 
the entire process, calculate the accuracy, recall rate, and comprehensive evaluation index, F. Table 4 
lists the details of the datasets and detection results. The results of these detections indicate the overall 
accuracy and stability of our system. 

Table 4. Performance comparison of detection algorithms for the remaining video sequence. 

Sequence Length nFrames Location Capture Time Precision Recall F-Measure 
1 1 m 53 s 680 suburb morning 91.52 93.18 92.34 
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Figure 9. Comparison graph of F value for detection algorithms for VRR datasets. From left to right:
F curve for S1 and S2 video sequences, respectively.

In addition to the two video sequences (S1 and S2) tested above, the remaining five video
sequences were also tested. The video sequences, 3 and 4, are captured in a suburban environment,
the video sequence, 5, is captured in a school road environment, and the video sequences, 6 and 7,
are captured in an urban road environment. We save the detection results on each frame, and after the
entire process, calculate the accuracy, recall rate, and comprehensive evaluation index, F. Table 4 lists
the details of the datasets and detection results. The results of these detections indicate the overall
accuracy and stability of our system.

Table 4. Performance comparison of detection algorithms for the remaining video sequence.

Sequence Length nFrames Location Capture Time Precision Recall F-Measure

1 1 m 53 s 680 suburb morning 91.52 93.18 92.34
2 3 m 8 s 1128 suburb afternoon 92.67 94.35 93.50
3 2 m 37 s 942 school midday 93.29 95.87 94.56
4 2 m 17 s 828 urban nightfall 90.83 89.23 90.02
5 1 m 20 s 480 urban afternoon 88.76 92.61 90.64

Total 11 m 15 s 4058 - - 91.41 93.05 92.22

5.3. The Experiment of the Strong Sunlight and Low Contrast Condition

Illumination change is a challenge in the illumination-independent image acquisition stage and
the road detection stage. To improve the robustness of road block selection, more road samples under
different lighting conditions are added to the constraints in 3.1. We select 600 frames from the datasets,
most of which were taken under strong sunlight or at very low contrast. Some typical results are
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shown in Figure 10, where each row shows the results of three methods in the same sequence of scenes.
The frames in scenes 1, 2 are cases where the reflected light is severe under strong sunlight. The frames
in scenes 3 and 4 are when the sunlight is very low in the evening. The frames in scenes 5 and 6 are
road scenes taken under noon direct sunlight conditions. The frames in scenes 7, 8 are road scenes
taken at very low contrast time in the evening.
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5.4. Detection Results Analysis and Discussion

Systematic detections are carried out for II-RD, MII-RD, and OLII-RD in the CVC dataset and
self-built video sequence, respectively. For qualitative results, we find that the road detection results
by II-RD and MII-RD have large errors, but the results of OLII-RD are more accurate and robust.
The results of II-RD are usually incomplete, and there is a large road pavement missing, and the recall



Symmetry 2018, 10, 707 17 of 20

rate is the highest. The results of MII-RD are easy to include non-road parts on both sides of the road,
and there is a large detection error. For quantitative results, OLII-RD in the accuracy of P, recall rate,
R, and comprehensive evaluation index, F, and its stability is better than II-RD and MII-RD; among
them, the comprehensive evaluation index, F, can reach more than 90%. Furthermore, under the strong
sunlight and low contrast condition, our method still obtains better and more stable results.

Therefore, the road detection effects proposed by us in different lighting environments, different
weather conditions, and different traffic scenarios were achieved, and our detection method also had
good transplantation ability.

5.5. Time Validity Analysis

In this section, the calculation time of II-RD, MII-RD, and OLII-RD at each stage is calculated.
This experiment uses Windows 10 64-bit operating system, CPU is Intel Core i5-4570, 3.2 GHz, 8 G
PC as the experimental platform, and the experimental environment is MATLAB 2017b. In this part,
the random sampling method is used to randomly extract 100 frames from the public dataset and the
self-built dataset for time validity analysis experiments. For the resolution of the image frames of the
two data sets, we use clipping and quantization processing to uniformly quantize to 640 × 480.

The road detection method in this paper can be summarized as two processes: Offline training
and online detection. For the offline training process, mainly the road block feature extraction and
the establishment of the SVM road block classifier, during the actual comparison process, the time
consumption of this stage may not be measured. For the online detection process, it can be summarized
into four stages: 1© Interested region extraction, 2© illumination-independent image acquisition, 3© road
sample collection and classification, and 4©morphological processing.

With a uniform processing standard, our current implementation is non-optimized MATLAB
code. Figure 11 shows the average processing time for each of the three methods in each of the two
datasets. II-RD and MII-RD removed the upper third of the image, respectively, and OLII-RD uses the
horizon determination algorithm to remove the area above the horizon. It can be seen from the figure
that the total processing time of MII-RD is the longest, the time is about 470 ms, and the road sample
collection time is relatively long. The least time spent on total time is the method of II-RD, and the
time is about 370 ms. The total time consumption of OLII-RD is about 430 ms, which is somewhere in
between. Although, the paper uses the online acquisition, θ, angle and the time consumption in the
extraction stage of the region of interest is more than II-RD and MII-RD. However, the obtained road
area of interest is more concentrated, and the number of pixels processed is relatively small, which
saves more time for the subsequent illumination-independent image acquisition stage.
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The experimental results show that the average processing speed of our detection method is
about 2.5 fps. According to our experience in similar applications, we think that just by going to C++,
this code can easily run in less than 70 ms. In the actual application process, a certain number of
interval frames can be selectively selected, and specific real-time requirements can be met without
affecting the final results of the experiment.

6. Conclusions

Road detection is a key step in realizing a vehicle’s automatic driving technology, and plays an
important role in the rapid development of assisted driving and unmanned driving technology.
In this paper, an online road detection method based solely on vision using learning-based
illumination-independent image on shadowed traffic images was proposed to solve the effects of
illumination changes and shadows on road detection results. We came up with a learning-based
illuminant invariance method, which greatly solves the influences of the major interference of shadow
detection in the road images. We proposed the online road detection method, which avoided
partial detection in the offline detection, achieved subtle detection on every shadowed road image,
and gained more effective and robust results. The effectiveness of the proposed method was tested by
multiple image sequences under CVC and self-built datasets, including different traffic environments,
different road types, different vehicle distributions, and different road scenarios. The F-value of the
comprehensive evaluation index in road detection was about 93% on average, which proved the
effectiveness of the proposed method. In addition, the entire detection process can meet real-time
requirements. In the future, we plan to realize joint detection and classification identification of
multiple traffic objects, such as people, vehicles, and roads.
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