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Abstract: Normal bases are widely used in applications of Galois fields and Galois rings in areas such
as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper,
we study the normal bases for Galois ring extension R/Z,r, where R = GR(p", n). We present a
criterion on the normal basis for R/Z,r and reduce this problem to one of finite field extension
R/Zy = F;/Fy (9 = p") by Theorem 1. We determine all optimal normal bases for Galois
ring extension.
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1. Introduction

The theory of finite fields has been one of the fundamental mathematical tools in computer science
and communication engineering since the 1950s, when digit communications and computations were
rapidly developed. Low complexity operation, particularly the multiplicative operation, squaring, and
exponentiation operations, are preferred in various applications, including coding, cryptography;,
and communication. The performance of these operations is closely related to the representation
of the finite elements; they are desired for efficient hardware implementation, and in this respect,
many useful bases for Fyn /IF; with low complexity have been found [1-11]. An efficient algorithm for
field multiplication using a normal basis was proposed by Massey and Omura in 1985 [12].

In the past two decades, Galois rings have been used successfully in many aspects, such as in
combinatorics to construct different kinds of combinatorial designs and in communication theory to
construct error-correcting codes, sequences with good correlation properties, secret sharing schemes,
hash functions, and so on [3,13-16]. However, compared to the case of finite field extensions,
the complexity problem of operations in Galois rings has not attracted much attention from scholars,
except Abrahamsson, who considered the complexity of bases and carefully discussed the architectures
for multiplication in Galois rings (for p = 2) in his thesis [17] in 2004. These are motivation by our
study of operations, particularly for multiplicative operation, with low complexity in Galois rings.

In this paper, we study one aspect of the complexity problem of operations in Galois rings.
More precisely, we mainly focus on the normal bases for Galois ring extensions. This paper is
organized as follows. In Section 2, we introduce some basic facts on Galois rings. Some results on
normal bases and some basic properties on the multiplicative complexity of normal bases for Galois
ring extension GR(p", n)/Z,r are presented in Section 3. Then, we determine all optimal normal bases
for these Galois ring extensions in Section 4.

2. Basic Facts about Galois Rings

In this section, we introduce several basic facts about Galois rings. For more information,
the reader is referred to [18].
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Let p be a prime number and r > 2, Z,r = Z/p"Z. We have the modulo p reduction mapping:
¢:Zy —Fp, a (modp")r—a=a (modp),
which induces the following modulo p reduction mapping between polynomial rings:

¢ : Zy[x] — Fplx], Zcx — f(x ch

f(x) is said to be a monic basic irreducible (primitive) polynomial over Z, if f(x) is a monic irreducible
(primitive) polynomial over [F),.
Let f(x) be a basic primitive polynomial of degree n in Z,r[x]. The quotient ring:

R = GR(p',n) = = Zyr
(p',n) (f(x) P [7]
= {C0+C1’7+"'+Cn,1’)/n71 G GZpr}, 1)

where 1 is a root of f(x) in R with order p"” — 1, R is called a Galois ring. We note that 7 is a primitive
element of the finite field F; where ¢ = p". From now on, we take f(x) to be a basic primitive
polynomial. The modulo p reduction can be naturally extended to the following homomorphism
of rings:
Zyr[x] F,[x]
p p
2y Y| — F,=—=
G = A )
Some basic facts about Galois ring R = GR(p", n) are given as follows.

(Fact 1) Let T* = (v) be the cyclic multiplicative group of order q — 1 generated by 7,
and T = T* U {0}. Then, T = F, and:

Il

¢ :R=GR(p',n) =

=Fp[).

R={x+pu+pxo+ +p lx1:65eTh, R=T=q=p" @)

(Fact 2) R is a local commutative ring with the unique maximal ideal M = pR, |[M| = ¢"~!, and
the group of units is R* = R\M =T* x (1+ M), |R*| =¢q" — ¢~ L.

(Fact 3) R/Z,r is a Galois extension of rings with Galois group Gal(R/Z,r) = (0}), where 0y, is
the automorphism of order #n defined by:

r—=1
op () p'xi) Z pixl (x; € T). 3)
i=0

More generally, for each positive integer [,R = GR(p",n) is a subring of R(;y = GR(p",nl)
and R(;)/R is a Galois extension of rings with Galois group Gal(R(;)/R) = (o), where 0; is the
automorphlsm of R(;) defined by:

r—1

o (Y p'xi) Z pixl (x €Ty, 4)
i=0
b
and R(y = Zy [yy] = {E5g p'xi o xi € Ty}, Ty = Tgy U0}, Thy = (vay) vy =

(Fact 4) We have the trace mapping:
Tr! : R = GR(p, nl) — R = GR(p",n),
defined by:

-1
= Zo’f](w) (@ € Rypy),
i=0
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which is an epimorphism of R-modules, and we have the following commutative diagram:

T} Tr}
Ry = GR(p",nl) —=R =GR(p",n) — Z, = GR(p", 1) ()
(Pl (Pi (Pl
— ! trl!
R(Z)Z]Fpnz—>R Fn%Zp —Fp

where tr and tr!' are the trace mappings for finite field extensions.
On the other hand, for r > 2, the modulo p"~! reduction gives the homomorphism of rings
GR(p",n) — GR(p"~1,n), and we get the following commutative diagram:

d p1 d
GR(p,m) "L GR(p 1, 1) — > - - " UGR (12, ) " GR(p, ) — F, ©)
g'(") l g'("*l) \L (7(2) l 0'(1) l
mod p" 1 mod p> 5 mod p
GR(p',n) —=GR(p""},n) — - —=GR(p* n) ——— T,

where ¢() is the automorphism of GR(p*, 1) defined by:

A-1
O'(A)prl Zp (x; € 7).
i=0

Next, we need some basic properties of the polynomial ring R[x]. One of the most important
properties of Rx] is the following Hensel’s lemma.

Two polynomials f(x) and g(x) in R[x] are called coprime if there exist A(x) and B(x) in R[x]
such that f(x)A(x) + g(x)B(x) = 1.

Lemma 1. ([18], Lemma 14.20) Let R = GR(p",n) and R = Fy (q = p"). Let f(x) be a monic polynomial in
R[x] and gi(x) (1 < i <'s) be pairwise coprime monic polynomzals in R[ ]. f?( x) = g1(x)g(x) - - gs(x)
in R[x], then there exist pairwise coprime polynomials f;(x) (1 < i < s) in R[x] such that f(x) =

fi(x)fa(x) - f(x) and fi(x) = gi(x) (1 <i<s).

The polynomial f;(x) is called the Hensel lift of g;(x). A monic polynomial f(x) in R[x] is called
primary if f(x) is a power of a monic irreducible polynomial in Fy[x]. One can deduce the following
result from the Hensel’s lemma.

Lemma 2. ([18], Theorem 14.21) Let f(x) be a monic polynomial of deg f > 1 in R[x]. We have the
following decomposition:

f(x) = AX) fax) - fr(x),
where fi(x) (1 <i < r) are pairwise coprime primary polynomials in R[x]| and f;(x) (1 < i < r) are uniquely
determined up to their order. Particularly, if f(x) = p1(x)pa(x) - - p,(x) where p;(x) (1 < i < r) are
distinct monic irreducible polynomials in R[x] = Fy[x], then f;(x) (1 < i < r) are distinct monic irreducible
polynomials in R[x] and f;(x) = p;(x) (1 <i <r).

3. Criteria on Normal Bases for Galois Ring Extensions

From (1), we know that R = GR(p’, n) is a free Z,»-module of rank n and {1,7,---, ')/”’1} isa
basis for R/Z,r, where 1 is an element of order ¢ — 1 (g = p") in R.
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Definition 1. An element a € R is called a normal basis generator (NBG) for extension R/Zyr if B =
{o%(a) = a,0(a),- -, 0" («)} is a basis for R/ Z,r, where o is the automorphism o, of R defined by (3).
Such a basis B is called a normal basis for R/ Zr.

In this section, we present several criteria on normal bases for Galois ring extension R/Z,r,
and these criteria can be reduced to the ones of finite field extensions R/ Zy = IFq/ [, according
to the following theorem. Recall that an element a € F; (3 = p") is an NBG for F;/F, if B =
{a,7(a), -+ ,o"'(a)} is a normal basis for F,/F), where 7 is the Frobenius automorphism of F,
defined by &(b) = b” for b € F,. From the definition of ¢ in (3), one has for « € R, o(a) = 7(@).

Theorem 1. For an element o in R, a is an NBG for R/ Zyr if and only if @ is an NBG for finite field extension
R/Zy =F,/F).

Proof. Suppose that & is not an NBG for [F;/F,. Then, there exist a; € [F, (0 <i < n — 1) such that:
n—1 .
Y a7t (@) =0 7)
i=0

anda] # 0 for some j. Let A; 6 R, A=a(0<i< n—l) Theformula (7) implies that )7~ 1A0'l( )=
Y aiot (&) = 0, so that Z Ajo'(a) € pR. Therefore, Z p' Ao («) = 0. From a; € F};, we know

that A; € R" and p"™ 1A ;é 0 Therefore, a is not an NBG for R/Zyr.
On the other hand suppose that a is not an NBG for R/ Zp Then, there exist A; € R (0 < i <
n — 1) such that:

n—1 )
Y A (@) =0 ®)
i=0
and A; # 0 for some j. Let A; € PR\ pit IR (0 <i<n—1)andd = min{d;|0 < i < n—1}.
From A; #0,weget0 <d <r—1 Then A = pdal-,whereai eER(O0<i<n-1) and a; € R
n—1 . n—1 .
by assuming A; € p?R\p?*!R. The formula (8) implies that p? ¥ a;0'(x) = 0, so that ¥ a;0’(a) €
i=0 i=0
p"~“R. Then, from r —d > 1, we get 2 4,7 (%) = 0, where 4; € Fp (0 <i<n-1)anda; #0.
Therefore, & is not an NBG for I /IF). ThlS completes the proof of Theorem 1. [

By Theorem 1, a series of criteria on normal bases for finite field extensions can be shifted to ones
for Galois ring extensions.

Lemma 3. ([19])Let n = p'l,(I,p) = 1,Q = p" and q = p'. Let trq be the trace mapping for Fo/F,.
Then, for a € Fg, a is an NBG for Fo/IF), if and only iftrég(a) is an NBG for F, /IF).

From the diagram (5), we know that for & € R, tr}' (&) = Trj' ().

Corollary 1. Let n = p'l,(I,p) = 1. Let R = GR(p",n),R" = GR(p',1), and Tr : R — R’ be the trace
mapping from R to R'. Then, for « € R, « is an NBG for R/ Zyr if and only if Tr(a) is an NBG for R'/Z,r.

By Corollary 1, we assume (1, p) = 1 without loss of generality. In this case, " — 1 has the
following decomposition in the polynomial ring Fp[x] :

X" —=1=p1(x)pa(x) - - - pr(x), )
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where py(x), p2(x),- -, pr(x) are distinct monic irreducible polynomials in I}, [x].
Let F,[x] be the set of all p-polynomials Zcixp' (c; € Fp). Then, F[x] is a ring with respect to

the ordinary addition, and the following multi}lalication defined by composition ®:
F(x) ® G(x) = F(G(x)), for F(x),G(x) € Fplx],

and the mapping: ‘
poFplx] — Fplx], Zcixi — Zcixpl
i i

is an isomorphism of rings. Corresponding to the decomposition (9) in F[x], we have the following
decomposition of:
Xp” —X = P](X) ® PQ(X) X Pr(x)/

where P;(x) = pu(p;(x)) (1 <i < r) are distinct monic irreducible p-polynomials in 7 [x]. Let m;(x) =

2L and Mi(x) = pu(mi(x) = ® Pa(x) € Fylal.
por

Lemma 4. ([18]) Let q = p" and (n,p) = 1. For a € Fy,a is an NBG for F; /I, if and only if M;(a) #
0(1<i<r).

This is a direct consequence of Theorem 1 and Lemma 4. We have the following criterion.

Corollary 2. Let R = GR(p", n), where (n,p) = 1. Then, for « € R,a is an NBG for R/Z,r if and only if
Mi(@) #0(1<i<r).

By the decomposition (9), we have:

where d; = deg p;(x). Then, we have the orthogonal idempotents ¢;(x) € F[x], dege;(x) <n—1(1 <
i < r) satisfying:
ei(x) = djj(mod p;j(x)) (1 <i<j<r),

where J;; is the Kronecker symbol. These idempotents ¢;(x) (1 < i < r) can be computed by using the
op-class of the roots of x* — 1 (see [19]).

In [19], we present a new criterion of NBG for F;/F, (9 = p", (n, p) = 1) by using idempotents

Fp[x]
1)

in the ring

Lemma 5. ([19]) Letting E;(x) = p(e;j(x)) € Fp[x] (1 <i<r),acF,;(q=p",(n,p)=1), aisan NBG
for Fq/Fp if and only if Ej(a) #0 (1 <i<r).

Corollary 3. Let R = GR(p",n), where (n,p) = 1. Then, for a € R,a is an NBG for R/Z,r if and only if
E(a) #0€F; (1 <i<r).

In [19], we present more explicit criteria on normal bases for [F;/IF), for several specific cases
where the decomposition (9) has a simpler form. By Corollary 3, we can give more explicit criteria on
normal bases of the Galois ring extension for such cases. For example, let p and 7 be prime numbers
and (Z/nZ)* = (p). Then, for a € F; (3 = p"),a is an NBG for F;/F, if and only if a ¢ F, and
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tr(a) # 0, where tr : F; — [}, is the trace mapping. Let Tr : R = GR(p", n) — Z,r be the trace mapping.
Fora € R,
tr(x) € Fp & tr(a)? —tr(x) = 0 < Tr(a)” — Tr(x) € pR

and:
tr(a) =0 < Tr(a) € pR.

Corollary 4. Let R = GR(p", n), where p and n are distinct prime numbers and (Z/nZ)* = (p). Then, for
« € R, a is an NBG for R/ Zyr if and only if both Tr(a) and Tr(a)? — Tr(a) belong to R*.

We end this section by counting the number of NBG for R/Z,» where R = GR(p",n). It is
well known ([18], Corollary 8.25) that the number of NBG’s for F; /I, (g = p") is (let n = p°m and
(m, p) = 1):

1/)[1(11) = p" H(l — p—ordd(p))¢(d)/ordd(p),
d|lm
where ¢(d) is the Euler function and ord;(p) is the order of p in (Z/dZ)*. Since the mapping ¢ : R =
GR(p",n) = R =T, (q = p") is surjective and F-linear, we get that [Ker ¢| = [R|/|R| = p" ™. Asa
direct consequence of Theorem 1, we can count the number of NBG's for R/Z,r.

Corollary 5. Let p be a prime number and n = p°m be a positive integer with (m, p) = 1. For R = GR(p", n),
the number of NBG's for R/ Z,r is:

P = p" (1 — porda(p)yp(d) /orda(p)
d|m

and the number of normal bases for R = GR(p", n) is ¢ /n.

4. Multiplicative Complexity on Normal Bases

It is known that normal bases on finite fields with low multiplication complexity have several
applications in coding theory, cryptography, signal processing, and so on. As a comparison,
Abrahamsson discussed the multiplicative complexity on normal bases over Galois rings
and considered the architectures for multiplication in Galois rings (for p = 2) in his thesis. In this
section, we discuss the complexity of normal bases for extension R/Z,r, where R = GR(p", n).

Definition 2. Let a be an NBG for R/Z,y, so that B = {a, o (x),- -+ ,0" ()} is a normal basis for R/ Z,r,
where o is the automorphism of R defined by (3). Then:

. n_l .
ac'(w) = ) il (a) (0<i<n—1,cj€Zy). (10)
=0

The multiplicative complexity M(B(a)) of the normal basis B is defined by the number of nonzero c;;.
Namely,

M(B(a)) =8{(i,j): 0<i,j<n— 1,cij # 0}.
Foreach A (1 <A <r),a €R,let aM) denote the modulo p)‘ reduction of «. The mapping:
R = GR(p',n) — RM =GR(p",n), aw— a)

is a homomorphism of rings and a") = a,a) = & € GR(p,n) = R() =F,,.
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For w € R(= R(’)), « is an NBG for R/Zyr if and only if & is an NBG for F,/F, by Theorem 1,
then this is also equivalent to at) being an NBG for RWM)/ Zyr for any A > 1. Moreover, by the
diagram (6), we get that for any A, the equality (10) implies that:

Mg (&) 1M
o ch] (@) (0<i<n 1 €Zy).

If0 # c 6 Z phs then 0 # c 6 Zyu for all p > A. Therefore, we get the following simple and
basic result

Theorem 2. Let R = GR(p', n) and a be an NBG for R/ Z,r. Then, for each1 < A < r —1,a!) is an NBG
for R(A)/Zpr, where RM) = GR(p?, n). Moreover, let B = B(aM)) = {cWi(aM): 0 <i < n—1}.
Then:

M(B) >MBCD) > .o > M(BD),

where B is the normal basis B = {Ecl’i :0<i<n—1}forGR(p,n)/Zy, =F;/F).

It is known that for any normal basis B for finite field extension Fy» /IF,, M(B) > 2n — 1. Hence,
by Theorem 2, for any normal basis B for Galois ring extension GR(p",n)/Z,r, M(B) > 2n — 1.
The basis B is called optimal if M(8) = 2n — 1. If B is an optimal normal basis for R/Z,r, then by
Theorem 2,
21—1=M(B) >MB" ) >...>MBY)>2m -1

Therefore, M(B™W) = 21 — 1. Namely, B8 is an optimal normal basis for R /Z,; for all
1 < A <r. In particular, B1) =Bisan optimal normal basis for the finite field extension R/ Zy
Fq/F)p (a=1p")

R * r * ; ; _ *
Definition 3. Two elements «, p € R* = GR(p", n)* are equivalent to each other if x = e for some € € Zy,
denoted by o ~ B.

If a is an NBG for R/Z,r and a ~ B, p = ex for some € € Z,,,. It is easy to see that § is also an NBG
for R/ Z,r. Moreover, let:

Ma) = i ot () (cai € Zy,0<A<n—1).
Then, 0} (B) = e () and:
n—=1 )
M) = 2 ecrio' (B)  (ecai € Zyr).

Since c); = 0 if and only if ecy; = 0, two normal bases B(x) = {c*(a) : 0 < A < n—1} and
B(B) = {c}(B) : 0 < A < n — 1} have the same complexity: M(B(«)) = M(B(B)).
All optimal normal bases for finite field extension have been determined in [8].

Lemma 6. (Gao and Lenstra [8]) There are only two types of optimal normal bases B for finite field extension
[Fyn /Ty as follows.

Type (1): n+ 1 and p are distinct prime numbers, Z\; .| = (p), and B is equivalent to the following
(optimal) normal bases for F / IFP,

BE) ={o} (@) =¢":0<A<n—1}={F:1<i<n},
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where ¢ is an (n+ 1)-th primitive root of one in the algebraic closure of Fp, so that (&) = Fpn.
Type (I1): p = 2 and 2n + 1 is a prime number, 73, | = (—1,2), and B is equivalent to the following
(optimal) normal bases for Fon /Fy:

BE+EY = {pE+e =+ :0<r<n-1}
= {F+&'1<i<n},

where & is a (2n + 1) root of one in the algebraic closure of ¥y, Fo (& + 1) = Fon.

Abrahamsson [17] presented the following optimal normal bases for Galois ring extension as a
generalization of Type (I) optimal normal bases for finite field extension.

Lemma 7. ([17]) Let p and n + 1 be distinct prime numbers such that Z;, , = (p). Let { be an (n + 1) th root
of one in R = GR(p", n). Then:

BQ) ={cQ)=¢":0<A<n—1}={:1<A<n}
is an optimal normal basis for R/ Z,r.

In this section, we determine all optimal normal bases for Galois ring extensions. If « € R* and
B («) is an optimal normal basis for R/Z,r (R = GR(p",n)), then B(&) is an optimal normal basis
for F;/F, (q = p"), and then, B (&) is an optimal normal basis for Type (I) or Type (II) by Lemma 6.
Now, we consider these two cases separately.

Theorem 3. Suppose that n + 1 and p are distinct primes and Z; | = (p), R = GR(p",n),n > 2. Then, any
optimal normal basis for R/ Z,r is equivalent to the one given by Lemma 6.

Proof. For r = 1,R/Z, = F;/F, is the finite field extension case. For r = 2, we assume that
B(a) = {o}(a) : 0 < A < n— 1} is an optimal normal basis for R/Zy, R = GR(p?,n). Then, & = ¢,
where ¢ is an (n + 1) th primitive root of one in [F; (g = p"). Let { be an (n + 1) th primitive root of
one in R such that { = ¢. Then, { € T* by (n+1)|(g — 1), where T* is the cyclic multiplicative group
of R (see Fact 3 in Section 2), and:

n .
x=0+pa=C+p) cl (a€Rc; €Zp), (11)
i—1

1=

since {gi 1 <i<n}= {gr’A :0 <A <n—1}isa (normal) basis for R/sz. Therefore:

oMa)y =" +p Yl since M) =77, 0<A<n—1 (12)
i=1

and for0 <A <n—1,A # 5 (we can assume that # + 1 is an odd prime number, so that 7 is even),
A g i A ‘ iph
act(a) = (C+pY) )V +p) al?)
i=1 i=1

n . .
= 4 p Y al@ 41 since p = 0. (13)
i=1
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From A # %, we know that p* # —1(mod n+1) and 1+ p* = p”(mod n + 1) for some
1,0 < u < n—1.Then, by (13), we have:

W) = O p Ll g
i=1

1

—oH(w) 4 p Y (P + O - 1Y) by (12)
i=1

n—1
|
= o'(a)+ p[z e (Cpl,pA +Cpi_1)pr — sz(1+pA)—1) +e_p+ C_pf)\],
1=0

where we consider i € Z,, 11 for c; and assume ¢y = 0, so Equation (13) becomes:

n—-1 n—1
‘X‘T}\(D‘) =o' (a) + p( Z Ul(zx)(cpzpr +Cpl_1)pr Cpl(1+p)»)fl) - (C_p/\ + C_p—/\) Z (Tl(tx)),
1=0 1=0
since o (2) = 0(7) = Cpl(mod p) and nil ol(a) = nil () = nil gﬁ’ = i ¢/ = —1(mod p).
1=0 1=0 1=0 =1

Therefore for0 <A <n—1,A # %,

n—1
art (@) = Y byl (@) (b €Zp),
1=0
where:

: 1 — A .
by = { p(cf’"?’\ T Cpl—1)pr T Cpl(a4pr)yt TCpr T Cpr)' if p' #Zpt = (1+p*)(mod n+1); (14)

T+ pler —c_pa—c_pn), if p' =1+ p*(mod n+1).
Then, the complexity M(B(«)) = ZK;%) M,, where:
My =#{I|0<I<n—1by#0€Z}.
For the case of A = 7,

ao? (a) = g

noo n-1_ n—1
(=0t=1=-) 0 =- " =- ) ) (moed p)

We get My =n. For0 <A <n—1,A # 5, wehave M) > 1since by, = 1(mod p) for [ satisfying
p' =1+ p*(mod n + 1). Then, we have:

n—1 n—1 n—1
21—1=M(B(x)) =) My=n+ ) My>n+ ) 1=2n-1,
A=0 A=0 A=0
Aty A#g
which implies that My = 1forall0 < A <n —1,A # 7, which means that by; = 0 forall0 < A,[ <
n—1,A# %and p' # p* +1(mod n +1). Lets = p},t = p/(mod n + 1). From (14), one gets that

B () is an optimal normal basis for GR(p2, n)/sz ifand only if when1 <t <#n,1<s <n—1and
t£1+s(mod n+ 1), we have:

—C_g1—Cg+Ct—s+ C(tfl)sfl — Ct(1+s)*1 =0e€ Zp. (15)
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Particularly, for s = 1, we get:
—2c_14+2ci_1—¢tp =0, forl1 <t <m,t#2

If p=2,thenc;, =0 € Fyforalll <t <n,t#2 Byassumption Z; | = (2); this means that
cj=0forall2 <j<mn,sothata = {+ pc1{ = (1+ pcy){ by (11), and the basis B («) is equivalent to
the one given by Lemma 6.

Now, we assume that p > 3. For any fixed s,1 <s < n —1, by (15), we get:

n

0 = 2 —C g1~ CstC—st Clt—1)s—1 — Ct(l-&-s)*l)
b
n n n
= (n=1)(—c_gr—c)+ Y a+ Y a— ) ¢
11 l?él,S , 10,1

n
= (1—n)(c_gr+cs)+ ) g—c1—cs—c_gu
=1

= —n(c_gr1+c_s)+A

where A = }/' , ¢;. Therefore:
n(c_s+c_g1)=A4A (16)

foralls,1<s<n—-1.If3<p{nandwegetc_s+c_

s=1wegetc, =c_1 = % and:

1 = % forall1 <s <n — 1. In particular, for

n—1
A n—2A n—1
A:cn—i—ch:——i— — = A.
= 2n

2 n 2n

Therefore, (1 4+1)A = 0 and A = 0 € F, since (p,n+ 1) = 1. Then, we have ¢, = 0 and
cs+c_g1=0for2 <s <n-—1 Taking t = s in (15) and remarking that cg = 0, we get Cs1 =5
for2<s<mn-—1.

Namely,

I
(9}

WIN
I

I
o

=
It

N—

Since, for1 <a,b<n -1,

ail = %(med n+1l)=a=b(modn+1)=a=»b,
we know that {1 (mod n+1) :2 <s <n} = Z,,1\{0,1}. Therefore,co = c3 = - - = ¢,_1 = ¢4 = 0,

and & = (1 + pcy){. Therefore, B(«) is equivalent to the one given by Lemma 6. If 3 < p | n, from (16),
we have A = 0. In this case, we fix t (2 < t < n — 1), and the condition (15) implies that:

n—1
0 = ) (—cg1—costes+Cist — Cupe1)
n n
= — Z c — Z c + Z c + Z ) — ZCZ
1A l(: -1 a2 14 G52 i
1)1

1+C1—t —Ct —Cpp1 —Cl—p+Ct =C_ (t-1)-1 — Ct+1-

Leta = —(t—1)71; we get:
Ca=0Cy_p1 (2<a<nm). (17)
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Consider the fraction linear transformation:

2x —1
X

fiZpU{o} = ZyqU{co}, f(x)=2—x"1=

2 -1 1 —
with matrix M = .Forany m > 0, M" = m -+ " , so that:
1 0 m  —(m—1)

2(m+1) —m 1
e =1t —— <m<n-2).
2m — (m = 1+ €Z,11\{0,1} (0<m<n-2)

f1(2) = 1 m+1

Therefore, {f"(2):0<m <n—-2} =Z,,1\{0,1} = {2,3,--- ,n}. By (17), we get:

1
c2:c3:~~~:cn:n_lA:O.

Thus, « = (1 + pc1)C ~ ¢. This completes the proof of Theorem 3 for r = 2.

Now, we assume that » > 3, and this theorem is true for r — 1. Let « € R = GR(p",n), and
{o*(a) : 0 < A < n— 1} is an optimal normal basis for R/Z,. By assumption, we have, up to
equivalence,

n
a=¢+pa@eR)=¢+p Y al (6 € Zy).
i=1

Then, the same argument for r = 2 can be shifted to get ¢; = 0 for all 2 < i < n. Therefore,
a = (1+ p"~1c1){ ~ {. This completes the proof of Theorem 3. []

Remark 1. Gao and Lenstra determined all optimal normal bases by using the Galois theory on finite fields [8]
and consequently confirmed a conjecture that was raised by Mullin et al. Here, we give a direct proof of the
Theorem 3 by using the mathematical induction.

Theorem 4. Assume that 2n + 11is an odd prime number and 75, = (—1,2). Let R = GR(2',n) (r,n > 2).
Then:

(1) If n > 3, there is no optimal normal basis for R/ Zyr.

(2)Ifn =2and « € R = GR(2",2),8W = {«,0(a)} is an optimal normal basis for R/ Zyr if and
only if a is equivalent to { + {1 4 2b(3% + {2), where T is a fifth primitive root of one in GR(2',4), so that
¢+ Y €R, and b is the unique element in Z,,—1 satisfying 1 — b + 4b> = 0.

Proof. (1) First, we consider r = 2. Suppose that & € R = GR(4,1), and B = {oM(a) : 0 < A <
n — 1} is an optimal normal basis for R/Z;. Then, B(}) = {5(2A :0 <A <n—1}isan optimal normal
basis for Fpu /. By Lemma 6, & is equivalent to & + &1, where ¢ is a (21 + 1) th primitive root of one
inF . Let { be the (21 + 1) th primitive root of one in GR(4, 1) such that { = & Then, { + ! € R,
and up to equivalence:

a=(+{ 1 +2a(aER).

Since {gZA —|—§’2/\ :0<A<n—1}y={+¢":1<i<n}isanormal basis for R/Z, by the
n . .
assumption that Z3, | = (—1,2), also, this tell us thata = }_ ¢;({' + {™'). Therefore, we know that:
i=1

w=C g 2Y G ) (o € 2a), a8)
i=1

and:

Ma) = + 7 2 (@ + Y (0<A<n—1). (19)

n
i=1
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Let:
Zb/\z bAl€Z4,0<)\<Tl—1)

We define:
My =#{0<i<n—1:by #0}.

Then, 2n — 1 = M(BW) = Y11 M,. Since:

@E+ehHEr +e
{ 2+e?, forA=0

aor™(a)

G @) @21 w1 for1 <A< — 1.

Weget My > 1and M, > 2for1 < A < n— 1. Then, from ZK;(I) M, = 2n — 1, we know that
Mop=1land M), =2for1 < A <n — 1. However,

') = ®2=02+7242

= o) 21 a0 2L 4T (by (19)

i=1

(e +1)(E¥ +¢7%)

n

= (1+2(c;+1))o(a)+2 Z(Ci +1)ci (a),

i=2

= o(a)+2

M:

i=1

where /; is an integer determined by 0 < [; <n —1and 2l = 2ior — 2i(mod 2n + 1) so that I; # 1.
From My =1, wegetc; =1 ¢€ Z, foralli,2 <i < n. By (18), we have:

v = (1420)Z+7 Y +2(c1 €2Zy),
C+ = (@42)(1+200) = (1+2c)a+2,
and:
ao(e) = [(14+2c1)(G+C") +2[(1+261) (3% +772) +2]

= [+ P+ 20+ T+ P+
= (3+42c))a+ (1+2c1)0(a) +20(a),

where A is determined by 2N = +3(mod 2n+1)and 0 < A <n —1.If n > 3, then A # 0, 1. Therefore,
M; = 3 # 2. Therefore, we proved that there is no optimal normal basis in the case n > 3.

(2) Letting « € R = GR(2",2) (r > 2) and BW) = {a, 0 (a)} is an optimal normal basis for R/Z,r.
By Lemma 6, we get:

a=0+ 1420+ D4+ Y)=04+20) 0+ 1) +202(3%+772),

where ( is a fifth primitive root of one in GR(2",4), so that { + {~! € Rand ¢1, ¢y € Zy—1. Since 1 + 2¢;
is invertible in Zyr, we can assume, up to equivalence,

a=C+ V4 20(2+ 072, forb € Zya. (20)
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Then, o(a) = %+ {2 +2b({ + (1), so that:

a 2b 1 o
[4+71= o(a) 1 _ a—2bo(a) 2y 2b o(a) ~ o(a) —2ba
oo 14 oo 14
2b 1 2b 1
and by (20), we have:
W = AT H244bCH TP+ ) HA (T +2)

2—4b+ 807 + 467 ((+ ) + P+
(C+ 0N (—2+4b—4b%) + (P +772) (1 + 4b — 8b%)

—2 +4b — 4b? —1+ 4b — 8b?
= W(ﬂ(—zba(a)) + W(U’(Ué) —2170()
= Aa+ Bo(w),

where (1+2b)A = —2(1 — b+ 4b?), (14 2b)B = —1 + 6b — 4b%. Therefore, {«,c(x)} is an optimal
basis for R/Zyr if and only if A = 0 € Zyr, and then, if and only if b € Z,,_1 satisfies 1 — b + 4b? =
0(mod 2"~ 1).

Let Z,) be the ring of two-adic integers. Consider f(x) =1 —x+ 4% € Zy[x], f'(x) = =1+ 8x.
We have v,(f(1)) = vp(4) = 2 and va(f'(1)) = va(7) = 0, where v, is the two-adic exponential
valuation. From Hensel’s lemma and v,(f(1)) > 2v2(f'(1)), we know that there exists unique
b € Zy1 such that 1 — b+ 4b? = 0 for any r > 2. This completes the proof of Theorem 4. [

Putting Theorem 3 together with Theorem 4, we can derive the following results.

Theorem 5. Let R = GR(p",n),r,n > 2. Then:

(1) There exists the optimal normal basis B(x) = {o*(x) : 0 < A < n —1} for R/Zyr if and only if (A) n + 1
and p are distinct prime numbers, and Z, ; = (p); or (B) p =n = 2.

(2) For Case (A), B(w) is an optimal normal basis for R/ Zr if and only if a is equivalent to an (n + 1)
primitive root T of one. Namely, & = al (a € Zy;).

(3) For Case (B), B(«) is an optimal normal basis for GR(2",2) / Zor if and only if a is equivalent to { + {1 +
2b(2% + {~2), where { is a fifth primitive root of one in GR(2",4) so that { + {1, 72 + =2 € GR(2',2), and
b € Zy1 is the unique element satisfying 1 — b + 4b*> = 0.
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