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Abstract: Normal bases are widely used in applications of Galois fields and Galois rings in areas such
as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper,
we study the normal bases for Galois ring extension R/Zpr , where R = GR(pr, n). We present a
criterion on the normal basis for R/Zpr and reduce this problem to one of finite field extension
R/Zpr = Fq/Fp (q = pn) by Theorem 1. We determine all optimal normal bases for Galois
ring extension.
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1. Introduction

The theory of finite fields has been one of the fundamental mathematical tools in computer science
and communication engineering since the 1950s, when digit communications and computations were
rapidly developed. Low complexity operation, particularly the multiplicative operation, squaring, and
exponentiation operations, are preferred in various applications, including coding, cryptography,
and communication. The performance of these operations is closely related to the representation
of the finite elements; they are desired for efficient hardware implementation, and in this respect,
many useful bases for Fqn /Fq with low complexity have been found [1–11]. An efficient algorithm for
field multiplication using a normal basis was proposed by Massey and Omura in 1985 [12].

In the past two decades, Galois rings have been used successfully in many aspects, such as in
combinatorics to construct different kinds of combinatorial designs and in communication theory to
construct error-correcting codes, sequences with good correlation properties, secret sharing schemes,
hash functions, and so on [3,13–16]. However, compared to the case of finite field extensions,
the complexity problem of operations in Galois rings has not attracted much attention from scholars,
except Abrahamsson, who considered the complexity of bases and carefully discussed the architectures
for multiplication in Galois rings (for p = 2) in his thesis [17] in 2004. These are motivation by our
study of operations, particularly for multiplicative operation, with low complexity in Galois rings.

In this paper, we study one aspect of the complexity problem of operations in Galois rings.
More precisely, we mainly focus on the normal bases for Galois ring extensions. This paper is
organized as follows. In Section 2, we introduce some basic facts on Galois rings. Some results on
normal bases and some basic properties on the multiplicative complexity of normal bases for Galois
ring extension GR(pr, n)/Zpr are presented in Section 3. Then, we determine all optimal normal bases
for these Galois ring extensions in Section 4.

2. Basic Facts about Galois Rings

In this section, we introduce several basic facts about Galois rings. For more information,
the reader is referred to [18].
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Let p be a prime number and r ≥ 2, Zpr = Z/prZ. We have the modulo p reduction mapping:

ϕ : Zpr −→ Fp, a (mod pr) 7−→ ā = a (mod p),

which induces the following modulo p reduction mapping between polynomial rings:

ϕ : Zpr [x] −→ Fp[x], f (x) = ∑ cixi 7−→ f (x) = ∑ c̄ixi.

f (x) is said to be a monic basic irreducible (primitive) polynomial over Zpr if f (x) is a monic irreducible
(primitive) polynomial over Fp.

Let f (x) be a basic primitive polynomial of degree n in Zpr [x]. The quotient ring:

R = GR(pr, n) =
Zpr [x]
( f (x))

∼= Zpr [γ]

= {c0 + c1γ + · · ·+ cn−1γn−1 : ci ∈ Zpr}, (1)

where γ is a root of f (x) in R with order pn − 1, R is called a Galois ring. We note that γ is a primitive
element of the finite field Fq where q = pn. From now on, we take f (x) to be a basic primitive
polynomial. The modulo p reduction can be naturally extended to the following homomorphism
of rings:

ϕ : R = GR(pr, n) =
Zpr [x]
( f (x))

∼= Zpr [γ] −→ Fq =
Fp[x]

( f (x))
∼= Fp[γ].

Some basic facts about Galois ring R = GR(pr, n) are given as follows.
(Fact 1) Let T∗ = 〈γ〉 be the cyclic multiplicative group of order q − 1 generated by γ,

and T = T∗ ∪ {0}. Then, T = Fq and:

R = {x0 + px1 + p2x2 + · · ·+ pr−1xr−1 : xi ∈ T}, |R| = |T|r = qr = pnr. (2)

(Fact 2) R is a local commutative ring with the unique maximal idealM = pR, |M| = qr−1, and
the group of units is R∗ = R\M = T∗ × (1 +M), |R∗| = qr − qr−1.

(Fact 3) R/Zpr is a Galois extension of rings with Galois group Gal(R/Zpr ) = 〈σp〉, where σp is
the automorphism of order n defined by:

σp(
r−1

∑
i=0

pixi) =
r−1

∑
i=0

pixp
i (xi ∈ T). (3)

More generally, for each positive integer l, R = GR(pr, n) is a subring of R(l) = GR(pr, nl)
and R(l)/R is a Galois extension of rings with Galois group Gal(R(l)/R) = 〈σq〉, where σq is the
automorphism of R(l) defined by:

σq(
r−1

∑
i=0

pixi) =
r−1

∑
i=0

pixq
i (xi ∈ T(l)), (4)

and R(l) = Zpr [γ(l)] = {∑r−1
i=0 pixi : xi ∈ T(l)}, T(l) = T∗(l) ∪ {0}, T∗(l) = 〈γ(l)〉, γ

ql−1
q−1

(l) = γ.
(Fact 4) We have the trace mapping:

Trnl
n : R(l) = GR(pr, nl) −→ R = GR(pr, n),

defined by:

Trnl
n (α) =

l−1

∑
i=0

σi
q(α) (α ∈ R(l)),
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which is an epimorphism of R-modules, and we have the following commutative diagram:

R(l) = GR(pr, nl)

ϕ

��

Trnl
n // R = GR(pr, n)

ϕ

��

Trn
1 // Zpr = GR(pr, 1)

ϕ

��
R(l) = Fpnl

trnl
n // R = Fpn

trn
1 // Zpr = Fp

(5)

where trnl
n and trn

1 are the trace mappings for finite field extensions.
On the other hand, for r ≥ 2, the modulo pr−1 reduction gives the homomorphism of rings

GR(pr, n) −→ GR(pr−1, n), and we get the following commutative diagram:

GR(pr, n)

σ(r)

��

mod pr−1
// GR(pr−1, n)

σ(r−1)

��

// · · ·
mod p2
// GR(p2, n)

σ(2)

��

mod p// GR(p, n) = Fq

σ(1)

��
GR(pr, n)

mod pr−1
// GR(pr−1, n) // · · ·

mod p2
// GR(p2, n)

mod p // Fq

(6)

where σ(λ) is the automorphism of GR(pλ, n) defined by:

σ(λ)(
λ−1

∑
i=0

pixi) =
λ−1

∑
i=0

pixp
i (xi ∈ T).

Next, we need some basic properties of the polynomial ring R[x]. One of the most important
properties of R[x] is the following Hensel’s lemma.

Two polynomials f (x) and g(x) in R[x] are called coprime if there exist A(x) and B(x) in R[x]
such that f (x)A(x) + g(x)B(x) = 1.

Lemma 1. ([18], Lemma 14.20) Let R = GR(pr, n) and R = Fq (q = pn). Let f (x) be a monic polynomial in
R[x] and gi(x) (1 ≤ i ≤ s) be pairwise coprime monic polynomials in R[x]. If f (x) = g1(x)g2(x) · · · gs(x)
in R[x], then there exist pairwise coprime polynomials fi(x) (1 ≤ i ≤ s) in R[x] such that f (x) =

f1(x) f2(x) · · · fs(x) and f i(x) = gi(x) (1 ≤ i ≤ s).

The polynomial fi(x) is called the Hensel lift of gi(x). A monic polynomial f (x) in R[x] is called
primary if f (x) is a power of a monic irreducible polynomial in Fq[x]. One can deduce the following
result from the Hensel’s lemma.

Lemma 2. ([18], Theorem 14.21) Let f (x) be a monic polynomial of deg f ≥ 1 in R[x]. We have the
following decomposition:

f (x) = f1(x) f2(x) · · · fr(x),

where fi(x) (1 ≤ i ≤ r) are pairwise coprime primary polynomials in R[x] and fi(x) (1 ≤ i ≤ r) are uniquely
determined up to their order. Particularly, if f (x) = p1(x)p2(x) · · · pr(x) where pi(x) (1 ≤ i ≤ r) are
distinct monic irreducible polynomials in R[x] = Fq[x], then fi(x) (1 ≤ i ≤ r) are distinct monic irreducible
polynomials in R[x] and f i(x) = pi(x) (1 ≤ i ≤ r).

3. Criteria on Normal Bases for Galois Ring Extensions

From (1), we know that R = GR(pr, n) is a free Zpr -module of rank n and {1, γ, · · · , γn−1} is a
basis for R/Zpr , where γ is an element of order q− 1 (q = pn) in R.
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Definition 1. An element α ∈ R is called a normal basis generator (NBG) for extension R/Zpr if B =

{σ0(α) = α, σ(α), · · · , σn−1(α)} is a basis for R/Zpr , where σ is the automorphism σp of R defined by (3).
Such a basis B is called a normal basis for R/Zpr .

In this section, we present several criteria on normal bases for Galois ring extension R/Zpr ,
and these criteria can be reduced to the ones of finite field extensions R/Zpr = Fq/Fp according
to the following theorem. Recall that an element a ∈ Fq (q = pn) is an NBG for Fq/Fp if B =

{a, σ(a), · · · , σn−1(a)} is a normal basis for Fq/Fp, where σ is the Frobenius automorphism of Fq

defined by σ(b) = bp for b ∈ Fq. From the definition of σ in (3), one has for α ∈ R, σ(α) = σ(α).

Theorem 1. For an element α in R, α is an NBG for R/Zpr if and only if α is an NBG for finite field extension
R/Zpr = Fq/Fp.

Proof. Suppose that ᾱ is not an NBG for Fq/Fp. Then, there exist ai ∈ Fp (0 ≤ i ≤ n− 1) such that:

n−1

∑
i=0

aiσ
i(ᾱ) = 0 (7)

and aj 6= 0 for some j. Let Ai ∈ R, Ai = ai (0 ≤ i ≤ n− 1). The formula (7) implies that ∑n−1
i=0 Aiσi(α) =

∑n−1
i=0 aiσ

i(ᾱ) = 0, so that
n−1
∑

i=0
Aiσ

i(α) ∈ pR. Therefore,
n−1
∑

i=0
pr−1 Aiσ

i(α) = 0. From aj ∈ F×p , we know

that Aj ∈ R∗ and pr−1 Aj 6= 0. Therefore, α is not an NBG for R/Zpr .
On the other hand, suppose that α is not an NBG for R/Zpr . Then, there exist Ai ∈ R (0 ≤ i ≤

n− 1) such that:

n−1

∑
i=0

Aiσ
i(α) = 0 (8)

and Aj 6= 0 for some j. Let Ai ∈ pdi R \ pdi+1R (0 ≤ i ≤ n − 1) and d = min{di|0 ≤ i ≤ n − 1}.
From Aj 6= 0, we get 0 ≤ d ≤ r − 1. Then, Ai = pdai, where ai ∈ R (0 ≤ i ≤ n− 1) and aj ∈ R∗

by assuming Aj ∈ pdR\pd+1R. The formula (8) implies that pd
n−1
∑

i=0
aiσ

i(α) = 0, so that
n−1
∑

i=0
aiσ

i(α) ∈

pr−dR. Then, from r − d ≥ 1, we get
n−1
∑

i=0
aiσ

i(α) = 0, where āi ∈ Fp (0 ≤ i ≤ n − 1) and aj 6= 0.

Therefore, ᾱ is not an NBG for Fq/Fp. This completes the proof of Theorem 1.

By Theorem 1, a series of criteria on normal bases for finite field extensions can be shifted to ones
for Galois ring extensions.

Lemma 3. ([19])Let n = ptl, (l, p) = 1, Q = pn and q = pl . Let trQ
q be the trace mapping for FQ/Fq.

Then, for a ∈ FQ, a is an NBG for FQ/Fp if and only if trQ
q (a) is an NBG for Fq/Fp.

From the diagram (5), we know that for α ∈ R, trn
l (ᾱ) = Trn

l (α).

Corollary 1. Let n = ptl, (l, p) = 1. Let R = GR(pr, n), R′ = GR(pr, l), and Tr : R → R′ be the trace
mapping from R to R′. Then, for α ∈ R, α is an NBG for R/Zpr if and only if Tr(α) is an NBG for R′/Zpr .

By Corollary 1, we assume (n, p) = 1 without loss of generality. In this case, xn − 1 has the
following decomposition in the polynomial ring Fp[x] :

xn − 1 = p1(x)p2(x) · · · pr(x), (9)
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where p1(x), p2(x), · · · , pr(x) are distinct monic irreducible polynomials in Fp[x].
Let Fp[x] be the set of all p-polynomials ∑

i
cixpi

(ci ∈ Fp). Then, Fp[x] is a ring with respect to

the ordinary addition, and the following multiplication defined by composition ⊗:

F(x)⊗ G(x) = F(G(x)), for F(x), G(x) ∈ Fp[x],

and the mapping:
µ : Fp[x] −→ Fp[x], ∑

i
cixi −→∑

i
cixpi

is an isomorphism of rings. Corresponding to the decomposition (9) in Fp[x], we have the following
decomposition of:

xpn − x = P1(x)⊗ P2(x)⊗ · · · ⊗ Pr(x),

where Pi(x) = µ(pi(x)) (1 ≤ i ≤ r) are distinct monic irreducible p-polynomials in Fp[x]. Let mi(x) =
xn−1
pi(x) and Mi(x) = µ(mi(x)) =

r⊗
λ=1
λ 6=i

Pλ(x) ∈ Fp[x].

Lemma 4. ([18]) Let q = pn and (n, p) = 1. For a ∈ Fq, a is an NBG for Fq/Fp if and only if Mi(a) 6=
0 (1 ≤ i ≤ r).

This is a direct consequence of Theorem 1 and Lemma 4. We have the following criterion.

Corollary 2. Let R = GR(pr, n), where (n, p) = 1. Then, for α ∈ R, α is an NBG for R/Zpr if and only if
Mi(ᾱ) 6= 0 (1 ≤ i ≤ r).

By the decomposition (9), we have:

Fp[x]
(xn − 1)

=
r⊕

i=1

Fp[x]
(pi(x))

∼=
r⊕

i=1

Fpdi ,

where di = deg pi(x). Then, we have the orthogonal idempotents ei(x) ∈ Fp[x], deg ei(x) ≤ n− 1 (1 ≤
i ≤ r) satisfying:

ei(x) ≡ δij(mod pj(x)) (1 ≤ i ≤ j ≤ r),

where δij is the Kronecker symbol. These idempotents ei(x) (1 ≤ i ≤ r) can be computed by using the
σp-class of the roots of xn − 1 (see [19]).

In [19], we present a new criterion of NBG for Fq/Fp (q = pn, (n, p) = 1) by using idempotents

in the ring Fp [x]
(xn−1) .

Lemma 5. ([19]) Letting Ei(x) = µ(ei(x)) ∈ Fp[x] (1 ≤ i ≤ r), a ∈ Fq (q = pn, (n, p) = 1), a is an NBG
for Fq/Fp if and only if Ei(a) 6= 0 (1 ≤ i ≤ r).

Corollary 3. Let R = GR(pr, n), where (n, p) = 1. Then, for α ∈ R, α is an NBG for R/Zpr if and only if
Ei(ᾱ) 6= 0 ∈ Fq (1 ≤ i ≤ r).

In [19], we present more explicit criteria on normal bases for Fq/Fp for several specific cases
where the decomposition (9) has a simpler form. By Corollary 3, we can give more explicit criteria on
normal bases of the Galois ring extension for such cases. For example, let p and n be prime numbers
and (Z/nZ)∗ = 〈p〉. Then, for a ∈ Fq (q = pn), a is an NBG for Fq/Fp if and only if a /∈ Fp and
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tr(a) 6= 0, where tr : Fq → Fp is the trace mapping. Let Tr : R = GR(pr, n)→ Zpr be the trace mapping.
For α ∈ R,

tr(α) ∈ Fp ⇔ tr(α)p − tr(α) = 0⇔ Tr(α)p − Tr(α) ∈ pR

and:
tr(ᾱ) = 0⇔ Tr(α) ∈ pR.

Corollary 4. Let R = GR(pr, n), where p and n are distinct prime numbers and (Z/nZ)∗ = 〈p〉. Then, for
α ∈ R, α is an NBG for R/Zpr if and only if both Tr(α) and Tr(α)p − Tr(α) belong to R∗.

We end this section by counting the number of NBG for R/Zpr where R = GR(pr, n). It is
well known ([18], Corollary 8.25) that the number of NBG’s for Fq/Fp (q = pn) is (let n = pem and
(m, p) = 1):

ψq(n) = pn ∏
d|m

(1− p−ordd(p))φ(d)/ordd(p),

where φ(d) is the Euler function and ordd(p) is the order of p in (Z/dZ)∗. Since the mapping ϕ : R =

GR(pr, n)→ R = Fq (q = pn) is surjective and Fp-linear, we get that |Ker ϕ| = |R|/|R| = prn−n. As a
direct consequence of Theorem 1, we can count the number of NBG’s for R/Zpr .

Corollary 5. Let p be a prime number and n = pem be a positive integer with (m, p) = 1. For R = GR(pr, n),
the number of NBG’s for R/Zpr is:

ψ = prn ∏
d|m

(1− p−ordd(p))φ(d)/ordd(p)

and the number of normal bases for R = GR(pr, n) is ψ/n.

4. Multiplicative Complexity on Normal Bases

It is known that normal bases on finite fields with low multiplication complexity have several
applications in coding theory, cryptography, signal processing, and so on. As a comparison,
Abrahamsson discussed the multiplicative complexity on normal bases over Galois rings
and considered the architectures for multiplication in Galois rings (for p = 2) in his thesis. In this
section, we discuss the complexity of normal bases for extension R/Zpr , where R = GR(pr, n).

Definition 2. Let α be an NBG for R/Zpr , so that B = {α, σ(α), · · · , σn−1(α)} is a normal basis for R/Zpr ,
where σ is the automorphism of R defined by (3). Then:

ασi(α) =
n−1

∑
j=0

cijσ
j(α) (0 ≤ i ≤ n− 1, cij ∈ Zpr ). (10)

The multiplicative complexity M(B(α)) of the normal basis B is defined by the number of nonzero cij.
Namely,

M(B(α)) = ]{(i, j) : 0 ≤ i, j ≤ n− 1, cij 6= 0}.

For each λ (1 ≤ λ ≤ r), α ∈ R, let α(λ) denote the modulo pλ reduction of α. The mapping:

R = GR(pr, n) −→ R(λ) = GR(pλ, n), α 7→ α(λ)

is a homomorphism of rings and α(r) = α, α(1) = ᾱ ∈ GR(p, n) = R(1) = Fp.
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For α ∈ R(= R(r)), α is an NBG for R/Zpr if and only if ᾱ is an NBG for Fq/Fp by Theorem 1,
then this is also equivalent to α(λ) being an NBG for R(λ)/Zpr for any λ ≥ 1. Moreover, by the
diagram (6), we get that for any λ, the equality (10) implies that:

α(λ)σ(λ)i(α(λ)) =
n−1

∑
j=0

c(λ)ij σ(λ)j(α(λ)) (0 ≤ i ≤ n− 1, c(λ)ij ∈ Zpλ).

If 0 6= c(λ)ij ∈ Zpλ , then 0 6= c(µ)ij ∈ Zpµ for all µ ≥ λ. Therefore, we get the following simple and
basic result.

Theorem 2. Let R = GR(pr, n) and α be an NBG for R/Zpr . Then, for each 1 ≤ λ ≤ r− 1, α(λ) is an NBG
for R(λ)/Zpr , where R(λ) = GR(pλ, n). Moreover, let B(λ) = B(α(λ)) = {σ(λ)i(α(λ)) : 0 ≤ i ≤ n− 1}.
Then:

M(B(r)) ≥ M(B(r−1)) ≥ · · · ≥ M(B(1)),

where B(1) is the normal basis B = {ᾱpi
: 0 ≤ i ≤ n− 1} for GR(p, n)/Zp = Fq/Fp.

It is known that for any normal basis B for finite field extension Fqn /Fq, M(B) ≥ 2n− 1. Hence,
by Theorem 2, for any normal basis B for Galois ring extension GR(pr, n)/Zpr , M(B) ≥ 2n − 1.
The basis B is called optimal if M(B) = 2n− 1. If B is an optimal normal basis for R/Zpr , then by
Theorem 2,

2n− 1 = M(B) ≥ M(B(r−1)) ≥ · · · ≥ M(B(1)) ≥ 2n− 1.

Therefore, M(B(λ)) = 2n − 1. Namely, B(λ) is an optimal normal basis for R(λ)/Zpr for all
1 ≤ λ ≤ r. In particular, B(1) = B is an optimal normal basis for the finite field extension R(1)/Zp =

Fq/Fp (q = pn).

Definition 3. Two elements α, β ∈ R∗ = GR(pr, n)∗ are equivalent to each other if α = εβ for some ε ∈ Z∗pr ,
denoted by α ∼ β.

If α is an NBG for R/Zpr and α ∼ β, β = εα for some ε ∈ Z∗pr . It is easy to see that β is also an NBG
for R/Zpr . Moreover, let:

ασλ(α) =
n−1

∑
i=0

cλiσ
i(α) (cλi ∈ Zpr , 0 ≤ λ ≤ n− 1).

Then, σλ(β) = εσλ(α) and:

βσλ(β) =
n−1

∑
i=0

εcλiσ
i(β) (εcλi ∈ Zpr ).

Since cλi = 0 if and only if εcλi = 0, two normal bases B(α) = {σλ(α) : 0 ≤ λ ≤ n− 1} and
B(β) = {σλ(β) : 0 ≤ λ ≤ n− 1} have the same complexity: M(B(α)) = M(B(β)).

All optimal normal bases for finite field extension have been determined in [8].

Lemma 6. (Gao and Lenstra [8]) There are only two types of optimal normal bases B for finite field extension
Fpn /Fp as follows.

Type (I): n + 1 and p are distinct prime numbers, Z∗n+1 = 〈p〉, and B is equivalent to the following
(optimal) normal bases for Fpn /Fp,

B(ξ) = {σλ
p (ξ) = ξ pλ

: 0 ≤ λ ≤ n− 1} = {ξ i : 1 ≤ i ≤ n},
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where ξ is an (n+ 1)-th primitive root of one in the algebraic closure of Fp, so that Fp(ξ) = Fpn .
Type (II): p = 2 and 2n + 1 is a prime number, Z∗2n+1 = 〈−1, 2〉, and B is equivalent to the following

(optimal) normal bases for F2n /F2:

B(ξ + ξ−1) = {σλ
2 (ξ + ξ−1) = ξ2λ

+ ξ−2λ
: 0 ≤ λ ≤ n− 1}

= {ξ i + ξ−i : 1 ≤ i ≤ n},

where ξ is a (2n + 1)th root of one in the algebraic closure of F2, F2(ξ + ξ−1) = F2n .

Abrahamsson [17] presented the following optimal normal bases for Galois ring extension as a
generalization of Type (I) optimal normal bases for finite field extension.

Lemma 7. ([17]) Let p and n + 1 be distinct prime numbers such that Z∗n+1 = 〈p〉. Let ζ be an (n + 1) th root
of one in R = GR(pr, n). Then:

B(ζ) = {σλ(ζ) = ζ pλ
: 0 ≤ λ ≤ n− 1} = {ζ i : 1 ≤ λ ≤ n}

is an optimal normal basis for R/Zpr .

In this section, we determine all optimal normal bases for Galois ring extensions. If α ∈ R∗ and
B(α) is an optimal normal basis for R/Zpr (R = GR(pr, n)), then B(ᾱ) is an optimal normal basis
for Fq/Fp (q = pn), and then, B(ᾱ) is an optimal normal basis for Type (I) or Type (II) by Lemma 6.
Now, we consider these two cases separately.

Theorem 3. Suppose that n + 1 and p are distinct primes and Z∗n+1 = 〈p〉, R = GR(pr, n), n ≥ 2. Then, any
optimal normal basis for R/Zpr is equivalent to the one given by Lemma 6.

Proof. For r = 1, R/Zpr = Fq/Fp is the finite field extension case. For r = 2, we assume that
B(α) = {σλ(α) : 0 ≤ λ ≤ n− 1} is an optimal normal basis for R/Zp2 , R = GR(p2, n). Then, ᾱ = ξ,
where ξ is an (n + 1) th primitive root of one in Fq (q = pn). Let ζ be an (n + 1) th primitive root of
one in R such that ζ̄ = ξ. Then, ζ ∈ T∗ by (n + 1)|(q− 1), where T∗ is the cyclic multiplicative group
of R (see Fact 3 in Section 2), and:

α = ζ + pa = ζ + p
n

∑
i=1

ciζ
i (a ∈ R, ci ∈ Zp2), (11)

since {ζ i : 1 ≤ i ≤ n} = {ζ pλ
: 0 ≤ λ ≤ n− 1} is a (normal) basis for R/Zp2 . Therefore:

σλ(α) = ζ pλ
+ p

n

∑
i=1

ciζ
ipλ

since σλ(ζ i) = ζ ipλ
, 0 ≤ λ ≤ n− 1 (12)

and for 0 ≤ λ ≤ n− 1, λ 6= n
2 (we can assume that n + 1 is an odd prime number, so that n is even),

ασλ(α) = (ζ + p
n

∑
i=1

ciζ
i)(ζ pλ

+ p
n

∑
i=1

ciζ
ipλ

)

= ζ1+pλ
+ p

n

∑
i=1

ci(ζ
i+pλ

+ ζ1+ipλ
) since p2 = 0. (13)
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From λ 6= n
2 , we know that pλ 6≡ −1(mod n + 1) and 1 + pλ ≡ pµ(mod n + 1) for some

µ, 0 ≤ µ ≤ n− 1. Then, by (13), we have:

ασλ(α) = ζ pµ
+ p

n

∑
i=1

ci(ζ
i+pλ

+ ζ1+ipλ
)

= σµ(α) + p
n

∑
i=1

ci(ζ
i+pλ

+ ζ1+ipλ − ζ i(1+pλ
)) by (12)

= σµ(α) + p[
n−1

∑
l=0

ζ pl
(cpl−pλ + c(pl−1)p−λ − cpl(1+pλ)−1) + c−pλ + c−p−λ ],

where we consider i ∈ Zn+1 for ci and assume c0 = 0, so Equation (13) becomes:

ασλ(α) = σµ(α) + p(
n−1

∑
l=0

σl(α)(cpl−pλ + c(pl−1)p−λ − cpl(1+pλ)−1)− (c−pλ + c−p−λ)
n−1

∑
l=0

σl(α)),

since σl(α) ≡ σl(ζ) ≡ ζ pl
(mod p) and

n−1
∑

l=0
σl(α) ≡

n−1
∑

l=0
σl(ζ) =

n−1
∑

l=0
ζ pl

=
n
∑

j=1
ζ j = −1(mod p).

Therefore for 0 ≤ λ ≤ n− 1, λ 6= n
2 ,

ασλ(α) =
n−1

∑
l=0

bλlσ
l(α) (bλl ∈ Zp2),

where:

bλl =

{
p(cpl−pλ + c(pl−1)p−λ − cpl(1+pλ)−1 − c−p−λ − c−pλ), if pl 6≡ pµ ≡ (1 + pλ)(mod n + 1);
1 + p(c1 − c−p−λ − c−pλ), if pl ≡ 1 + pλ(mod n + 1).

(14)

Then, the complexity M(B(α)) = ∑n−1
λ=0 Mλ, where:

Mλ = ]{l | 0 ≤ l ≤ n− 1, bλl 6= 0 ∈ Zp2}.

For the case of λ = n
2 ,

ασ
n
2 (α) ≡ ζ pn/2

ζ = ζ−1ζ = 1 = −
n

∑
i=1

ζ i = −
n−1

∑
λ=0

ζ pλ ≡ −
n−1

∑
λ=0

σλ(α)(mod p).

We get M n
2
= n. For 0 ≤ λ ≤ n− 1, λ 6= n

2 , we have Mλ ≥ 1 since bλl ≡ 1(mod p) for l satisfying
pl ≡ 1 + pλ(mod n + 1). Then, we have:

2n− 1 = M(B(α)) =
n−1

∑
λ=0

Mλ = n +
n−1

∑
λ=0
λ 6= n

2

Mλ ≥ n +
n−1

∑
λ=0
λ 6= n

2

1 = 2n− 1,

which implies that Mλ = 1 for all 0 ≤ λ ≤ n− 1, λ 6= n
2 , which means that bλl = 0 for all 0 ≤ λ, l ≤

n− 1, λ 6= n
2 and pl 6≡ pλ + 1(mod n + 1). Let s ≡ pλ, t ≡ pl(mod n + 1). From (14), one gets that

B(α) is an optimal normal basis for GR(p2, n)/Zp2 if and only if when 1 ≤ t ≤ n, 1 ≤ s ≤ n− 1 and
t 6≡ 1 + s(mod n + 1), we have:

− c−s−1 − c−s + ct−s + c(t−1)s−1 − ct(1+s)−1 = 0 ∈ Zp. (15)
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Particularly, for s = 1, we get:

−2c−1 + 2ct−1 − ct/2 = 0, for 1 ≤ t ≤ n, t 6= 2.

If p = 2, then ct/2 = 0 ∈ F2 for all 1 ≤ t ≤ n, t 6= 2. By assumption Z∗n+1 = 〈2〉; this means that
cj = 0 for all 2 ≤ j ≤ n, so that α = ζ + pc1ζ = (1 + pc1)ζ by (11), and the basis B(α) is equivalent to
the one given by Lemma 6.

Now, we assume that p ≥ 3. For any fixed s, 1 ≤ s ≤ n− 1, by (15), we get:

0 =
n

∑
t=1

t 6≡1+s

(−c−s−1 − c−s + ct−s + c(t−1)s−1 − ct(1+s)−1)

= (n− 1)(−c−s−1 − c−s) +
n

∑
l=0

l 6=1,−s

cl +
n

∑
l=0

l 6=−s−1,1

cl −
n

∑
l=0

l 6=0,1

cl

= (1− n)(c−s−1 + c−s) +
n

∑
l=1

cl − c1 − c−s − c−s−1

= −n(c−s−1 + c−s) + A

where A = ∑n
l=2 cl . Therefore:

n(c−s + c−s−1) = A (16)

for all s, 1 ≤ s ≤ n− 1. If 3 ≤ p - n, and we get c−s + c−s−1 = A
n for all 1 ≤ s ≤ n− 1. In particular, for

s = 1, we get cn = c−1 = A
2n and:

A = cn +
n−1

∑
l=2

cl =
A
2n

+
n− 2

2
A
n

=
n− 1

2n
A.

Therefore, (n + 1)A = 0 and A = 0 ∈ Fp, since (p, n + 1) = 1. Then, we have cn = 0 and
c−s + c−s−1 = 0 for 2 ≤ s ≤ n− 1. Taking t = s in (15) and remarking that c0 = 0, we get c s−1

s
= c s

s+1

for 2 ≤ s ≤ n− 1.
Namely,

c 1
2
= c 2

3
= · · · = c n−1

n
.

Since, for 1 ≤ a, b ≤ n− 1,

a
a + 1

≡ b
b + 1

(mod n + 1) =⇒ a ≡ b(mod n + 1) =⇒ a = b,

we know that { s−1
s (mod n+ 1) : 2 ≤ s ≤ n} = Zn+1\{0, 1}. Therefore, c2 = c3 = · · · = cn−1 = cn = 0,

and α = (1 + pc1)ζ. Therefore, B(α) is equivalent to the one given by Lemma 6. If 3 ≤ p | n, from (16),
we have A = 0. In this case, we fix t (2 ≤ t ≤ n− 1), and the condition (15) implies that:

0 =
n−1

∑
s=1

s 6=t−1

(−c−s−1 − c−s + ct−s + c(t−1)s−1 − ct(1+s)−1)

= −
n

∑
l=2

l 6=−(t−1)−1

cl −
n

∑
l=2

l 6=1−t

cl +
n

∑
l=2

l 6=t,t+1

cl +
n

∑
l=2

l 6=1−t

cl −
n

∑
l=2
l 6=t

cl

= c−(t−1)−1 + c1−t − ct − ct+1 − c1−t + ct = c−(t−1)−1 − ct+1.

Let a = −(t− 1)−1; we get:
ca = c2−a−1 (2 ≤ a ≤ n). (17)
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Consider the fraction linear transformation:

f : Zn+1 ∪ {∞} → Zn+1 ∪ {∞}, f (x) = 2− x−1 =
2x− 1

x

with matrix M =

(
2 −1
1 0

)
. For any m ≥ 0, Mm =

(
m + 1 −m

m −(m− 1)

)
, so that:

f m(2) =
2(m + 1)−m
2m− (m− 1)

= 1 +
1

m + 1
∈ Zn+1\{0, 1} (0 ≤ m ≤ n− 2).

Therefore, { f m(2) : 0 ≤ m ≤ n− 2} = Zn+1\{0, 1} = {2, 3, · · · , n}. By (17), we get:

c2 = c3 = · · · = cn =
1

n− 1
A = 0.

Thus, α = (1 + pc1)ζ ∼ ζ. This completes the proof of Theorem 3 for r = 2.
Now, we assume that r ≥ 3, and this theorem is true for r − 1. Let α ∈ R = GR(pr, n), and

{σλ(α) : 0 ≤ λ ≤ n − 1} is an optimal normal basis for R/Zpr . By assumption, we have, up to
equivalence,

α = ζ + pr−1a (a ∈ R) = ζ + pr−1
n

∑
i=1

ciζ
i (ci ∈ Zpr ).

Then, the same argument for r = 2 can be shifted to get ci = 0 for all 2 ≤ i ≤ n. Therefore,
α = (1 + pr−1c1)ζ ∼ ζ. This completes the proof of Theorem 3.

Remark 1. Gao and Lenstra determined all optimal normal bases by using the Galois theory on finite fields [8]
and consequently confirmed a conjecture that was raised by Mullin et al. Here, we give a direct proof of the
Theorem 3 by using the mathematical induction.

Theorem 4. Assume that 2n+ 1 is an odd prime number and Z∗2n+1 = 〈−1, 2〉. Let R = GR(2r, n) (r, n ≥ 2).
Then:

(1) If n ≥ 3, there is no optimal normal basis for R/Z2r .
(2) If n = 2 and α ∈ R = GR(2r, 2),B(λ) = {α, σ(α)} is an optimal normal basis for R/Z2r if and

only if α is equivalent to ζ + ζ−1 + 2b(ζ2 + ζ−2), where ζ is a fifth primitive root of one in GR(2r, 4), so that
ζ + ζ−1 ∈ R, and b is the unique element in Z2r−1 satisfying 1− b + 4b2 = 0.

Proof. (1) First, we consider r = 2. Suppose that α ∈ R = GR(4, n), and B(λ) = {σλ(α) : 0 ≤ λ ≤
n− 1} is an optimal normal basis for R/Z4. Then, B(λ) = {ᾱ2λ

: 0 ≤ λ ≤ n− 1} is an optimal normal
basis for F2n /F2. By Lemma 6, ᾱ is equivalent to ξ + ξ−1, where ξ is a (2n + 1) th primitive root of one
in Fq2 . Let ζ be the (2n + 1) th primitive root of one in GR(4, n) such that ζ̄ = ξ. Then, ζ + ζ−1 ∈ R,
and up to equivalence:

α = ζ + ζ−1 + 2a (a ∈ R).

Since {ζ2λ
+ ζ−2λ

: 0 ≤ λ ≤ n− 1} = {ζ i + ζ−i : 1 ≤ i ≤ n} is a normal basis for R/Z4 by the

assumption that Z∗2n+1 = 〈−1, 2〉, also, this tell us that a =
n
∑

i=1
ci(ζ

i + ζ−i). Therefore, we know that:

α = ζ + ζ−1 + 2
n

∑
i=1

ci(ζ
i + ζ−i) (ci ∈ Z2), (18)

and:

σλ(α) = ζ2λ
+ ζ−2λ

+ 2
n

∑
i=1

ci(ζ
i2λ

+ ζ−i2λ
) (0 ≤ λ ≤ n− 1). (19)
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Let:

ασλ(α) =
n−1

∑
i=0

bλiσ
i(α) (bλi ∈ Z4, 0 ≤ λ ≤ n− 1).

We define:
Mλ = ]{0 ≤ i ≤ n− 1 : bλi 6= 0}.

Then, 2n− 1 = M(B(λ)) = ∑n−1
λ=0 Mλ. Since:

ασλ(α) = (ξ + ξ−1)(ξ2λ
+ ξ−2λ

)

=

{
ξ2 + ξ−2, for λ = 0
ξ2λ+1 + ξ−(2

λ+1) + ξ2λ−1 + ξ−(2
λ−1), for 1 ≤ λ ≤ n− 1.

We get M0 ≥ 1 and Mλ ≥ 2 for 1 ≤ λ ≤ n− 1. Then, from ∑n−1
λ=0 Mλ = 2n− 1, we know that

M0 = 1 and Mλ = 2 for 1 ≤ λ ≤ n− 1. However,

ασ0(α) = α2 = ζ2 + ζ−2 + 2

= σ(α)− 2
n

∑
i=1

ci(ζ
2i + ζ−2i)− 2(

n

∑
i=1

(ζ2i + ζ−2i)) (by (19))

= σ(α) + 2
n

∑
i=1

(ci + 1)(ζ2i + ζ−2i)

= (1 + 2(c1 + 1))σ(α) + 2
n

∑
i=2

(ci + 1)σli (α),

where li is an integer determined by 0 ≤ li ≤ n− 1 and 2li ≡ 2i or − 2i(mod 2n + 1) so that li 6= 1.
From M0 = 1, we get ci = 1 ∈ Z2 for all i, 2 ≤ i ≤ n. By (18), we have:

α = (1 + 2c1)(ζ + ζ−1) + 2 (c1 ∈ Z2),

ζ + ζ−1 = (α + 2)(1 + 2c1) = (1 + 2c1)α + 2,

and:

ασ(α) = [(1 + 2c1)(ζ + ζ−1) + 2][(1 + 2c1)(ζ
2 + ζ−2) + 2]

= ζ + ζ−1 + ζ3 + ζ−3 + 2(ζ + ζ−1 + ζ2 + ζ−2)

= (3 + 2c1)α + (1 + 2c1)σ
λ(α) + 2σ(α),

where λ is determined by 2λ ≡ ±3(mod 2n + 1) and 0 ≤ λ ≤ n− 1. If n ≥ 3, then λ 6= 0, 1. Therefore,
M1 = 3 6= 2. Therefore, we proved that there is no optimal normal basis in the case n ≥ 3.

(2) Letting α ∈ R = GR(2r, 2) (r ≥ 2) and B(λ) = {α, σ(α)} is an optimal normal basis for R/Zpr .
By Lemma 6, we get:

α = ζ + ζ−1 + 2(c1(ζ + ζ−1) + c2(ζ
2 + ζ−2)) = (1 + 2c1)(ζ + ζ−1) + 2c2(ζ

2 + ζ−2),

where ζ is a fifth primitive root of one in GR(2r, 4), so that ζ + ζ−1 ∈ R and c1, c2 ∈ Z2r−1 . Since 1 + 2c1

is invertible in Z2r , we can assume, up to equivalence,

α = ζ + ζ−1 + 2b(ζ2 + ζ−2), for b ∈ Z2r−1 . (20)
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Then, σ(α) = ζ2 + ζ−2 + 2b(ζ + ζ−1), so that:

ζ + ζ−1 =

∣∣∣∣∣ α 2b
σ(α) 1

∣∣∣∣∣∣∣∣∣∣ 1 2b
2b 1

∣∣∣∣∣
=

α− 2bσ(α)

1− 4b2 , ζ2 + ζ−2 =

∣∣∣∣∣ 1 α

2b σ(α)

∣∣∣∣∣∣∣∣∣∣ 1 2b
2b 1

∣∣∣∣∣
=

σ(α)− 2bα

1− 4b2

and by (20), we have:

α2 = ζ2 + ζ−2 + 2 + 4b(ζ + ζ−1)(ζ2 + ζ−2) + 4b2(ζ + ζ−1 + 2)

= 2− 4b + 8b2 + 4b2(ζ + ζ−1) + ζ2 + ζ−2

= (ζ + ζ−1)(−2 + 4b− 4b2) + (ζ2 + ζ−2)(−1 + 4b− 8b2)

=
−2 + 4b− 4b2

1− 4b2 (α− 2bσ(α)) +
−1 + 4b− 8b2

1− 4b2 (σ(α)− 2bα)

= Aα + Bσ(α),

where (1 + 2b)A = −2(1− b + 4b2), (1 + 2b)B = −1 + 6b− 4b2. Therefore, {α, σ(α)} is an optimal
basis for R/Z2r if and only if A = 0 ∈ Z2r , and then, if and only if b ∈ Z2r−1 satisfies 1− b + 4b2 ≡
0(mod 2r−1).

Let Z(2) be the ring of two-adic integers. Consider f (x) = 1− x + 4x2 ∈ Z(2)[x], f ′(x) = −1 + 8x.
We have v2( f (1)) = v2(4) = 2 and v2( f ′(1)) = v2(7) = 0, where v2 is the two-adic exponential
valuation. From Hensel’s lemma and v2( f (1)) > 2v2( f ′(1)), we know that there exists unique
b ∈ Z2r−1 such that 1− b + 4b2 = 0 for any r ≥ 2. This completes the proof of Theorem 4.

Putting Theorem 3 together with Theorem 4, we can derive the following results.

Theorem 5. Let R = GR(pr, n), r, n ≥ 2. Then:
(1) There exists the optimal normal basis B(α) = {σλ(α) : 0 ≤ λ ≤ n− 1} for R/Zpr if and only if (A) n + 1
and p are distinct prime numbers, and Z∗n+1 = 〈p〉; or (B) p = n = 2.
(2) For Case (A), B(α) is an optimal normal basis for R/Zpr if and only if α is equivalent to an (n + 1)th

primitive root ζ of one. Namely, α = aζ (a ∈ Z∗pr ).
(3) For Case (B), B(α) is an optimal normal basis for GR(2r, 2)/Z2r if and only if α is equivalent to ζ + ζ−1 +

2b(ζ2 + ζ−2), where ζ is a fifth primitive root of one in GR(2r, 4) so that ζ + ζ−1, ζ2 + ζ−2 ∈ GR(2r, 2), and
b ∈ Z2r−1 is the unique element satisfying 1− b + 4b2 = 0.
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