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Abstract: A stable electricity supply is the basis for ensuring the healthy and sustained development
of a regional economy. Reasonable electricity prediction is the key to guaranteeing the stability and
efficiency of electricity supply. To this end, we used a reformative grey prediction model to forecast
electricity demand. In order to effectively improve the smoothness of a raw modelling sequence,
we employed an existing smoothing algorithm that significantly compressed the amplitude of the
random oscillation sequence. Then, an improved grey forecasting model with three parameters
(IGFM_TP) was deduced. In the end, a new model was used to forecast the demand for electricity
of one city in the western region of China, and comparisons of simulation values and errors with
those of GFM_TP, GM(1,1), DGM(1,1) and SAIGM were conducted. The findings show that the mean
absolute simulation percentage error of IGFM_TP was 7.8%, and those of the other four models
were 12.1%, 12.3%, 11.1%, and 10.1%, respectively. Therefore, the simulation precision of the new
model achieved an optimal effect. The proposed new grey model provides is an effective method for
electricity demand prediction.

Keywords: prediction of the electricity demand; random oscillation sequence; grey forecasting model
with three parameters; smoothness operator; GFM_TP; IGFM_TP

1. Introduction

China is the second largest economy in the world (Figure 1a), and its manufacturing industry is
one of the most developed. China consumes vast amounts of electric energy every year (Figure 1b).
Hence, the adequate supply of electricity is one of the prerequisites for ensuring the sustainable
development of China’s economy; reasonable electricity demand forecasting plays an important role
in generation and distribution. Since the early 1970s, a variety of estimation methods have been
proposed in studies related to electricity demand forecasting, including semiparametric regression [1],
time series modeling [2], exponential smoothing [3], Bayesian statistics [4], time-varying splines,
neural networks [5], decomposition techniques [6], transfer functions [7], grey dynamic models [8],
and judgmental forecasting [9].

Electricity demand is influenced by various factors. However, a full analysis of all the factors that
affect electricity demand is complicated. Electricity demand varies from season to season in the same
area, which reflects its random oscillation feature. Under this circumstance, traditional methods for
forecasting the electricity demand are insufficient.
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Figure 1. The ratio of China’s gross domestic product (GDP) and electric production compared to
other countries.

In systems theory, a system can be defined by a color that demonstrates the magnitude of clear
information about the system. For example, in a black box system, the internal characteristics or
mathematical equations that describe the dynamics of the system are fully unknown. Conversely,
a system is called a white system when its description is completely known. A system in an
intermediate position is known as a grey system. In practice, due to various certainties of systems,
every system can be modelled as a grey system. Due to noise both inside and outside a system and
limitations of human cognitive abilities, the information we are able to acquire about a system is
always limited and incomplete. Grey system theory, developed by Professor Julong Deng [10] based
on “Grey Box” thinking in the 1980s, is an important and useful tool employed to study grey uncertain
problems with poor information and small samples [11]. The grey forecasting model, as one of the
significant constituents of grey system theory, has attracted attention and has been actively studied
by many scholars. The GM(1,1) model is the most important part of grey prediction theory; however,
many scholars discovered that the prediction precision of this model is unstable, and extensive research
mainly on the following topics has been conducted: Converting an original sequence for improvement
of smoothness [12]; enhancing the computational methods of parameters [13–16]; modifying residuals
of models [17–19]; reforming the modelling fashion, and performing some preparations for expanding
GM(1,1) models [20]; investigating the modelling conditions [21]; extending the structure of traditional
grey prediction models [22]; optimizing the parameters of grey prediction models, such as initial
value [23,24], background value [25,26], and the order of accumulating generation operators [27,28];
and combining the grey prediction model with other modelling methods [29,30].

The above measures and methods have significantly improved the simulation and prediction
performance of grey prediction models. However, the structure of these grey prediction models is fixed
in either non-homogeneous or homogeneous exponential form. In the real world, the development
of the system is always influenced by many factors. Hence, the existing grey prediction models
with fixed structures cannot usefully describe the development trends of complicated systems. So,
we think the adaptability of the existing grey models is poor. In order to solve these difficulties, a grey
forecasting model with three parameters (GFM_TP) is proposed [31]. The GFM_TP model achieves
unbiased simulation and prediction for both homogenous and non-homogenous exponential and
linear function sequences. The proposed GFM_TP model is compatibility with exponential functions
(homogenous and non-homogenous) and linear functions, and its model structure can intelligently
match and dynamically optimize through adjusting the parameters of the GFM_TP model according to
the data characteristics of an original sequence. Thus, the GFM_TP model has a more flexible structure
and better performance than traditional grey prediction models.
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Satisfactory simulation or prediction accuracy can usually be obtained when an original sequence
for building the GFM_TP model demonstrates a monotonic increase (or decrease), but the prediction
or simulation accuracy of the GFM_TP model is regarded as unsatisfactory when random oscillation
characteristics are shown in the modelling sequence. To this end, we applied an existing smoothing
algorithm [32,33] that can compress the amplitude of a random oscillation sequence to improve
the smoothness of a raw modelling sequence. After this, a new grey prediction model, SAIGM,
was proposed based on the classical GM(1,1) model. However, SAIGM performs poorly, due to
the simple structure of GM(1,1). Then, an improved grey forecasting model with three parameters
(IGFM_TP) was deduced based on the existing smoothing algorithm and the GFM_TP model. At last,
the new model was used to compare the simulation values and errors with those of GFM_TP, GM(1,1),
SAIGM, and DGM(1,1), and to predict the electricity demand of one city in the western region of
China. According to the results, the optimal effects of the simulation are provided in the new model.
The research results of this paper significantly improve the simulation and prediction performance of
grey prediction models.

In summary, the main contribution of this work is that we propose a three-parameter grey
prediction model, based on the existing smoothing algorithm and the GFM_TP model, that can
be used to more effectively build a grey prediction model with oscillating sequences. Therefore,
the research results of this paper expand the application scope and improve the modeling ability of
grey forecasting model.

The remainder of the paper is organized as follows. In Section 2, the smoothness operator is
introduced. In Section 3, the grey forecasting model with three parameters is built. In Section 4,
an improved GFM_TP model based on amplitude contraction is proposed. In Section 5, the IGFM_TP
model is used to compare simulation values and errors with other grey models and to predict the
electricity demand of one city in the western region of China. Conclusions are presented in Section 6.

2. Basic Concepts

The performance of a grey prediction model is closely related to the smoothness of the modelling
sequence. The smoother the modelling sequence, the higher the accuracy of the grey prediction model.
In this paper, the smoothness of the modelling sequence was improved using an oscillating sequence
smoothing algorithm. Before building the grey prediction model, we first introduced a smoothness
algorithm of the random oscillation sequence.

Definition 1. Assume that a modelling sequence is given:

Y(0) =
(

y(0)(1), y(0)(2), · · · , y(0)(m)
)

,

Then,

(1) If, for k = 2, 3, . . . , m y(0)(k)− y(0)(k− 1) > 0, then Y(0) is a monotonic increasing sequence;

(2) If, for k = 2, 3, · · · , m, y(0)(k)− y(0)(k− 1) < 0, then Y(0) is a monotonic decreasing sequence;
(3) If, for any k and k = 2, 3, · · · , m,

y(0)(k)− y(0)(k− 1) > 0 and y(0)(k)− y(0)(k− 1) < 0,

then Y(0) is called a random oscillation sequence [34]. Note, the upper right corner mark (0) is used to
represent the original sequence, and (1) is the accumulating generation sequence.

Assume that

A = max
{

y(0)(k)
∣∣∣k = 1, 2, · · · , m

}
, a = min

{
y(0)(k)

∣∣∣k = 1, 2, · · · , m
}

,
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then
Tamplitude = A− a ,

is called the amplitude of Y(0).

Definition 2. Assume that
Y =

(
y(0)(1), y(0)(2), · · · , y(0)(m)

)
,

is a random oscillation sequence, and another sequence

Y(0)D =
(

y(0)(1)d, y(0)(2)d, · · · , y(0)(m− 1)d
)

,

where,
y(0)(k)d = 0.25y(0)(k) + 0.25y(0)(k + 1) + 0.5Tamplitude (1)

In Equation (1), k = 1, 2, · · · , m− 1, Tamplitude is the amplitude of Y(0), D is a sequence operator and a
first-order smoothness operator of Y(0), and Y(0)D is a smoothness sequence of Y(0) [35].

Theorem 1. Assume that T
(

Y(0)
)

and T
(

Y(0)D
)

are the amplitudes of the random oscillation sequence Y(0)

and its smoothness sequence Y(0)D, respectively, then T
(

Y(0)
)
> 2T

(
Y(0)D

)
.

Proof. Assume that

max
{

y(0)(k)
∣∣∣k = 1, 2, · · · , n

}
= y(0)(p), p = 1, 2, · · · , n ,

min
{

y(0)(k)
∣∣∣k = 1, 2, · · · , n

}
= y(0)(q), q = 1, 2, · · · , n .

Then,
T
(

Y(0)
)
= y(0)(p)− y(0)(q). (2)

Similarly, assume that,

max
{

y(0)(k)d
∣∣∣k = 1, 2, · · · , n− 1

}
= y(0)(i)d, i = 1, 2, · · · , n− 1 ,

min
{

y(0)(k)d
∣∣∣k = 1, 2, · · · , n− 1

}
= y(0)(j)d, j = 1, 2, · · · , n− 1 .

According to Definition 2,

T
(

Y(0)D
)
= y(0)(i)d− y(0)(j)d , (3)

y(0)(i)d =

[
y(0)(i) + T

(
Y(0)

)]
+
[
y(0)(i + 1) + T

(
Y(0)

)]
4

, (4)

y(0)(j)d =

[
y(0)(j) + T

(
Y(0)

)]
+
[
y(0)(j + 1) + T

(
Y(0)

)]
4

, (5)

T
(

X(0)D
)
=

y(0)(i) + y(0)(i + 1)− y(0)(j)− y(0)(j + 1)
4

, (6)

For
y(0)(i) + y(0)(i + 1)− y(0)(j)− y(0)(j + 1) ≤ 2T

(
Y(0)

)
, (7)

then,
T
(

Y(0)
)
≥ 2T

(
Y(0)D

)
(8)
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The amplitude of a random oscillation sequence can be compressed using a smoothness
operator. The smoothness operator D can improve the smoothness of a random oscillation
sequence, which provides better modelling conditions and helps to build a more reasonable grey
forecasting model.

The smoothness operator proposed in this paper does not meet the three axioms of a grey buffer
operator: Axiom of fixed point, Axiom of in accordance with information, and Axiom of expressed
normality. Hence, it is not a grey buffer operator. Before building a grey prediction model, if a raw
sequence meets the random oscillation sequence condition in Definition 1, the algorithm to improve
the smoothness of the random oscillation sequence should be applied first.

3. Grey Prediction Model with Three Parameters

Definition 3. Assume that a sequence is

Y(0) =
(

y(0)(1), y(0)(2), · · · , y(0)(m)
)

,

where y(0)(k) ≥ 0, k = 1, 2, · · · , m. Y(1) is the 1-accumulating generation operator (AGO) sequence
of Y(0), i.e.,

Y(1) =
(

y(1)(1), y(1)(2), · · · , y(1)(m)
)

,

where

y(1)(k) =
k

∑
i=1

y(0)(i), k = 1, 2, · · ·m.

From sequence Y(1), a new sequence Z(1) can be derived:

Z(1) =
(

z(1)(2), z(1)(3), · · · , z(1)(m)
)

,

where
z(1)(k) = 0.5×

[
y(1)(k) + y(1)(k− 1)

]
, k = 2, 3 · · · , m .

Z(1), generated by the consecutive neighbor of Y(1), is called the adjacent neighbor mean
generation sequence.

Definition 4. For Y(0), Y(1), and Z(1) given by Definition 3, and three constants u, v, and w, then the
following equation

y(0)(k) + uz(1)(k) = vk + w , (9)

is the expanded form of the GM(1,1) model.

From Definitions 3 and 4, the equations as follows can be deduced:
y(0)(k) + uz(1)(k) = vk + w
y(0)(k) = y(1)(k)− y(1)(k− 1)

z(1)(k) = 0.5
(

y(1)(k) + y(1)(k− 1)
) .

That is,
(1 + 0.5u)y(1)(k) = vk + w + (1− 0.5a)y(1)(k− 1) .

Then, the following equation can be obtained:
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y(1)(k) =
1− 0.5u
1 + 0.5u

y(1)(k− 1) +
v

1 + 0.5u
k +

w
1 + 0.5u

. (10)

Letting

χ1 =
1− 0.5u
1 + 0.5u

, χ2 =
v

1 + 0.5u
, χ3 =

w
1 + 0.5u

.

Equation (10) is converted into:

y(1)(k) = χ1y(1)(k− 1) + χ2k + χ3, k = 2, 3, · · · , m . (11)

Equation (11) is the time response function of sequence Y(1).
In this subsection, the ordinary least square (OLS) method and Cramer’s rule are employed to

estimate parameters χ1, χ2, and χ3 in Equation (11). After this, parameters u, v, and w in Equation (11)
can be calculated.

To minimize the simulation error S under the condition ŷ(1)(k) being the simulation value of
y(1)(k), the following condition must be satisfied:

S = min
n
∑

k=2

[
y(1)(k)− ŷ(1)(k)

]2

= min
n
∑

k=2

[
y(1)(k)− χ1ŷ(1)(k− 1)− χ2k− χ3

]2

Based on the OLS method, S is minimized in relation to parameters χ1, χ2, χ3 to obtain:

∂S
∂χ1

= −2
n
∑

k=2

[
y(1)(k)− χ1ŷ(1)(k− 1)− χ2k− χ3

]
·ŷ(1)(k− 1) = 0

∂S
∂χ2

= −2
n
∑

k=2

[
y(1)(k)− χ1ŷ(1)(k− 1)− χ2k− χ3

]
k = 0

∂S
∂χ3

= −2
n
∑

k=2

[
y(1)(k)− χ1ŷ(1)(k− 1)− χ2k− χ3

]
= 0

.

According to the formulas above, an equation set is acquired as follows:

χ1
n
∑

k=2

[
ŷ(1)(k− 1)

]2
+ χ2

n
∑

k=2

[
kŷ(1)(k− 1)

]
+ χ3

n
∑

k=2
ŷ(1)(k− 1) =

n
∑

k=2

[
y(1)(k)ŷ(1)(k− 1)

]
χ1

n
∑

k=2
kŷ(1)(k− 1) + χ2

n
∑

k=2
k2 + χ3

n
∑

k=2
k =

n
∑

k=2
ky(1)(k)

χ1
n
∑

k=2
ŷ(1)(k− 1) + χ2

n
∑

k=2
k + χ3(n− 1) =

n
∑

k=2
y(1)(k)

(12)

Then, the unknown parameters χ1, χ2, χ3 in Equation (12) are calculated as follows. Based on
Cramer’s rule, the following results are obtained:
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Φ =

∣∣∣∣∣∣∣∣∣∣∣∣

n
∑

k=2

[
ŷ(1)(k− 1)

]2 n
∑

k=2
kŷ(1)(k− 1)

n
∑

k=2
ŷ(1)(k− 1)

n
∑

k=2
kŷ(1)(k− 1)

n
∑

k=2
k2

n
∑

k=2
k

n
∑

k=2
ŷ(1)(k− 1)

n
∑

k=2
k n− 1

∣∣∣∣∣∣∣∣∣∣∣∣
Φ1 =

∣∣∣∣∣∣∣∣∣∣∣∣

n
∑

k=2

[
y(1)(k)ŷ(1)(k− 1)

] n
∑

k=2
kŷ(1)(k− 1)

n
∑

k=2
ŷ(1)(k− 1)

n
∑

k=2
ky(1)(k)

n
∑

k=2
k2

n
∑

k=2
k

n
∑

k=2
y(1)(k)

n
∑

k=2
k n− 1

∣∣∣∣∣∣∣∣∣∣∣∣
Φ2 =

∣∣∣∣∣∣∣∣∣∣∣∣

n
∑

k=2

[
ŷ(1)(k− 1)

]2 n
∑

k=2

[
y(1)(k)ŷ(1)(k− 1)

] n
∑

k=2
ŷ(1)(k− 1)

n
∑

k=2
kŷ(1)(k− 1)

n
∑

k=2
kŷ(1)(k)

n
∑

k=2
k

n
∑

k=2
ŷ(1)(k− 1)

n
∑

k=2
ŷ(1)(k) n− 1

∣∣∣∣∣∣∣∣∣∣∣∣
Φ3 =

∣∣∣∣∣∣∣∣∣∣∣∣

n
∑

k=2

[
ŷ(1)(k− 1)

]2 n
∑

k=2
kŷ(1)(k− 1)

n
∑

k=2

[
x(1)(k)ŷ(1)(k− 1)

]
n
∑

k=2
kŷ(1)(k− 1)

n
∑

k=2
k2

n
∑

k=2
kŷ(1)(k)

n
∑

k=2
ŷ(1)(k− 1)

n
∑

k=2
k

n
∑

k=2
ŷ(1)(k)

∣∣∣∣∣∣∣∣∣∣∣∣
According to Cramer’s rule, the parameters χ1, χ2, χ3 can be computed, as shown below, and the

parameters u, v, w can be obtained at the same time, as follows:
χ1 = Φ1

Φ = 1−0.5u
1+0.5u

χ2 = Φ2
Φ = v

1+0.5a
χ3 = Φ3

Φ = w
1+0.5u

⇒


u = 2−2χ1

1+χ1

v = 2χ2
1+χ1

w = 2χ3
1+χ1

.

Then, the expression ŷ(1)(k), which is the simulation value of y(1)(k), can be transformed into:

ŷ(1)(k) =
1− 0.5u
1 + 0.5u

ŷ(1)(k− 1) +
vk + w

1 + 0.5u
. (13)

Given Equation (11), we can obtain equations as follows when k equals 2 and 3, respectively:

y(1)(2) = χ1y(1)(1) + 2χ2 + χ3 , (14)

y(1)(3) = χ1y(1)(2) + 3χ2 + χ3 . (15)

The following equation can be obtained after the substitution of Equation (14) into Equation (15)
and reorganization these two equations:

y(1)(3) = χ1

[
χ1y(1)(1) + 2χ2 + χ3

]
+ 3χ2 + χ3 .

That is,
y(1)(3) = χ2

1
y(1)(1) + 2χ1χ2 + χ1χ3 + 3χ2 + χ3 . (16)

According to Equation (11), when k = 4:

y(1)(4) = χ1y(1)(3) + 4χ2 + χ3 . (17)
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The following equation can be obtained after substituting Equation (16) into (17) and
reorganization of these two equations according to the method shown above:

y(1)(4) = χ3
1
y(1)(1) + 2χ2

1
χ2 + χ2

1
χ3 + 3χ1χ2 + χ1χ3 + 4χ2 + χ3 , (18)

ŷ(1)(j) = y(1)(1) · χ(j−1)
1 +

j−2

∑
g=0

[(j− g) · χ2 + χ3] · χ
(g)
1 , j = 2, 3, · · · . (19)

Equation (19) contains three parameters, χ1, χ2, χ3, and is therefore called the grey forecasting
model with three parameters [36], or GFM_TP.

4. Improved GFM_TP Model (IGFM_TP) Based on a Smoothness Operator

Assume a random oscillation sequence:

Y = (y(1), y(2), · · · , y(n), y(n + 1)) .

Based on Definition 2, the smoothness sequence YD of Y is:

YD = H = (h(1), h(2), · · · , h(n)) ,

where
h(k) = y(k)d = 0.25y(k) + 0.25y(k + 1) + 0.5Tamplitude ,

and k = 1, 2, · · · , n and Tamplitude is the amplitude of the raw sequence Y.
Now, the IGFM_TP model with the smoothness sequence H = (h(1), h(2), · · · , h(n)) is built.

Given Equation (12), we obtain:

ĥ(1)(j) = h(1)(1) · χ(j−1)
1 +

j−2

∑
g=0

[(j− g) · χ2 + χ3] · χ
(g)
1 . (20)

Based on Definition 3,

ĥ(0)(j) = ĥ(1)(j)− ĥ(1)(j− 1), j = 2, 3, ..., n . (21)

However, the predictive data are ŷ(k) (k = 3, 4, ..., n + 1), not ĥ(0)(j)(j = 2, 3, ..., n). Hence,
we needed to deduce ŷ(k) from ĥ(0)(j) according to Equation (1); that is,

y(0)(t)d = 0.25y(0)(t) + 0.25y(0)(t + 1) + 0.5Tamplitude ,

then,
ŷ(0)(k + 1) = 4ĥ(0)(k)− ŷ(0)(k)− 2Tamplitude , (22)

When k = 1, let
ŷ(0)(2) = 4ĥ(0)(1)− y(0)(1)− 2Tamplitude . (23)

Since ĥ(0)(1) = h(0)(1), y(0)(1) and Tamplitude are constants, y(0)(1) is also a constant.
Then ŷ(0)(2) = y(0)(2) is called the initial value of the new proposed IGFM_TP model.

When k = 2,
ŷ(0)(3) = 4ĥ(0)(2)− ŷ(0)(2)− 2Tamplitude , (24)

The following equation can be obtained when Equation (16) is substituted into Equation (17) and
both equations are reorganized:
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ŷ(0)(3) = 4ĥ(0)(2)−
(

4ĥ(0)(1)− y(0)(1)− 2Tamplitude

)
− 2Tamplitude

= 4ĥ(0)(2)− 4ĥ(0)(1) + y(0)(1) + 2Tamplitude − 2Tamplitude
(25)

That is:
ŷ(0)(3) = 4ĥ(0)(2)− 4ĥ(0)(1) + y(0)(1) . (26)

When k = 3,
ŷ(0)(4) = 4ĥ(0)(3)− ŷ(0)(3)− 2Tamplitude . (27)

The following equation can be obtained when Equation (19) is substituted into Equation (20) and
both equations are reorganized:

ŷ(0)(4) = 4ĥ(0)(3)− 4ĥ(0)(2) + 4ĥ(0)(1)− y(0)(1)− 2Tamplitude . (28)

Since

ĥ(1)(3) = h(1)(1) · χ(2)
1 +

1

∑
g=0

[(3− g) · χ2 + χ3] · χ
(g)
1 , (29)

ĥ(1)(2) = h(1)(1) · χ(1)
1 +

0

∑
g=0

[(2− g) · χ2 + χ3] · χ
(g)
1 . (30)

Then

ŷ(0)(4) = 4h(1)(1) · χ(2)
1 + 4

1
∑

g=0
[(3− g) · χ2 + χ3] · χ

(g)
1 −4h(1)(1) · χ(1)

1 +

4
0
∑

g=0
[(2− g) · χ2 + χ3] · χ

(g)
1 − 4h(1)(1) · χ(1)

1 − 4
0
∑

g=0
[(2− g) · χ2 + χ3] · χ

(g)
1 +

4ĥ(0)(1) + 4ĥ(0)(1)− y(0)(1)− 2Tamplitude

(31)

As can be seen from derivations demonstrated above, we failed to obtain regular evolution,
because the time response function of the IGFM_TP model is exceedingly complicated. Actually,
our main objective was to predict or simulate ŷ(1)(k) and y(0)(k) by building the IGFM_TP model,
and the time response function of the IGFM_TP model was not a vital factor for this study. A recursive
program can be written to achieve the model, because the IGFM_TP model satisfies the recursive
algorithm based on Equation (21).

5. Electricity Forecasting Using IGFM_TP

The electricity consumption of one city in Western China is high from January to July, as listed in
Table 1. The electricity demand of the city was simulated and its simulation errors were compared
with the proposed IGFM_TP model, the traditional GFM_TP model [37], the discrete grey model
DGM(1,1) [38], and the classical GM(1,1) model.

Table 1. Electricity consumption of a city in Western China.

Month January February March April May June July

Electricity Consumption
(Million Kilowatts) 439 320 584 481 640 635 790

Step 1. Collecting modeling data.

Based on Table 1, the original sequence Y is the modelling data:

Y = (y(1), y(2), y(3), y(4), y(5), y(6), y(7))
= (439, 320, 584, 481, 640, 635, 790)
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Step 2. Computing smoothness sequence.

Given of Definition 2, the smoothness sequence Y(0) of Y is:

Y(0) = (y(1)d, y(2)d, y(3)d, y(4)d, y(5)d, y(6)d, y(7)d)
= (424.75, 461.0, 501.25, 515.25, 553.75, 591.25)

From the sequence Y(0), when compared with the random oscillation sequence Y, the smoothness
sequence is smoother, which is important for improving the simulation or prediction precision of grey
prediction models.

Step 3. Computing the parameters of the IGFM_TP model.

Compute the parameters χ1, χ2, χ3 of the GFM_TP model as follows:

χ1 = 1.099598, χ2 = −19.285853, χ3 = 461.095615 .

Step 4. Computing the simulated data and errors.

Firstly, the simulated data and errors of the IGFM_TP model were calculated according to Steps
1–4 and Equation (31). Four grey models were built to compare their simulated values and errors,
as shown in Table 2.

Table 2. Simulation values and errors with five different grey prediction models.

Month y(0)(k)
IGFM_TP Model in

AUTHOR et al.
Classical
GM(1,1)

Model in
AUTHOR et al.

Model in
AUTHOR et al.

ŷ(0)(k) ∆k ŷ(0)(k) ∆k ŷ(0)(k) ∆k ŷ(0)(k) ∆k ŷ(0)(k) ∆k

February 320 320.0 0.0% 409.4 27.9% 405.2 26.6% 371.0 16.0% 334.7 4.6%
March 584 599.3 2.6% 465.1 20.4% 461.5 21.0% 464.5 20.5% 487.5 16.5%
April 481 428.1 11.0% 528.5 9.9% 525.6 9.3% 548.4 14.1% 583.2 21.2%
May 640 718.1 12.2% 600.5 6.2% 598.7 6.5% 623.5 2.6% 643.0 0.50%
June 635 558.7 12.0% 682.4 7.5% 681.9 7.4% 691.0 8.8% 680.5 7.2%
July 790 861.8 9.1% 775.3 1.9% 776.7 1.7% 751.4 4.9% 704.0 10.9%

∆ 7.8% - 12.3% - 12.1% - 11.1% 10.1%

In Table 2, y(0)(k) is the k-actual value in the original sequence X, ŷ(0)(k) is the simulative or
predictive value corresponding to y(0)(k), and ∆k is the absolute simulation or prediction percentage
error of ŷ(0)(k).

∆k =

∣∣∣ŷ(0)(k)− y(0)(k)
∣∣∣

y(0)(k)
× 100% ,

where ∆ is the mean absolute simulation or prediction percentage error of sequence Ŷ.

∆ =
1

n− 1

n

∑
k=2

∆k × 100% .

In accordance with statistics in Table 2, the simulated data obtained from the above five grey
prediction models are depicted as dotted lines in Figure 2.

Compared with the curves of the five grey prediction models, Figure 2 shows that the curve
of the simulated data of the IGFM_TP model is closest to that of the raw data, which demonstrates
IGFM_TP has the best simulation precision. In other words, the proposed IGFM_TP model is effective.
The curves of the simulated data with the GM(1,1), DGM(1,1), GFM_TP, and SAIGM models all
monotonically increased, and they cannot be used to simulate a random oscillation sequence, because
their most recent restored forms demonstrate homogeneous or non-homogeneous exponential forms.
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The size of the mean absolute simulation percentage error (MASPE) is often used to test the
robustness and soundness of a grey prediction model. The smaller the MASPE, the better the
performance of the grey model. In this paper, the MASPE grade of the IGFM_TP model was close to
Level-II, which means that the new model has good simulation performance. However, the MASPE
grades of the four other models were all greater than Level-III, which proves again that the performance
of the new model is better than that of the other grey prediction models.Symmetry 2018, 10, x FOR PEER REVIEW  12 of 14 
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6. Conclusions

Electricity is the foundation of a country’s economic construction. Reasonable and effective
prediction of electricity demand is important for ensuring a balance between electricity supply and
demand. For this, a new grey prediction model, named IGFM_TP, was proposed in this paper.
A smoothness algorithm was applied in the IGFM_TP model to process a raw data sequence, and then
a smoothness sequence was obtained. After this, a three-parameters grey prediction model was
established based on the smoothness sequence. Hence, the IGFM_TP model was built with two
existing methods and model.

The IGFM_TP model was used to simulate the electricity consumption of one city in Western
China. The simulation results showed that the performance of IGFM_TP is not only better than the
classical GM(1,1) model and frequently-used DGM(1,1) model, but also the improved upon the SAIGM
and GFM_TP models, which confirms the effectiveness of the performance improvement. Detailed
modeling steps were provided in this paper and the new model can be used to solve some actual issues
in real life according to the steps. However, the proposed new model is not perfect and still requires
considerable optimization, such as the initial and background values and the order of accumulation.
Therefore, further optimizing and improving the simulation performance of the GFM_TP model is the
next research goal of our team.
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