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Abstract: This paper is concerned with the radial symmetry weak positive solutions for a class of
singular fractional Laplacian. The main results in the paper demonstrate the existence and multiplicity
of radial symmetry weak positive solutions by Schwarz spherical rearrangement, constrained
minimization, and Ekeland’s variational principle. It is worth pointing out that our results extend
the previous works of T. Mukherjee and K. Sreenadh to a setting in which the testing functions
need not have a compact support. Moreover, we weakened one of the conditions used in their
papers. Our results improve on existing studies on radial symmetry solutions of nonlocal boundary
value problems.

Keywords: radial symmetry; fractional Laplacian; Schwarz symmetry rearrangement; weak solutions;
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1. Introduction

In this paper, we focus on radial symmetry positive solutions to a singular elliptic problem
involving a nonlocal operator: the fractional powers of the Laplacian in a bounded sphere domain in
BR(0) ⊆ RN(N ≥ 3). Nonlinear equations with fractional powers of the Laplacian are actively studied.
The fractions of the Laplacian are the infinitesimal generators of Lévy stable diffusion processes
and appear in anomalous diffusion in plasmas, population dynamics, American options in finances,
and geophysical fluid dynamics. For more details, we refer the reader to [1,2]. To circumvent the
nonlocal nature of the fractional Laplacian operator, Caffarelli, Salsa, and Silvestre [3,4] introduced the
s-harmonic extension, which turns the nonlocal problem into a local one in higher dimensions. In our
paper, we are interested in the existence of radial symmetry weak positive solutions that satisfy the
singular fractional Laplacian boundary value problem,

(−∆)su = λuβ + a(x)u−γ, in BR(0),

u > 0, in BR(0),

u = 0, on ∂BR(0)

(1)

where BR(0) ⊂ RN(N ≥ 3) is the ball centered at 0 with radius R, N > 2s(0 < s < 1), 0 < γ <

1 < β < 2∗s − 1 = N+2s
N−2s , λ > 0 is a real parameter, and the nonnegative real function a : Ω −→ R is

integrable.
In order to introduce our results, we start by recalling some functional spaces (see, e.g., [5–9]).
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Let Ω ⊂ RN(N ≥ 3) be a bounded domain with a smooth boundary. For 0 < s < 1, the fractional
Laplacian (−∆)su is defined as

(−∆)su(x) := CN, sP.V.
∫

RN

u(x)− u(y)
|x− y|N+2s dy

= CN, s lim
ε→0+

∫
RN\B(x, ε)

u(x)− u(y)
|x− y|N+2s dy

where B(x, ε) is the ball centered at x ∈ RN with radius ε, and CN, s = π−
N
2 22s Γ( N+2s

2 )
Γ(1−s) is a

normalization constant. The fractional Sobolev space Hs(Ω) is as follows:

Hs(Ω) :=

{
u ∈ L2(Ω)

∣∣∣ |u(x)− u(y)|
|x− y| N

2 +s
∈ L2(Ω×Ω)

}
,

endowed with the natural norm

‖u‖Hs =

(∫
Ω
|u(x)|2dx +

∫
Ω×Ω

|u(x)− u(y)|2
|x− y|N+2s dx dy

) 1
2

.

As in the classical case, we denote by Hs
0(Ω) the closure of C∞

0 (Ω) with respect to the norm ‖ · ‖Hs .
The inequalities about a Sobolev space and the embedding of the spaces Hs

0(Ω) into the Lebesgue
spaces Lp have been exhaustively researched in [6,9,10]. Moreover, there is another norm ‖ · ‖Hs

0
endowed in Hs

0(Ω) which is equivalent to the natural norm ‖ · ‖Hs ; that is,

‖u‖Hs
0
=

(∫
Ω×Ω

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s dx

) 1
2

.

In recent years, elliptic problems with a singular nonlinearity have attracted many researchers
who study partial differential equations. Firstly, for the local operator (s = 1), the pioneering work by
Crandall, Rabinowitz, and Tartar [11] starts the following singular Laplacian Equation (2).

−∆u = λuβ + a(x)u−γ, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω

(2)

where Ω is a bounded domain with a smooth boundary, 0 < γ < 1 < β < 2∗ − 1 = N+2
N−2 , λ > 0 is a

real parameter, and the real function a : Ω −→ R is integrable in domain Ω. In [11], the authors proved
that Equation (2) has a unique class solution u ∈ C1(Ω) ∩ C2(Ω) when λ = 0, a(x) = 1. By means of
the Ekeland’s variational principle, Sun [12] proved that Equation (2) has at least two weak positive
solutions in H1

0(Ω) when the parameter λ is sufficiently small and β < 2∗ − 1. By using the geometry
of the Nehari manifold and the concentration-compactness method, our previous work [13] achieved
results similar to [12]. Furthermore, our results improved on the existing research on the power
exponent β = 2∗ − 1. Local Equation (1) and some other versions of it have been extensively studied
over the past decades; for further information, one can refer to [11–20] and references therein.

In the nonlocal setting (0 < s < 1), the existence of weak solutions and various properties of
solutions have been considered for the fractional Laplacian with a singular nonlinearity, Equation (1),
by many authors in recent years. In [21], the author stated that u ∈ Hs

0(Ω) is a weak solution of
Equation (1) with λ = 0 if the identity∫

Ω
(−∆)

s
2 u(−∆)

s
2 ϕdx =

∫
Ω

u−γ ϕdx, ∀ ϕ ∈ Hs
0(Ω)
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holds. By using the sub-supersolution method, the author proved the existence and uniqueness of
a weak positive solution of Equation (1) with λ = 0. In [22], using variational methods, the authors
proved that Equation (1) has at least two distinct weak positive solutions u, v ∈ L∞(Ω) when
β < 2∗s − 1, among other conditions.

Before stating the main results contained in this paper, we need to clarify the concept of weak
positive solutions. We say that the function u ∈ Hs

0(BR(0)) is a weak solution of Equation (1) if u
satisfies Equation (1) weakly. More precisely, we are looking for a function u from BR(0) to R such that
u ∈ Hs

0(BR(0)), u(x) > 0 a.e. in BR(0), and

∫
Q

(u(x)− u(y))(φ(x)− φ(y))
|x− y|N+2s dxdy

=
∫

BR(0)
λuβφ + a(x)u−γφ dx, ∀φ ∈ Hs

0(BR(0)). (3)

where Q = R2N \ (CBR(0)× CBR(0)) and CBR(0) = RN \ BR(0).
We say that u ∈ Hs

0(BR(0)) is a weak sub(super)solution of Equation (1) if u > 0 in BR(0) and

∫
Q

(u(x)− u(y))(φ(x)− φ(y))
|x− y|N+2s dxdy

≤ (≥)
∫

BR(0)
λuβφ + a(x)u−γφ dx, ∀φ ∈ Hs

0(BR(0)), φ ≥ 0.

The greatest difficulty in this problem is that the vanish boundary value is such that the
nonlinearity singular is at the boundary ∂BR(0). Therefore, the essence of this problem is determining
which class of the testing function φ makes Equation (3) hold. It is worth emphasizing that since
0 < 1− γ < 1, the natural associated functional

Iλ(u) =
1
2

∫
Q

|u(x)− u(y)|2
|x− y|N+2s dxdy− λ

1 + β

∫
BR(0)

|u|1+β dx− 1
1− γ

∫
BR(0)

a(x) | u |1−γ dx

is not Frechet-differentiable. So, the fractional singular elliptic Equation (1) cannot be studied by
directly using critical point theory. In recent years, the study of elliptic problems with a singular
nonlinearity has attracted many researchers of partial differential equations ([23–25] and the references
therein). In [24], the authors studied the existence, regularity, and multiplicity of weak solutions for
fractional p-Laplacian equations with singular nonlinearities via fibering maps. The authors studied
the existence and regularity of weak solutions to Equation (1).

A. Capella, J. Davila, L. Dupaigne, and Y. Sire [25] provided new results with respect to the
existence and regularity of radial extremal solutions for some nonlocal problems with smooth
nonlinearity by following the s-harmonic extension approach, as in [3]. Recently, W.X. Chen and
C.M. Li [26] established radial symmetry and monotonicity for positive solutions to the fractional
p-Laplacian by moving planes.

As far as we know, there are no published results with respect to the existence and multiplicity of
radial symmetry weak solutions to Equation (1) in the sense of Equation (3). As we know, the moving
plane method is one of the most effective strategies to establish radial symmetry for weak solutions of
the classic Laplacian equations. However, in our case, because of the singular nature of our problem,
we have to manage more difficulties. One way to overcome these difficulties is by using the variational
principle combined with the Schwarz spherical rearrangement.

The structure of the paper is as follows. In Section 2, we give some preliminaries and basic
facts, and we formulate our main results. In Section 3, we use variational methods, Nehari manifold,
and Schwarz spherical rearrangement to prove our main results.
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2. Preliminaries and Main Results

In this section, we present some collected preliminary facts for future reference. Before proceeding,
we need some definitions for the spaces, results, and notations. Throughout this paper, we make use
of the following notations. C, C0, C1, C2, · · · denote (possibly different) positive constants. We denote
BR(0) as B. Let |Ω| be the measure of domain Ω and let ‖ · ‖q be the Lq(Ω)(1 ≤ q ≤ ∞) normal.
The norm in Hs

0(Ω) is denoted by ‖ · ‖ = ‖ · ‖Hs
0
. By using the embedding theorems in [4], we derive

Hs
0(Ω) so that it is compactly and continuously embedded in Lp(Ω) when 1 ≤ p < 2∗s = 2N

N−2s (N > 2s),
and the embedding is continuous but not compact if p = 2∗s . We can let (see, for instance, [6,27,28])

S = inf
u∈Hs

0(B)\{0}

∫
Q
|u(x)−u(y)|2
|x−y|N+2s dxdy

(
∫

B |u|2
∗
s )2/2∗s

. (4)

Now, we can state the main results of our paper.

Theorem 1. Let B = BR(0) ⊂ RN(N ≥ 3) be the ball centered at 0 with radius R. Let γ ∈ (0, 1),
1 < β < 2∗s − 1, a(x) ∈ L2(Ω) with a(x) ≥ 0 in B. Then, there exists a real λ∗ such that for all λ ∈ (0, λ∗),
Equation (1) has at least two radial symmetry weak positive solutions uλ, vλ ∈ Hs

0(B) in the sense of
Equation (3).

Remark 1. Since {φn} ⊂ C∞
0 (B) such that φn −→ φ in Hs

0(B) topology, it is not true, in general, that∫
B

a(x)u−γφn dx −→
∫

B
a(x)u−γφ dx.

Therefore, one cannot replace Hs
0(B) in (3.1) by C∞

0 (B). We point out that there is a requirement for the testing
functions φ in Definition 2.1 in [24] and Definition 2.1 in [22], i.e., φ ∈ C∞

0 (B). This indicates that our results
include and extend their previous conclusions.

Remark 2. It is worth pointing out that we only assume the coefficient a(x) ≥ 0. This greatly relaxes the
condition for a(x) in [22]. Here, the authors require that a(x) has a uniform positive lower bound and that there
exists a positive constant θ > 0 such that a(x) ≥ θ for all x ∈ Ω. Hence, the results reported in this paper are
new in the area of singular fractional elliptic problems.

3. Existence and Multiplicity of Weak Positive Solution of Equation (1)

We are now in a position to give the proof of Theorem (4). To start, let us define the Nehari manifold,

Λ =
{

u ∈ Hs
0(B)

∣∣∣ ∫
Q

|u(x)− u(y)|2
|x− y|N+2s dxdy− λ

∫
B

u1+β dx−
∫

B
a(x)u1−γ dx = 0, u ≥ 0

}
.

Notice that u ∈ Λ if u is a weak positive solution of Equation (1). The fact suggests that we apply
the following splitting for Λ.

Λ+ =
{

u ∈ Λ
∣∣∣(1 + γ)

∫
Q

|u(x)− u(y)|2
|x− y|N+2s dxdy− λ(β + γ)

∫
B

u1+β dx > 0
}

Λ− =
{

u ∈ Λ
∣∣∣(1 + γ)

∫
Q

|u(x)− u(y)|2
|x− y|N+2s dxdy− λ(β + γ)

∫
B

u1+β dx < 0
}

Λ0 =
{

u ∈ Λ
∣∣∣(1 + γ)

∫
Q

|u(x)− u(y)|2
|x− y|N+2s dxdy− λ(β + γ)

∫
B

u1+β dx = 0
}

.

To obtain Theorem 1, we divide the proof into several preliminary lemmas.
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Lemma 1. There exists L > 0 such that ‖u‖ ≤ L, ∀u ∈ Λ+.

Proof. Since u ∈ Λ+, using the definition of Λ and Λ+, we obtain

‖u‖2 <
1

β− 1

∫
B

a(x)u1−γdx

From the Hölder inequality, we derive the existence of the constant C > 0 such that

∫
B

a(x)u1−γdx ≤ ‖a‖2|B|
β−1+2γ
2(1+β) ‖u‖1−γ

1+β ≤ C‖a‖2|B|
β−1+2γ
2(1+β) ‖u‖1−γ (5)

Thus, we obtain

‖u‖2 <
1

β− 1
C‖a‖2|B|

β−1+2γ
2(1+β) ‖u‖1−γ.

Therefore, the result of Lemma 1 follows by letting 2 > 1 − γ. This completes the proof of
Lemma 1.

Lemma 2. The functional Iλ is coercive and bounded below on Λ+.

Proof. Let u ∈ Λ+. Combining the definition of Λ+ and Equation (5), we have

Iλ(u) =
(1

2
− 1

1 + β

)
‖u‖2 +

( 1
1 + β

− 1
1− γ

) ∫
B

a(x)u1−γdx

≥
(1

2
− 1

1 + β

)
‖u‖2 +

( 1
1 + β

− 1
1− γ

)
C‖a‖2|B|

β−1+2γ
2(1+β) ‖u‖1−γ

i.e.,
Iλ(u) ≥ C1‖u‖2 − C2‖u‖1−γ, ∀ u ∈ Λ+

for some positive constants C1 and C2. This implies that Iλ is coercive and bounded below on Λ+.
This completes the proof of Lemma 2.

Lemma 3. The minimal value mλ = inf
u∈Λ+

Iλ(u) < 0.

Proof. By using the Hölder inequality and Equation (4), we get∫
B
|u|1+βdx ≤

∫
B
|u|2∗s dx ≤ S−

2∗s
2 ‖u‖2∗s , ∀u ∈ Λ+.

Applying the inequality in Equation (5), we deduce

Iλ(u) ≥
1
2
‖u‖2 − λC‖u‖2∗s − C‖u‖1−γ, ∀u ∈ Λ+. (6)

Since 0 < 1− γ < 2 < 1 + β < 2∗s , there exist r > 0, ε > 0 such that

1
2
‖u‖2 − 1

1 + β
‖u‖1+β

1+β ≥ ε,
1
2
‖u‖2 − C‖u‖1−γ ≥ ε, ∀u ∈ ∂Ur (7)

and
1
2
‖u‖2 − 1

1 + β
‖u‖1+β

1+β ≥ 0, ∀u ∈ Ur (8)
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where Ur = {u ∈ Λ+| ‖ u ‖≤ r}. Then, we can choose a small enough λ1 > 0 such that for any fixed
λ ∈ (0, λ1), it follows that

Iλ(u) ≥
ε

2
> 0, ∀u ∈ ∂Ur.

Furthermore, for any fixed v > 0, simple calculations show that

Iλ(tv) =
1
2
‖tv‖2 − λ

1 + β
‖tv‖1+β

1+β −
1

1− γ

∫
Ω

a(x)|tv|1−γ dx

= −Ct1−γ + o(t2)(t→ 0)

From 0 < 1− γ < 2 < 1 + β, we conclude that if t > 0 is sufficiently small, then Iλ(tv) < 0 for
any fixed v > 0. This implies that mλ = inf

Λ+
Iλ < 0. This completes the proof of Lemma 3.

For the reader’s convenience, we are ready to describe Lemma 4 (below) on the embedding
properties of Hs

0(Ω). We refer to [6,9] and their references for its proof.

Lemma 4. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < N. Let Ω ⊂ RN be an extension domain for
Ws,p(Ω). Then, there exists a positive constant C(N, s, p, Ω) such that, for any u ∈Ws,p(Ω),

‖u‖q ≤ C‖u‖Ws,p

for any q ∈ [p, p∗s = Np
N−sp ]; that is, the space Ws,p(Ω) is continuously embedded in Lq(Ω) for any q ∈ [p, p∗s ].

If, in addition, Ω is bounded, then the space Ws,p(Ω) is compactly embedded in Lq(Ω) for any q ∈ [p, p∗s ].

To state the next results, we need the next Lemma on Schwarz symmetrization and rearrangement,
presented without proofs. One can refer to [29–31]. Assume u is a real function defined in RN .
The distribution function of u is defined as

µu(t) =
∣∣∣x ∈ RN :| u(x) |> t

∣∣∣.
Then, µu is non-increasing and right-continuous. The decreasing rearrangement of u is given by

u∗(s) = sup{t ≥ 0 : µu(t) ≥ s}.

The function
u](x) = u∗(ωn|x|n)

is defined as the Schwarz symmetrization of u. The function u] has the following basic properties.

Lemma 5. Assume u, v are integral functions in RN , and let g : RN → R be non-decreasing nonnegative
functions. Then, we conclude that
(1)

∫
RN g(|u(x)|) dx =

∫
RN g(|u](x)|) dx,

(2) If u, v ∈ Lp(RN)(p > 1), then ‖ u] − v] ‖Lp(RN)≤‖ u− v ‖Lp(RN),
(3) If u ∈ Hs(RN), then u] ∈ Hs(RN). Furthermore,

∫
RN×RN

|u](x)− u](y)|2
|x− y|N+2s dxdy ≤

∫
RN×RN

|u(x)− u(y)|2
|x− y|N+2s dxdy.

Lemma 6. For all λ ∈ (0, λ1), there exists a function uλ ∈ Λ+ which is radially symmetric about the origin
such that Iλ(uλ) = mλ = inf

Λ+
Iλ.

Proof. The proof is inspired by [14]. Let {un} ⊆ Ur be a minimizing sequence such that Iλ(un)→ mλ

as n → ∞. Using Lemma 1, the sequence {un} is bounded in Hs
0(B). Thus, we can claim that there
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exists a subsequence of {un} (still denoted by {un}) such that un ⇀ ũλ weakly in Hs
0(B), strongly in

Lp(B)(1 ≤ p < 2N
N−2s ), and pointwise a.e. in B. According to Hölder’s inequality, as n→ ∞,∫

B
a(x)u1−γ

n dx ≤
∫

B
a(x)ũ1−γ

λ dx + C‖un − ũλ‖
1−γ
2

=
∫

B
a(x)ũ1−γ

λ dx + o(1)

and ∫
B

a(x)ũ1−γ
λ dx ≤

∫
B

a(x)u1−γ
n dx + C‖un − ũλ‖

1−γ
2

=
∫

B
a(x)u1−γ

n dx + o(1).

Consequently, we obtain ∫
B

a(x)u1−γ
n dx =

∫
B

a(x)ũ1−γ
λ dx + o(1). (9)

Using the Brezis–Lieb Lemma, we derive

‖un‖1+β
1+β = ‖ũλ‖

1+β
1+β + ‖un − ũλ‖

1+β
1+β + o(1) (10)

and
‖un‖2 = ‖ũλ‖2 + ‖un − ũλ‖2 + o(1). (11)

Recall Equation (7) and mλ < 0; thus, ‖un‖ ≤ r0 < r for some positive constant r independent
of n. So, from Equation (11) and ũλ ∈ Ur, we have un − ũλ ∈ Ur while n is large enough. By using
Equation (8) again, we deduce

1
2
‖un − ũλ‖2 − 1

1 + β
‖un − ũλ‖

1+β
1+β ≥ 0.

Combining the above arguments with Equations (9)–(11), we have

mλ = Iλ(un) + o(1)

= Iλ(ũλ) +
1
2
‖un − ũλ‖2 − λ

1 + β
‖un − ũλ‖

1+β
1+β + o(1)

≥ Iλ(ũλ) + o(1)

≥ mλ + o(1)(n→ ∞),

namely, 0 ≥ Iλ(ũλ)−mλ + o(1) ≥ o(1). Letting n→ ∞, we conclude Iλ(ũλ) = mλ.
Next, we show that ũλ ∈ Λ+. It is sufficient to prove un → uλ strongly in Hs

0(B). From Iλ(ũλ) = mλ

and mλ = Iλ(ũλ) +
1
2‖un − ũλ‖2 − λ

1+β‖un − ũλ‖
1+β
1+β + o(1), we have

0 =
1
2
‖un − ũλ‖2 − λ

1 + β
‖un − ũλ‖

1+β
1+β + o(1).

Since un ⇀ ũλ weakly in Hs
0(B), by Lemma 4, we infer that un → ũλ strongly in L1+β(B), thus,

‖un − ũλ‖
1+β
1+β → 0 as n→ ∞. Consequently,

‖un − ũλ‖2 → 0(n→ ∞),

i.e., un → uλ strongly in Hs
0(B). Hence, ũλ ∈ Λ+ is a minimizer of Iλ in Λ+.
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In order to apply the Schwarz symmetrization rearrangement of Lemma 5, we should extend
ũλ to a function defined in RN . In fact, by using the extension theorems, ũλ can be extended to a
function in Hs(RN) by defining it as zero outside of RN \ B. Since the functions t1+β and t1−γ are
non-decreasing, by using Lemma 5, we have∫

B
|(ũλ)

]|1+βdx =
∫

RN
|(ũλ)

]|1+βdx =
∫

RN
|ũλ|1+βdx =

∫
B
|ũλ|1+βdx,

∫
B

a(x) | (ũλ)
] |1−γ dx =

∫
RN

a(x) | (ũλ)
] |1−γ dx

=
∫

RN
a(x) | ũλ |1−γ dx =

∫
B

a(x) | ũλ |1−γ dx

and ∫
Q

|(ũλ)
](x)− (ũλ)

](y)|2
|x− y|N+2s dxdy ≤

∫
Q

|(ũλ)(x)− (ũλ)(y)|2
|x− y|N+2s dxdy.

Consequently, we deduce that
Iλ

(
(ũλ)

]
)
≤ Iλ

(
ũλ

)
.

Therefore, the radial symmetry function uλ := (ũλ)
] ∈ Λ+ is also a minimizer of Iλ in Λ+.

This completes the proof of Lemma 6.

Existence of radial symmetry weak positive solution uλ.

Lemma 7. The minimizer uλ(x) > 0, ∀x ∈ B.

Proof. For any φ ∈ Hs
0(B) with φ ≥ 0 and t > 0 small enough, since uλ is a minimizer, we have

0 ≤ Iλ(uλ + tφ)− Iλ(uλ)

=
1
2

∫
Q

|uλ(x) + tφ(x)− uλ(y)− tφ(y)|2
|x− y|N+2s dxdy− λ

1 + β

∫
B
|uλ + tφ|1+β dx

− 1
1− γ

∫
B

a(x) | uλ + tφ |1−γ dx− 1
2

∫
Q

|uλ(x)− uλ(y)|2
|x− y|N+2s dxdy

+
λ

1 + β

∫
B
|uλ|1+β dx +

1
1− γ

∫
B

a(x) | uλ |1−γ dx

≤ 1
2

∫
Q

|uλ(x)− uλ(y) + t(φ(x)− φ(y))|2 − |uλ(x)− uλ(y)|2
|x− y|N+2s dxdy.

Dividing by t > 0 and letting t→ 0 therefore shows

∫
Q

(uλ(x)− uλ(y))(φ(x)− φ(y))
|x− y|N+2s dxdy ≥ 0, ∀φ ∈ Hs

0(B), φ ≥ 0.

This means that uλ ∈ Hs
0(B) is a weak subsolution (−∆)su ≥ 0, in B.

In the following, we prove that uλ > 0, in B.
We need the following strong maximum principle for the nonlocal operator (−∆)s (Theorem 4.1

in [32]). For the convenience of the reader, we report the main result of Theorem 4.1 in [32].
If u ∈ Hs

0(Ω) satisfies, in a weak sense, that (−∆)su ≥ 0 in Ω and
∫

Ω
|u(x)|

1+|x|N+2s dx < ∞, then u is
lower semicontinuous in Ω, and u(x) > inf

Ω
u, ∀x ∈ Ω.



Symmetry 2018, 10, 695 9 of 15

Now, since ∫
B

|uλ(x)|
1 + |x|N+2s dx ≤

∫
B
|uλ(x)| dx < ∞,

then,
uλ > inf

B
uλ ≥ 0, in B.

This completes the proof of Lemma 6.

From Lemma 3 in [12], we have the following Lemma 8 immediately below.

Lemma 8. For any u ∈ Λ+, there exists ε > 0 and a continuous function f = f (ω) > 0, ω ∈ Hs
0(B),

‖ω‖ < ε satisfying that f (0) = 1, f (ω)(u + ω) ∈ Λ+, ∀ω ∈ Hs
0(B), ‖ω‖ < ε.

Lemma 9. For any given ϕ ∈ Hs
0(B), ϕ ≥ 0, there exists T > 0 such that Iλ(uλ + tϕ) ≥ Iλ(uλ) for all

t ∈ [0, T].

Proof. Let

g(t) = ‖uλ + tϕ‖2 − λβ‖uλ + tϕ‖1+β
1+β + γ

∫
B

a(x)|uλ + tϕ|1−γ dx, ∀ t > 0.

Using the continuity of g, g(0) > 0, and uλ ∈ Λ+, we deduce that there exists T > 0 such
that g(t) > 0 for all t ∈ [0, T]. On the other hand, applying Lemma 8, for each t > 0 there exists
t′ > 0 such that t′(uλ + tϕ) ∈ Λ+. Therefore, t′ → 1 as t → 0, and for each t ∈ [0, T], we obtain
Iλ(uλ + tϕ) ≥ Iλ[t′(uλ + tϕ)] ≥ inf

Λ+
Iλ = Iλ(uλ). This completes the proof of Lemma 9.

Lemma 10. The minimizer uλ ∈ Λ+ is a weak positive Hs
0(B)− solution of Equation (1), i.e., uλ ∈ Hs

0(B)
satisfying

∫
Q

(uλ(x)− uλ(y))(φ(x)− φ(y))
|x− y|N+2s dxdy =

∫
B

λuβ
λφ + a(x)u−γ

λ φ dx, ∀φ ∈ Hs
0(B).

Proof. The novelty of Equation (1) lies not only in the non-differentiability of the corresponding
functional Iλ(u) but also in the singularity of Equation (1). There seem to be difficulties to get that
the minimizer uλ is a weak solution of Equation (1) directly from critical point theory. Inspired by Y.J.
Sun [12], using direct and detailed computations, we still proved that minimizer uλ is a weak solution
of Equation (1).

Recall that in Lemma 9, we infer that for any ϕ ∈ Hs
0(B), ϕ ≥ 0, and t ∈ [0, T], there is

Iλ(uλ + tϕ)− Iλ(uλ) ≥ 0. Hence, easy computations show that

1
1− γ

∫
B

a(x)[| uλ + tφ |1−γ − | uλ |1−γ] dx

≤ 1
2

∫
Q

|uλ(x)− uλ(y) + t(φ(x)− φ(y))|2 − |uλ(x)− uλ(y)|2
|x− y|N+2s dxdy

− λ

1 + β

∫
B
[(uλ + tφ)1+β − (uλ)

1+β] dx, ∀ϕ ∈ Hs
0(B), ϕ ≥ 0.

Dividing t > 0 and letting t→ 0+ implies that

1
1− γ

lim inf
t→0+

∫
B

a(x)[| uλ + tφ |1−γ − | uλ |1−γ]

t
dx
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≤
∫

Q

(uλ(x)− uλ(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy− λ

∫
B

uβ
λ ϕ dx, ∀ϕ ∈ Hs

0(B), ϕ ≥ 0.

From simple arguments and Fatou’s Lemma, we can get

∫
B

a(x)u−γ
λ ϕ dx ≤ 1

1− γ
lim inf

t→0+

∫
B

a(x)[| uλ + tφ |1−γ − | uλ |1−γ]

t
dx.

Combining these relations, we conclude that

λ
∫

B
uβ

λ ϕ dx−
∫

B
a(x)u−γ

λ ϕ dx

≤
∫

Q

(uλ(x)− uλ(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy ∀ϕ ∈ Hs

0(B), ϕ ≥ 0. (12)

For any given φ ∈ Hs
0(B), taking

ϕ = (uλ + tφ)+ ∈ Hs
0(B), ϕ ≥ 0

into Equation (12), we have

0 ≤
∫

Q

(uλ(x)− uλ(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy− λ

∫
B

uβ
λ ϕ dx−

∫
B

a(x)u−γ
λ ϕ dx

=
∫

Q′
(uλ(x)− uλ(y))((uλ + tφ)(x)− (uλ + tφ)(y))

|x− y|N+2s dxdy

− λ
∫
{x|(uλ+tφ)≥0}

uβ
λ(uλ + tφ) dx−

∫
{x|(uλ+tφ)≥0}

a(x)u−γ
λ (uλ + tφ) dx

= ‖uλ‖2 − λ‖uλ‖
1+β
1+β −

∫
B

a(x)u1−γ
λ

+ t
(∫

Q

(uλ(x)− uλ(y))(φ(x)− φ(y))
|x− y|N+2s dxdy− λ

∫
B

uβ
λφ dx−

∫
B

a(x)u−γ
λ φ dx

)
−
∫

Q′′
(uλ(x)− uλ(y))((uλ + tφ)(x)− (uλ + tφ)(y))

|x− y|N+2s dxdy

− λ
∫
{x|(uλ+tφ)<0}

uβ
λ(uλ + tφ) dx−

∫
{x|(uλ+tφ)<0}

a(x)u−γ
λ (uλ + tφ) dx

≤ t
(∫

Q

(uλ(x)− uλ(y))(φ(x)− φ(y))
|x− y|N+2s dxdy− λ

∫
B

uβ
λφ dx−

∫
B

a(x)u−γ
λ φ dx

)
− t

∫
Q′′

(uλ(x)− uλ(y))(φ(x)− φ(y))
|x− y|N+2s dxdy

where Q
′
= R2N \ (CΩ

′ × CΩ
′
), CΩ

′
= RN \ {x|(uλ + tφ) ≥ 0} and Q

′′
= R2N \ (CΩ

′′ × CΩ
′′
),

CΩ
′′
= RN \ {x|(uλ + tφ) < 0}. Since the measure of the set {x|(uλ + tφ) < 0} tends to 0 as t→ 0+,

it means
∫

Q′′
(uλ(x)−uλ(y))(φ(x)−φ(y))

|x−y|N+2s dxdy→ 0 when t→ 0+. Thus, dividing by t > 0, we infer that

∫
Q

(uλ(x)− uλ(y))(φ(x)− φ(y))
|x− y|N+2s dxdy− λ

∫
B

uβ
λφ dx−

∫
B

a(x)u−γ
λ φ dx ≥ 0, ∀φ ∈ Hs

0(B).

Observe that φ ∈ Hs
0(B) is arbitrary. Replacing φ by −φ in the above inequality, one gets

∫
Q

(uλ(x)− uλ(y))(φ(x)− φ(y))
|x− y|N+2s dxdy− λ

∫
B

uβ
λφ dx−

∫
B

a(x)u−γ
λ φ dx ≤ 0, ∀φ ∈ Hs

0(B).
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Hence,∫
Q

(uλ(x)− uλ(y))(φ(x)− φ(y))
|x− y|N+2s dxdy− λ

∫
B

uβ
λφ dx−

∫
B

a(x)u−γ
λ φ dx = 0, ∀φ ∈ Hs

0(B)

and the conclusion follows. The proof of this lemma is completed.

Existence of a weak positive Hs
0(B)− solution vλ.

Lemma 11. There exists λ2 > 0 such that Λ− is closed in Hs
0(B) for all λ ∈ (0, λ2).

Proof. We claim Λ0 = {0}. Suppose, by contradiction, that there exists an h ∈ Λ0 with h 6= 0. From the
definitions of Λ0 and Λ, it follows that

(1 + γ)‖h‖2 = λ(β + γ)‖h‖1+β
1+β,

( β− 1
β + γ

)
‖h‖2 =

∫
B

a(x)h1−γ dx.

Therefore, we find that

Γ = ‖h‖2
( β− 1

β + γ

){[ (1 + γ)‖h‖2

λ(β + γ)‖h‖1+β
1+β

] 1+γ
β−1 − 1

}
≡ 0.

On the other hand, by using Equation (5) and fractional Sobolev inequality, we infer that

Γ =
( 1 + γ

λ(β + γ)

) 1+γ
β−1
( β− 1

β + γ

)[ ‖h‖2(β+γ)

‖h‖(1+β)(γ+1)
1+β

] 1
β−1 −

∫
B

a(x)h1−γ dx

≥
( 1 + γ

λ(β + γ)

) 1+γ
β−1
( β− 1

β + γ

)
C‖h‖1−γ

1+β −
∫

B
a(x)h1−γ dx

≥
( 1 + γ

λ(β + γ)

) 1+γ
β−1
( β− 1

β + γ

)
C‖h‖1−γ

1+β − ‖a‖2|B|
β−1+2γ
2(1+β) ‖h‖1−γ

1+β

where the constant C > 0 is independent of λ. Since lim
λ→0

1+γ
λ(β+γ)

= +∞, it means that there exists

λ2 > 0 small enough to satisfy

( 1 + γ

λ(β + γ)

) 1+γ
β−1
( β− 1

β + γ

)
C− ‖a‖2|B|

β−1+2γ
2(1+β) > 1, ∀ λ ∈ (0, λ2)

and, consequently,
Γ ≥ ‖h‖1−γ

1+β > 0

which yields a contraction. So, the set Λ0 = {0}.
Assume {un} ⊆ Λ− is a sequence satisfying un → u in Hs

0(B). Using the Sobolev inequalities
and continuous compact embedding, we have un → u in L1+β(B) and u ∈ Λ− ∪Λ0. Recalling the
definition of Λ− once more, we infer that

‖u‖1+β ≥
( 1 + γ

λ(β + γ)

) 1
β−1 S

1
β−1 |B|−2[ 2∗s−1−β

2∗s (1+β)(β−1) ] > 0, ∀ u ∈ Λ− (13)

thus, u 6= 0, i.e., u ∈ Λ−. This completes the proof of Lemma 11.

Lemma 12. There exists λ3 > 0 such that Iλ(u) ≥ 0 for all u ∈ Λ− while λ ∈ (0, λ3).
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Proof. Suppose, by contradiction, there is a υ ∈ Λ− such that Iλ(v) < 0, that is,

1
2
‖v‖2 − λ

1 + β
‖v‖1+β

1+β −
1

1− γ

∫
B

a(x)v1−γ dx < 0.

By the definition of Λ−, it follows that

λ
(1

2
− 1

1 + β

)
‖v‖1+β

1+β −
( 1

1− γ
− 1

2

) ∫
B

a(x)v1−γ dx < 0,

and, combining Equation (5), we have

‖v‖γ+β
1+β <

(γ + 1)(1 + β)

λ(1− γ)(β− 1)
‖a‖2|B|

β−1+2γ
2(1+β) ,

i.e., ‖v‖1+β <

(
1
λ

) 1
β+γ
(
(γ + 1)(1 + β)

(1− γ)(β− 1)

) 1
β+γ

‖a‖
1

β+γ

2 |Ω|
β−1+2γ

2(1+β)(β+γ) , ∀ v ∈ Λ−. (14)

Combining inequalities in Equations (13) and (14), we deduce that

( 1 + γ

β + γ

) 1
β−1 S

1
β−1 |B|−2[ 2∗s−1−β

2∗s (1+β)(β−1) ]
(

1
λ

) 1
β−1

≤ ‖u‖1+β

<

(
(γ + 1)(1 + β)

(1− γ)(β− 1)

) 1
β+γ

‖a‖
1

β+γ

2 |B|
β−1+2γ

2(1+β)(β+γ)

(
1
λ

) 1
β+γ

, ∀ u ∈ Λ−.

Direct calculations show that

0 < C =

(
1+γ
β+γ

) 1
β−1 S

1
β−1 |B|−2[ 2∗s−1−β

2∗s (1+β)(β−1) ](
(γ+1)(1+β)
(1−γ)(β−1)

) 1
β+γ ‖a‖

1
β+γ

2 |B|
β−1+2γ

2(1+β)(β+γ)

< λ
1+γ

(β+γ)(β−1) ,

which contradicts the fact that λ
1+γ

(β+γ)(β−1) tends to 0 as λ→ 0. This completes the proof of Lemma 12.

By Lemma 12, the definition m̄λ = inf
u∈Λ−

Iλ(u) is well defined.

Lemma 13. There exists λ4 > 0 small enough such that for all λ ∈ (0, λ4), there exists a radial symmetry
function vλ ∈ Λ− satisfying Iλ(vλ) = m̄λ = inf

u∈Λ−
Iλ(u). Moreover, vλ is a weak positive Hs

0(Ω)− solution

of Equation (1).

Proof. We start by claiming that Iλ is coercive on Λ. In fact, for any v ∈ Λ, we get

‖v‖2 − λ‖v‖1+β
1+β −

∫
Ω

a(x)v1−γ dx = 0,

which yields

Iλ(v) =
1
2
‖v‖2 − λ

1 + β
‖v‖1+β

1+β −
1

1− γ

∫
Ω

a(x)v1−γ dx

=
(1

2
− 1

1 + β

)
‖v‖2 −

( 1
1− γ

− 1
1 + β

) ∫
Ω

a(x)v1−γ dx
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≥
(1

2
− 1

1 + β

)
‖v‖2 −

( 1
1− γ

− 1
1 + β

)
C‖a‖2|Ω|

β−1+2γ
2(1+β) ‖v‖1−γ

where, in the last step, we have used the inequality in Equation (5). Thus, Iλ is coercive on Λ, and it
is also true for Λ−. Assume the sequence {vn} ⊆ Λ− that satisfies Iλ(vn) → m̄λ = inf

u∈Λ−
Iλ(u) as

n → ∞. Using the coercive of Iλ, we derive that {vn} is bonded in Λ−. Thus, we can assume that
vn ⇀ ṽλ weakly as n→ ∞ in Λ−. Recall Λ− is completed in Hs

0(B) (Lemma 11); following the same
arguments as in those proving the existence of the minimizer uλ (Lemma 6) and the compactness of
the embedding Hs

0(B)→ L1+β(B)(β < 2∗s − 1), we obtain ṽλ ∈ Λ− as the minimizer of Iλ. Similar to
the proof in Lemma 5, denoting

vλ := (ṽλ)
]

as the Schwarz spherical rearrangement of ṽλ, we also have the radial symmetry function vλ ∈ Λ−

as the minimizer of Iλ. Moreover, arguing exactly as in the proof of the weak positive solution uλ

(Lemma 10), one can prove that vλ ∈ Hs
0(B) is also a weak positive solution for Equation (1).

This completes the proof of Lemma 13.

Proof of Theorem 1. Letting λ∗ = min{λ1, λ2, λ3, λ4}, it is easy to verify directly that Lemmas 1–13 are
true for all λ ∈ (0, λ∗). Therefore, it follows from Lemma 10 and Lemma 13 that uλ and vλ are the
radial symmetry weak positive solutions of Equation (1). This completes the proof of Theorem 1.

4. Conclusions

This paper is concerned with the radial symmetry weak positive solutions for a class of singular
fractional Laplacian. The most difficulty with this problem is that the vanish boundary value is such
that the nonlinearity singular is at the boundary ∂BR(0). Therefore, the essence of the problem is
determining for which class of the testing function φ makes Equation (3) hold. It is worth emphasizing
that the natural associated functional Iλ(u) is not Frechet-differentiable. So, fractional singular elliptic
Equation (1) cannot be studied by directly using critical point theory. In order to solve this problem,
we used Ekeland’s variational principle. It is worth pointing out that we weakened one of the
conditions a(x) ≥ θ > 0 stated in the previous works of T. Mukherjee and K. Sreenadh. Our results
improve on studies on the radial symmetry solutions of nonlocal boundary value problems.
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