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Abstract: With environmental issues becoming increasingly important worldwide, plenty of
enterprises have applied the green supply chain management (GSCM) mode to achieve economic
benefits while ensuring environmental sustainable development. As an important part of GSCM,
green supplier selection has been researched in many literatures, which is regarded as a multiple
criteria group decision making (MCGDM) problem. However, these existing approaches present
several shortcomings, including determining the weights of decision makers subjectively, ignoring
the consensus level of decision makers, and that the complexity and uncertainty of evaluation
information cannot be adequately expressed. To overcome these drawbacks, a new method for green
supplier selection based on the q-rung orthopair fuzzy set is proposed, in which the evaluation
information of decision makers is represented by the q-rung orthopair fuzzy numbers. Combined
with an iteration-based consensus model and the q-rung orthopair fuzzy power weighted average
(q-ROFPWA) operator, an evaluation matrix that is accepted by decision makers or an enterprise is
obtained. Then, a comprehensive weighting method can be developed to compute the weights of
criteria, which is composed of the subjective weighting method and a deviation maximization model.
Finally, the TODIM (TOmada de Decisao Interativa e Multicritevio) method, based on the prospect
theory, can be extended into the q-rung orthopair fuzzy environment to obtain the ranking result.
A numerical example of green supplier selection in an electric automobile company was implemented
to illustrate the practicability and advantages of the proposed approach.

Keywords: green supplier selection; q-rung orthopair fuzzy set; consensus-reaching process;
the q-ROFPWA operator; TODIM method

1. Introduction

During the past decades, environmental issues have been receiving more and more attention;
certain enterprises, especially in the developing countries, have made great efforts in the fields
of sustainable development and pollution prevention to face the environmental pressures [1].
These environmental pressures are rooted in two aspects, namely, through government or consumer [2].
The governments have promulgated a series of environmental laws and regulations to restrict the
behavior of enterprises; consumers may take the environmental impact of different enterprises
into account when making their choices. Therefore, more and more enterprises apply the novel
environmental management mode of green supply chain management (GSCM) to reduce the pollution
during the operation processes of supply chains [3–6]. GSCM involves many aspects of a supply chain,
namely, product design, supplier selection, production, packaging, transportation, marketing, and
recycling [7,8]. Among the different segments, green suppliers are the initial link of a supply chain
and affect the efficiency and environmental performance of the supply chain; thus, the green supplier
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selection plays a key role in GSCM [9–11]. To solve the complex green supplier selection problems in
practice, many scholars have proposed different green supplier selection approaches [11].

Essentially, green supplier selection can be regarded as a multiple criteria group decision making
(MCGDM) problem where decision makers evaluate several potential green suppliers with respect to
some criteria to determine the best alternative [8,12,13]. In practice, the evaluation information may
be uncertain and incomplete. The fuzzy set (FS) and its generalized forms have been widely used
in the current literature to solve this problem [14–16]. Q-rung orthopair fuzzy set (q-ROFS), which
was developed by Yager [17], can express the membership, non-membership, and indeterminacy
membership degrees of decision makers, simultaneously. Scholars have introduced the q-ROFS to
many practical fields, such as investment, enterprise resource planning system selection, and so
on [18–20]. Therefore, to deal with the increasing complexity of green supplier selection, decision
makers can express a wider range of evaluation information by using the q-ROFS to evaluate the
potential green suppliers.

During the process of green supplier selection, decision makers may differentiate from the research
fields and practical experiences; thus, the evaluation information of different decision makers will
vary widely. However, under the premise of cooperation between decision makers, the ranking
result with a relatively high consensus level is desirable [21,22]. In real life, unanimity is difficult or
impossible to achieve; the concept of soft consensus was proposed to solve these MCGDM problems.
Furthermore, the consensus model has been applied in many practical areas [23–25]. To the best of
our knowledge, little attention has been paid to the green supplier selection approaches that include
the consensus-reaching process. Therefore, we developed an iteration-based consensus model under
the q-rung orthopair fuzzy (q-ROF) environment, which can offer suggestions for decision makers
on how to revise their non-consensus evaluation information in each iteration round. Consequently,
the consensus model is used during the green supplier selection process to obtain a more accurate
ranking result.

The individual acceptable consensus evaluation matrix of each decision maker can be obtained
by the consensus model; thus, the next issue is how to aggregate this evaluation information to
determine a collective evaluation matrix. Due to the different backgrounds of decision makers in
practice, the weights of them will always be difficult to determine simply. Most existing green supplier
selection approaches determine the weights of decision makers using the subjective weighting methods
or assume that the decision makers are equivalent important, which is inconsistent with the actual
situations and may lead to an inaccurate ranking result. To address this problem, Yager [26] proposed
the power average (PA) operator, in which the weights of aggregated arguments are determined
by the support degrees of them objectively. Since then, the PA operator has been investigated by
many scholars to propose its generalized forms under different fuzzy environments; the decision
maker weights can be determined by considering the subjective and objective factors, simultaneously.
In this paper, the q-rung orthopair fuzzy power weighted average (q-ROFPWA) operator, which was
proposed by Liu et al. [27], is utilized during green supplier selection to complete the information
fusion effectively.

Since the collective evaluation matrix of potential green suppliers was determined, we needed to
obtain the ranking index of each green supplier. Because the evaluation behavior of decision makers
is bounded rational, the attitude towards gain and loss of decision makers should be considered
while determining the final ranking of green suppliers [8]. Nevertheless, most existing green supplier
selection approaches ignored this bounded rationality behavior of decision makers. Inspired by the
literature [8], we introduced the TODIM (TOmada de Decisao Interativa e Multicritevio) method to
deal with these situations. Gomes and Lima [28] developed this TODIM method, in which the bounded
rationality is considered according to the prospect theory [29]. The utility function is introduced to
compute the dominance degree of each alternative over all the alternatives; then, the global values
of alternatives can be obtained to determine the best alternative. Therefore, in this paper, the q-rung
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orthopair fuzzy TODIM (q-ROF-TODIM) method was put forward to determine the ranking result of
green suppliers.

According to the discussion above, this paper proposes an improved green supplier selection
approach based on q-ROFS and TODIM method. The main contributions of this study are presented
as in the following. (1) The q-ROFS was used to express the evaluation information of decision makers,
which can deal with the uncertainty and complexity of evaluation information in practice effectively.
(2) The non-consensus evaluation information could be improved by an efficient iteration-based
consensus model to obtain a ranking result that was accepted by decision makers or enterprise.
(3) Considering the objective and subjective factors of the decision maker weights, the q-ROFPWA
operator was introduced to aggregate the individual evaluation information. (4) The TODIM method
under q-ROF environment was constructed to obtain the ranking that reflects the bounded rationality
of decision makers. To achieve this, the rest of this paper is presented as follows. The related literature
is reviewed in Section 2. The definition, operations, comparison method, distance measure, and
aggregation operator of q-ROFS are introduced in Section 3. Section 4 proposes a novel approach for
green supplier selection. Section 5 applies a numerical example to show the feasibility and validity of
the proposed approach. Some conclusions are summarized in Section 6.

2. Literature Review

2.1. Green Supplier Selection Approaches

As the MCGDM problems become more and more complicated, many novel approaches based on
MCGDM methods or soft computing were investigated [30–32]. Similarly, due to the features of green
supplier selection, many scholars have researched the green supplier selection method by regarding it
as a complex MCGDM problem; thus, a series of MCGDM methods under fuzzy environments have
been applied into the research of green supplier selection. For example, Lee et al. [33] developed a
fuzzy analytic hierarchy process (AHP) approach for green supplier selection in a high-tech industry.
Both Chen et al. [34] and Yazdani [35] constructed an integrated fuzzy multiple criteria decision making
approach to obtain the best green supplier, which is composed of fuzzy AHP and technique for order
performance by similarity to ideal solution (TOPSIS) methods. Combined with AHP and entropy,
elimination and choice expressing the reality III (ELECTRE III) methods, Tsui and Wen [36] proposed
an approach for selecting a green supplier, and several improvement suggestions were presented
to raise the performance of suppliers. Kannan et al. [9] determined the best green supplier for an
engineering plastic material manufacturer in Singapore by using a fuzzy axiomatic design method.
Dobos and Vörösmarty [37] evaluated green suppliers with respect to composite indicators based on
the data envelopment analysis (DEA) method. Hashemi et al. [38] determined the ranking of green
suppliers in GSCM by a comprehensive method that consisted of the analytic network process (ANP)
and grey relational analysis (GRA) methods. Kuo et al. [39] integrated the artificial neural network
(ANN), ANP, and DEA methods to choose suppliers by considering the environmental regulations.
Kuo et al. [40] utilized the decision-making trial and evaluation laboratory (DEMATEL)-based ANP
method to investigate the relationships between the criteria and compute the weights of criteria,
and then selected the green suppliers combined with the VIKOR (VlseKriterijumska Optimizacija
I Kompromisno Resenje) method. To discuss the applications of fuzzy green supplier selection
approaches, Banaeian et al. [14] evaluated the green suppliers in the agri-food industry by using
the TOPSIS, VIKOR, and GRA methods, respectively. Both Qin et al. [8] and Sang and Liu [41]
expressed the uncertainty of evaluation information using an interval type-2 fuzzy set, then utilized
the TODIM method to obtain the ranking of green suppliers. Govindan et al. [42] put forward a green
supplier selection method based on the revised Simos procedure and preference ranking organization
method for enrichment evaluation (PROMETHEE) method. Quan et al. [43] investigated the green
supplier selection with a large-scale group of decision makers and developed an integrated method
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combined with ant colony algorithms and multi-objective optimizations by ratio analysis plus the full
multiplicative form (MULTIMOORA) method.

2.2. Q-ROFS

In practice, the related qualitative and quantitative data of green suppliers are always incomplete
and complex; thus, crisp numbers cannot express the uncertainty of evaluation information given
by decision makers. To solve this problem, Zadeh [44] developed the FS theory to represent the
evaluation information; the generalized fuzzy numbers, including triangular fuzzy numbers and type-2
fuzzy numbers, were widely used in approaches for green supplier selection [8,14,33,41]. However,
the FS ignores the non-membership degree of evaluation information. For instance, a business
manager evaluates an investment before investing; they might think the probability of profit is 0.6,
and the probability of loss is 0.3. Obviously, the FS cannot represent the aforementioned evaluation
information. Therefore, Atanassov [45] applied the non-membership degree to improve the FS, and
proposed the intuitionistic fuzzy set (IFS). Consequently, the evaluation information of the business
manager can be expressed by an IFS, i.e., the membership and non-membership degrees are 0.6 and
0.3, respectively. Afterwards, IFS has been applied into green supplier selection [16,46]. Yager [47]
proposed a generalized form of IFS called the Pythagorean fuzzy set (PFS), in which the sum of squares
of membership and non-membership degrees is less than 1. Furthermore, to provide decision makers
with a more relaxed evaluation environment, Yager [17] put forward the q-ROFS theory to express
more potential evaluation information of decision makers. Then, the generalized form of q-ROFS,
i.e., the q-rung picture linguistic set was proposed [48]. The q-ROFS theory can be regarded as a
generalized form of IFS [45] and PFS [47], and the space of acceptable orthopairs increased with the
increasing rung q as shown in Figure 1. Combined with the refusal membership degree, Cuong [49]
developed the picture fuzzy set; subsequently, the similarity measures of the generalized picture fuzzy
sets that including spherical fuzzy sets and T-spherical fuzzy sets were investigated [50]. However,
picture fuzzy set is more applicable to model phenomena like voting.
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2.3. Consensus Model

During the green supplier selection process, decision makers may come from different research
fields of GSCM and have varying degrees of domain experience. Therefore, the non-consensus
evaluation information, which is far from group opinions, will be inevitably revealed; however,
a ranking result with a low consensus level may be obtained, which is not desirable. In recent
years, the consensus model of MCGDM problems has been a hot topic. The existing consensus
models can be divided into two categories; one is the iteration-based consensus model. For example,
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Herrera-Viedma et al. [51] defined the consensus and proximity measures of different preference
structures to construct an iteration-based consensus support system. Herrera-Viedma et al. [52]
investigated the consistency and consensus of incomplete fuzzy preference relations; a feedback
mechanism was put forward to revise the consistency and consensus levels, simultaneously. With
respect to intuitionistic fuzzy preference relations, Chu et al. [53] developed two iteration-based
algorithms to improve the consistency and consensus levels, respectively. Wu et al. [54] put forward
an iteration-based consensus model to revise the incomplete linguistic information, in which the
trust degree was used to complete the decision matrices and adjust the weights of decision makers.
Wu and Xu [55] developed a consensus measure of hesitant fuzzy linguistic information to complete
the consensus-reaching process. Another kind of consensus model is the optimization-based consensus
model. For instance, Dong et al. [56] constructed an optimization programming model for minimizing
the number of adjusted simple terms to complete the consensus-reaching process under hesitant
linguistic environment. Gong et al. [57] constructed two consensus models according to the minimum
cost of consensus and maximum return to achieve a relatively high consensus level. Gong et al. [58]
put forward a consensus model for optimizing the economic efficiency. Based on the multiplicative
consistency, Xu et al. [59] and Zhang and Pedrycz [60] proposed goal programming models to improve
the consistency and consensus levels of intuitionistic fuzzy preference and intuitionistic multiplicative
preference relations, respectively. For green supplier selection issues, Zhu and Li [12] introduced a
consensus model to put forward a novel green supplier selection approach; nevertheless, the consensus
model can only provide suggestions to one of the decision makers for revising the non-consensus
evaluation information in each iteration round, an thus, it can take a lot of time to achieve consensus
in a complex environment.

2.4. The PA Operator

Based on the individual evaluation information, the collective information of each green supplier
with respect to the criteria can be obtained by aggregation tools. Considering the relationships between
the input information, Yager [26] developed the PA operator to aggregate the individual information.
According to the PA operator and generalized weighted average operator, Zhou et al. [61] proposed
the generalized power weighted average (GPWA) operator, in which the weight vectors were obtained
by the subjective weight values and support degrees between different aggregated arguments. Xu [62]
extended the PA operator into the intuitionistic fuzzy (IF) and interval-valued intuitionistic fuzzy
environment; then, the generalized power weighted average operators were defined. Wan [63] put
forward the MCGDM method by using a trapezoidal intuitionistic fuzzy power weighted average
(TIFPWA) operator. Furthermore, Liu and Liu [64] investigated the generalized form of a TIFPWA
operator. He et al. [65] discussed the properties of the interval-valued intuitionistic fuzzy power
weighted average (IVIFPWA) operator and developed a novel MCGDM approach based on the
IVIFPWA operator. According to the Frank operational laws, Zhang et al. [66] proposed a new form of
PA operator. Wei and Lu [67] developed the Pythagorean fuzzy power weighted average (PFPWA)
operator. To aggregate the q-rung orthopair fuzzy numbers (q-ROFNs), Liu et al. [27] extended the PA
operator to the q-ROFPWA operator. Furthermore, the generalized PA operators have been applied to
many practical areas to solve MCGDM problems [62,68–71].

3. Preliminaries

To make this paper as self-contained as possible, this section introduces the definition, operational
laws, comparison method, Minkowski distance, and aggregation operator of q-ROFS, that will be
utilized in the subsequent research.

3.1. q-ROFS

Based on the IFS and PFS, Yager [17] proposed a more general form, i.e., q-ROFS, and developed
the operations of q-ROFS.
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Definition 1 [17]. Let X be a non-empty and finite set, A q-ROFS Q on X is defined by:

Q =
{〈

x,
(
µQ(x), vQ(x)

)〉∣∣x ∈ X
}

, (1)

where the functions µQ : X→ [0, 1] and vQ : X→ [0, 1] represent the membership and non-membership
degrees of x ∈ X to Q, respectively, and they satisfy the condition of

(
µQ(x)

)q
+
(
vQ(x)

)q ≤ 1, q ≥ 1.

Furthermore, function πQ(x) = q
√(

µQ(x)
)q

+
(
vQ(x)

)q −
(
µQ(x)

)q(vQ(x)
)q indicates the indeterminacy

membership degree. For convenience, we call a = (µ, v) a q-ROFN.

Definition 2 [17]. Let a = (µ, v), a1 = (µ1, v1), and a2 = (µ2, v2) be three q-ROFNs, λ > 0, and ac is the
complementary set of a, then:

ac = (v, µ); (2)

a1 ⊕ a2 =

(
q
√
(µ1)

q + (µ2)
q − (µ1)

q(µ2)
q, v1v2

)
; (3)

a1 ⊗ a2 =

(
µ1µ2, q

√
(v1)

q + (v2)
q − (v1)

q(v2)
q
)

; (4)

λa =

(
q
√

1− (1− µq)λ, vλ

)
; (5)

aλ =

(
µλ, q
√

1− (1− vq)λ
)

. (6)

Example 1. Suppose that a1 = (0.6500, 0.8298) and a2 = (0.5000, 0.7500) are two q-ROFNs, q = 3 and
λ = 2, then:

(1) (a1)
c = (0.8298, 0.6500), (a2)

c = (0.7500, 0.5000);
(2) a1 ⊕ a2 = (0.7149, 0.6224);
(3) a1 ⊗ a2 = (0.3250, 0.9094);
(4) λa1 = (0.7796, 0.6886), λa2 = (0.6166, 0.5625);

(5) (a1)
λ = (0.4225, 0.9346), (a2)

λ = (0.2500, 0.8732).

Liu et al. [18] and Wei et al. [19] investigated the score and accuracy functions of q-ROFS, then,
the comparison method of q-ROFNs was put forward.

Definition 3 [18,19]. Let a = (µ, v) be a q-ROFN, the score and accuracy functions of a are respectively
given by:

s(a) = (1 + µq − vq)/2; (7)

h(a) = µq + vq. (8)

Definition 4 [19]. Let a1 = (µ1, v1) and a2 = (µ2, v2) be two q-ROFNs, then:

(1) If s(a1) < s(a2), then a1 < a2;
(2) If s(a1) = s(a2), then

a. h(a1) < h(a2), then a1 < a2;
b. h(a1) = h(a2), then a1 = a2.

Later, Du [72] developed the Minkowski distance measure of q-ROFNs.
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Definition 5 [72]. Let a1 = (µ1, v1) and a2 = (µ2, v2) be two q-ROFNs, then the Minkowski distance between
them is defined by:

d(a1, a2) =

(
1
2
|µ1 − µ2|p +

1
2
|v1 − v2|p

)1/p
. (9)

Example 2. Suppose that a1 = (0.6500, 0.8298) and a2 = (0.5000, 0.7500) are two q-ROFNs, q = 3;
according to Definition 3, we have s(a1) = s(a2) = 0.3516, h(a1) = 0.8460, and h(a2) = 0.5469, then
a1 > a2. In addition, the Minkowski distance between them can be computed as d(a1, a2) = 0.1248.

3.2. The q-ROFPWA Operator

Considering the relationship between the aggregated values, Yager [26] proposed the PA operator
to fuse the information.

Definition 6 [26]. Let ai(i = 1, 2, . . . , n) be a collection of evaluation values, the PA operator is a mapping
Ωn → Ω as:

PA(a1, a2, . . . , an) =
n

∑
i=1

(1 + T(ai))ai

∑n
j=1
(
1 + T

(
aj
)) . (10)

where T(ai) = ∑n
j=1,j 6=i Sup

(
ai, aj

)
and Sup

(
ai, aj

)
is the support degree for ai from aj that satisfies the

conditions as follows: (1) Sup
(
ai, aj

)
∈ [0, 1]; (2) Sup

(
ai, aj

)
= Sup

(
aj, ai

)
; (3) If

∣∣ai − aj
∣∣ > |as − at|, then

Sup
(
ai, aj

)
≤ Sup(as, at).

The PA operator can reflect the relationship between the aggregated values during the information
fusion; however, it can only aggregate a crisp number. Therefore, Liu et al. [27] extended the PA
operator into the q-ROF environment to propose the q-ROFPWA operator.

Definition 7 [27]. Let ai = (µi, vi)(i = 1, 2, . . . , n) be a collection of q-ROFNs; the q-ROFPWA operator is a
mapping Ωn → Ω as:

q− ROFPWA(a1, a2, . . . , an) =
n
⊕

i=1

wi(1 + T(ai))ai

∑n
j=1
(
wj
(
1 + T

(
aj
))) . (11)

where w = (w1, w2, . . . , wn)
T is the weight vector of the q-ROFNs ai, T(ai) = ∑n

j=1,j 6=i
(
wjSup

(
ai, aj

))
,

and Sup
(
ai, aj

)
= 1 − d

(
ai, aj

)
is the support degree for ai from aj, in which d

(
ai, aj

)
is the Minkowski

distance between ai and aj in this study.

Combined with the operations of q-ROFNs, we can obtain the following result.

Theorem 1 [27]. Let ai(i = 1, 2, . . . , n) be a collection of q-ROFNs; their aggregated value by using the
q-ROFPWA operator is also a q-ROFN, and:

q− ROFPWA(a1, a2, . . . , an) =

(
q

√
1−

n
∏
i=1

(
1− µ

q
i

)wi(1+T(ai))/∑n
j=1 (wj(1+T(aj)))

,
n
∏
i=1

(vi)
wi(1+T(ai))/∑n

j=1 (wj(1+T(aj)))

)
. (12)

4. Green Supplier Selection Method under q-ROF Environment

In this section, we defined the q-ROF consensus measures on three levels, namely, criteria,
alternative, and evaluation matrix levels to construct the consensus model. Then, the q-ROFPWA
operator was investigated to fuse the q-ROF evaluation information. Finally, combined with the
comprehensive weighting method and q-ROF-TODIM method, a novel green supplier selection
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approach under q-ROF environment was developed. The flowchart of the proposed approach is
presented in Figure 2.
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4.1. Obtain the Normalized Evaluation Matrices of Decision Makers

For a green supplier selection problem, suppose that a group of decision makers Dk(k = 1, 2, . . . , l)
is assembled to evaluate the green suppliers for an enterprise, in which decision makers may come
from different backgrounds of GSCM. Then, the normalized q-ROF evaluation matrices of decision
makers can be obtained by the steps as follows:
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Step 1.1: After the primary evaluation of the green supplier selection problem, decision
makers can identify the potential green supplier Ai(i = 1, 2, . . . , m) and a collection of criteria
Cj(j = 1, 2, . . . , n).

Step 1.2: Combined with the q-ROFS, the evaluation information of green suppliers can be
expressed by q-ROF evaluation matrix Fk =

(
ãk

ij

)
m×n

, where ãk
ij =

(
µ̃k

ij, ṽk
ij

)
indicates the q-ROF

evaluation information of green supplier Ai concerning criteria Cj given by decision maker Dk.
Moreover, decision makers also evaluate the weights of criteria using q-ROFNs; subsequently,
the q-ROF evaluation matrix Wk =

(
ak

j

)
1×n

was obtained, where ak
j =

(
µk

j , vk
j

)
represents the

importance degree of criteria Cj given by decision maker Dk.
Step 1.3: Generally, the criteria of green supplier selection can be divided into two types, namely,

cost type and benefit type; thus, we should transform the information with respect to cost type criteria
into the information with respect to benefit type criteria to determine the normalized q-ROF evaluation
matrix Qk =

(
ak

ij

)
m×n

as:

ak
ij =

(
µk

ij, vk
ij

)
=

 ãk
ij if Cj is the benefit type criteria;(

ãk
ij

)c
if Cj is the cost type criteria.

(13)

4.2. Consensus-Reaching Process

Most research focused on the consensus model with preference relations that were obtained by
pairwise comparison; Wu and Xu [55] proposed an iteration-based consensus model to solve the
MCGDM problems based on a hesitant fuzzy linguistic set. Motivated by the literature, we develop
the similarity matrix between different q-ROF evaluation matrices.

Definition 8. Suppose that decision maker Dk(k = 1, 2, . . . , l)evaluated the alternative Ai(i = 1, 2, . . . , m)

concerning the criteria Cj(j = 1, 2, . . . , n) using q-ROFNs. For each pair of decision makers,(
Dk, Dp

)
(k = 1, 2, . . . , l − 1; p = k + 1, k + 2, . . . , l), the similarity matrix SMkp between the q-ROF

evaluation matrices Qk =
(

ak
ij

)
m×n

and Qp =
(

ap
ij

)
m×n

is defined by:

SMkp =
(

smkp
ij

)
m×n

=
(

1− d
(

ak
ij, ap

ij

))
m×n

, (14)

where d
(

ak
ij, ap

ij

)
is the Minkowski distance between the q-ROF evaluation information ak

ij and ap
ij. Furthermore,

the consensus matrix CM is determined as:

CM =
(
cmij

)
m×n =

(
ψ
(

smkp
ij

))
m×n

, (15)

where ψ is the arithmetic average operator.

The three consensus measures on criteria, alternative, and evaluation matrix levels could
then bedefined according to the consensus matrix CM, which will be used to complete the
consensus-reaching process.

Definition 9. Criteria level: the consensus measure ccij for alternative Ai with respect to criteria Cj can be
represented by the element of consensus matrix CM as:

ccij = cmij. (16)
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Alternative level: the consensus measure cai on alternative Ai can be obtained by:

cai =
∑n

j=1 ccij

n
. (17)

Evaluation matrix level: the consensus measure ce on the evaluation matrix, i.e., the global consensus
measure, can be defined by:

ce = min
i
{cai}. (18)

Once the q-ROF consensus measures on three levels in Definition 9 were computed, we could
check whether the consensus was achieved by comparing the consensus measure ce with the predefined
ideal consensus threshold ε ∈ (0, 1]. If ce ≥ ε, the consensus was reached; thus, the normalized q-ROF
evaluation matrix Qk was the acceptable consensus evaluation matrix. Otherwise, several identification
and direction rules could be obtained according to the aforementioned three consensus measures;
identification rules were utilized to determine the non-consensus evaluation information set that
contributed less to reach a high consensus level for each iteration round, and direction rules could guide
decision makers to revise the non-consensus evaluation information in this round. An iteration-based
consensus model under q-ROF environment was constructed to reach consensus as follows.

Input: The original individual evaluation matrix Qk, the ideal consensus threshold ε, and the
maximum permission iterative number of times rmax.

Output: The revised individual q-ROF evaluation matrix Qk
and the global consensus measure ce.

Step 2.1: Let the initial iterative number be r = 1, and the individual evaluation matrix in the first
round be Qk

1 =
(

ak
ij,1

)
m×n

=
(

ak
ij

)
m×n

.

Step 2.2: Calculate the similarity matrix SMkp(k = 1, 2, . . . , l − 1; p = k + 1, k + 2, . . . , l) and
aggregate them to obtain the consensus matrix CM; thus, the consensus measures ccij, cai, and
ce in round r are computed. If ce ≥ ε or r > rmax, then proceed to Step 1.5; otherwise, proceed to the
next step.

Step 2.3: Obtain the identification rules as in the following:
(1) Identification rule 1. The non-consensus alternative set IRA = {Ai|cai < ε, i = 1, 2, . . . , m}

identifies the rows of the evaluation matrices that should be revised.
(2) Identification rule 2. The non-consensus criteria set IRCi ={

Cj
∣∣Ai ∈ IRA ∧ ccij < ε, j = 1, 2, . . . , n

}
identifies the columns that should be revised for the

rows distinguished in the non-consensus alternative set IRA.
(3) Identification rule 3. The non-consensus decision maker set IRDij ={

Dp

∣∣∣∣Ai ∈ IRA ∧ Cj ∈ IRCi ∧ d(p)
ij = max

k

{
d(k)ij

}}
identifies the decision makers that should

revise the evaluation information at the position (i, j) in evaluation matrices, where d(p)
ij is the distance

between the similarity measures of Dp and other decision makers, i.e., d(p)
ij = ∑l

k=1,k 6=p

(
1− smkp

ij

)
.

Subsequently, combined with the identification rules 1~3, the non-consensus evaluation
information set IR that should be revised in round r can be determined as:

IR =
{
(p, (i, j))

∣∣Dp ∈ IRDij ∧ Ai ∈ IRA ∧ Cj ∈ IRCi
}

. (19)

Step 2.4: Aggregate the individual evaluation matrix Qk
r using the q-ROFAA operator that is

reduced by the q-ROFWA operator [18], then, the collective evaluation matrix Qr =
(
aij,r
)

m×n can be
obtained as:

aij,r = q− ROFAA
(

a1
ij,r, a2

ij,r, . . . , al
ij,r

)
=

 q

√√√√1−
l

∏
k=1

(
1−

(
µk

ij,r

)q)1/l
,

l

∏
k=1

(
vk

ij,r

)1/l
. (20)
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Both the collective evaluation information aij,r and the non-consensus evaluation information set
IR show that the direction rules, which suggest decision makers how to change their non-consensus
evaluation information as in the following:

(1) If aij,r > ak
ij,r, then the decision maker Dk should decrease the evaluation on alternative Ai

concerning criteria Cj when Cj is the benefit type criteria, and the decision maker Dk should increase
the evaluation on alternative Ai concerning criteria Cj when Cj is the cost type criteria.

(2) If aij,r < ak
ij,r, the decision maker Dk should increase the evaluation on alternative Ai concerning

criteria Cj when Cj is the benefit type criteria, and the decision maker Dk should decrease the evaluation
on alternative Ai concerning criteria Cj when Cj is the cost type criteria.

Then, the revised individual q-ROF evaluation matrix Qk
r+1 can be obtained. Set r = r + 1 and

proceed to Step 1.2.

Step 2.5: Let Qk
= Qk

r =
(

ak
ij

)
m×n

=
(

µk
ij, vk

ij

)
m×n

. Output Qk
and ce in this round.

4.3. Aggregation of Individual Acceptable Consensus Evaluation Matrices

According to the individual acceptable consensus evaluation matrices, we can use the q-ROFPWA
operator to fuse them; then, the weights of decision makers can be determined by both the subjective
weights and support degrees between individual evaluation information. Thus, the collective
evaluation matrix Q =

(
aij
)

m×n is obtained by the steps as below.
Step 3.1: Compute the support degree:

Sup
(

ak
ij, ap

ij

)
= 1− d

(
ak

ij, ap
ij

)
, k, p = 1, 2, . . . , l, (21)

where d
(

ak
ij, ap

ij

)
is the Minkowski distance between the evaluation information ak

ij and ap
ij.

Step 3.2: Combined with the subjective weight vector of decision makers w = (w1, w2, . . . , wl)
T

that is provided by the enterprise, the weighted support degree of ak
ij can be calculated as:

T
(

ak
ij

)
=

l

∑
p=1,p 6=k

wpSup
(

ak
ij, ap

ij

)
, (22)

Then, the weights associated with ak
ij can be determined as:

ξk
ij =

wk

(
1 + T

(
ak

ij

))
∑l

k=1

(
wk

(
1 + T

(
ak

ij

))) , ξk
ij ≥ 0,

l

∑
k=1

ξk
ij = 1. (23)

Step 3.3: Use the q-ROFPWA operator to fuse the evaluation matrix Qk
to obtain the collective

evaluation matrix Q as:

aij = q− ROFPWA
(

a1
ij, a2

ij, . . . , al
ij

)
=

 q

√√√√1−
l

∏
k=1

(
1−

(
µk

ij

)q)ξk
ij
,

n

∏
i=1

(
vk

ij

)ξk
ij

 =
(
µij, vij

)
. (24)

4.4. Determine the Weights of Criteria

In practice, it is sometimes unreasonable to determine the criteria weights only considering the
views of decision makers. To investigate both the subjective and objective factors, we constructed
a comprehensive weighting method that consists of a subjective weighting method and a deviation
maximization model to calculate the weights of criteria as follows.

Step 4.1: Combined with the evaluation matrix Wk and the similar steps in Sections 4.3 and 4.4,
we can obtain the collective evaluation matrix W =

(
aj
)

1×n. The larger the score value of aj, which
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means the criteria Cj is more important, the higher the weight of criteria Cj and vice versa. Then,

the subjective weight vector of criteria λS =
(
λS

1 , λS
2 , . . . , λS

n
)T can be determined as:

λS
j =

s
(
aj
)

∑n
j=1 s

(
aj
) . (25)

where s
(
aj
)

is the score value of aj.

Step 4.2: Let ∑m
h=1,h 6=i d

(
aij, ahj

)
λO

j be the deviation between the collective evaluation information

on green supplier Ai and other green suppliers concerning Cj, where d
(

aij, ahj

)
is the Minkowski

distance between aij and ahj; then, the total deviation is obtained as ∑n
j=1 ∑m

i=1 ∑m
h=1,h 6=i d

(
aij, ahj

)
λO

j .
According to the information theory, if all green suppliers have similar evaluation information
concerning one of criteria, a small weight value should be assigned to the criteria as it contributes less to
differentiate green suppliers [73]. Subsequently, a deviation maximization model can be developed as:

max ∑n
j=1 ∑m

i=1 ∑m
h=1,h 6=i d

(
aij, ahj

)
λO

j

s.t. ∑n
j=1

(
λO

j

)2
= 1, λO

j ≥ 0.
(26)

Solve the model according to the Lagrange function:

L
(

λO,℘
)
=

n

∑
j=1

m

∑
i=1

m

∑
h=1,h 6=i

d
(

aij, ahj

)
λO

j +
℘

2

(
n

∑
j=1

(
λO

j

)2
− 1

)
. (27)

where ℘ is the Lagrange multiplier. Differentiate Equation (27) concerning λO
j and ℘, and let these

partial derivatives be equal to zero:
∂L(λO ,℘)

∂λO
j

= ∑m
i=1 ∑m

h=1,h 6=i d
(

aij, ahj

)
+ ℘λO

j = 0;

∂L(λO ,℘)
∂℘ = ∑n

j=1

(
λO

j

)2
− 1 = 0.

(28)

By solving Equation (28), the normalized weights of criteria, i.e., objective weight vector of criteria
λO =

(
λO

1 , λO
2 , . . . , λO

n
)T can be obtained:

λO
j =

∑m
i=1 ∑m

h=1,h 6=i d
(

aij, ahj

)
∑n

j=1 ∑m
i=1 ∑m

h=1,h 6=i d
(

aij, ahj

) . (29)

Step 4.3: Determine the comprehensive weight vector of criteria λ = (λ1, λ2, . . . , λn)
T as:

λj = ϕλS
j + (1− ϕ)λO

j . (30)

where ϕ ∈ [0, 1] is the importance coefficient of subjective weights, and 1 − ϕ is the importance
coefficient of objective weights.

4.5. Rank the Green Suppliers Using the TODIM Method under q-ROF Environment

Based on the collective q-ROF evaluation matrix Q and weight vector of criteria λ, we construct
the q-ROF-TODIM method that can deal with the multiple criteria decision making problems with
q-ROFS to obtain the ranking indices of green suppliers and determine the best green supplier.
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Step 5.1: Compute the relative weight λjr of criteria Cj with respect to the reference criteria Cr as:

λjr = λj/λr, (31)

where λj is the weight of criteria Cj and λr = max
j

{
λj
}

is the weight of reference criteria Cr.

Step 5.2: Calculate the dominance degree of green supplier Ai over each green supplier
Ah(h = 1, 2, . . . , m) by the following equation:

δ(Ai, Ah) =
n

∑
j=1

φj(Ai, Ah), (32)

where:

φj(Ai, Ah) =



√
λjrd

(
aij, ahj

)
/∑n

j=1 λjr i f aij > ahj;

0 i f aij = ahj;

− 1
θ

√(
∑n

j=1 λjr

)
d
(

aij, ahj

)
/λjr i f aij < ahj.

(33)

The parameter θ > 0 indicates the attenuation factor of the losses, and d
(

aij, ahj

)
is the Minkowski

distance between aij and ahj.
Step 5.3: Compute the global value of green supplier Ai by:

Φ(Ai) =
∑m

h=1 δ(Ai, Ah)−min
i
{∑m

h=1 δ(Ai, Ah)}

max
i
{∑m

h=1 δ(Ai, Ah)} −min
i
{∑m

h=1 δ(Ai, Ah)}
. (34)

Step 5.4: Determine the ranking of potential green suppliers based on their global values;
the larger the global value Φ(Ai), the higher the ranking of green supplier Ai.

5. Numerical Example

In this section, a numerical example in the literature [16] was applied to show the feasibility
and advantages of the proposed approach. An electric automobile enterprise plans to purchase a
key component of a manufacturing procedure from the green suppliers market; the ranking of green
suppliers can be determined by the following steps in the next subsection.

5.1. Implementation

Step 1: Obtain the normalized evaluation matrices of decision makers.
Step 1.1: After a preliminary evaluation, four potential green suppliers Ai(i = 1, 2, 3, 4) are

determined by a group of decision makers Dk(k = 1, 2, 3). Decision makers evaluate the four
green suppliers concerning six criteria Cj(j = 1, 2, 3, 4, 5, 6), namely, environmental costs (C1),
remanufacturing activity (C2), energy assumption (C3), reverse logistics program (C4), hazardous
waste management (C5), and environmental certification (C6), where C1 and C3 are the cost type
criteria, and the others are the benefit type criteria.

Step 1.2: According to the relationships between the linguistic terms and interval-valued
Pythagorean fuzzy numbers [74], we can construct the transformation between the linguistic terms and
the corresponding q-ROFNs (q = 3) as shown in Table 1. Then, decision makers use the linguistic terms
to assess the green suppliers as shown in Table 2; thus, the q-ROF evaluation matrix Fk =

(
ãk

ij

)
4×6

is

obtained. It is noteworthy that we adopt the subjective weights of criteria obtained in the literature [16],
i.e., λS = (0.180, 0.090, 0.130, 0.130, 0.310, 0.160)T .
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Table 1. Linguistic terms and the corresponding q-rung orthopair fuzzy numbers (q-ROFNs).

Linguistic Terms Corresponding q-ROFNs

Extremely High (EH) (0.95,0.15)
Very High (VH) (0.85,0.25)

High (H) (0.75,0.35)
Medium High (MH) (0.65,0.45)

Medium (M) (0.55,0.55)
Medium Low (ML) (0.45,0.65)

Low (L) (0.35,0.75)
Very Low (VL) (0.25,0.85)

Extremely Low (EL) (0.15,0.95)

Table 2. Evaluation information of decision makers.

Decision Makers Alternatives C1 C2 C3 C4 C5 C6

D1 A1 EH H L EL H M
A2 MH L H H M L
A3 L H M L EH H
A4 L EL H MH MH H

D2 A1 VH VL M L H ML
A2 H MH MH MH M ML
A3 L VH M L EL H
A4 ML H H MH MH H

D3 A1 ML MH ML VL VH M
A2 VH L H MH MH M
A3 ML MH MH ML EL MH
A4 M VH EH M M EL

Step 1.3: After the normalization step according to the different types of criteria, the normalized
q-ROF evaluation matrix Qk =

(
ak

ij

)
4×6

can be obtained by using Equation (13).

Step 2: Consensus-reaching process (ε = 0.85, rmax = 5).
Step 2.1: Let the initial iterative number be r = 1, and Qk

1 =
(

ak
ij,1

)
4×6

=
(

ak
ij

)
4×6

.

Step 2.2: Calculate the similarity matrix SMkp between the q-ROF evaluation matrices Qk
1 and

Qp
1 as

SM12 =


0.9 0.5 0.8 0.8 1.0 0.9
0.9 0.7 0.9 0.9 1.0 0.9
1.0 0.9 1.0 1.0 0.2 1.0
0.9 0.4 1.0 1.0 1.0 1.0

; SM13 =


0.5 0.9 0.9 0.9 0.9 1.0
0.8 1.0 1.0 0.9 0.9 0.8
0.9 0.9 0.9 0.9 0.2 0.9
0.8 0.3 0.8 0.9 0.9 0.4

; SM23 =


0.6 0.6 0.9 0.9 0.9 0.9
0.9 0.7 0.9 1.0 0.9 0.9
0.9 0.8 0.9 0.9 1.0 0.9
0.9 0.9 0.8 0.9 0.9 0.4

.

Then, aggregate them to obtain the consensus matrix CM in round one:

CM =


0.6667 0.6667 0.8667 0.8667 0.9333 0.9333
0.8667 0.8000 0.9333 0.9333 0.9333 0.8667
0.9333 0.8667 0.9333 0.9333 0.4667 0.9333
0.8667 0.5333 0.8667 0.9333 0.9333 0.6000

.

Thus, we can calculate the consensus measures ccij, cai, and ce based on Equations (16)~(18);
the global consensus measure in round one ce = 0.7889. It can be seen that ce < ε after which we can
proceed to the next step.

Step 2.3: Obtain the identification rules as in the following:
(1) Identification rule 1. The non-consensus alternative set: IRA = {Ai|cai < 0.85} =

{A1, A3, A4}.
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(2) Identification rule 2. The non-consensus criteria set:

IRC1 =
{

Cj
∣∣A1 ∈ IRA ∧ cc1j < 0.85

}
= {C1, C2};

IRC3 =
{

Cj
∣∣A3 ∈ IRA ∧ cc3j < 0.85

}
= {C5};

IRC4 =
{

Cj
∣∣A4 ∈ IRA ∧ cc4j < 0.85

}
= {C2, C6}.

(3) Identification rule 3. Combined with the distances between the similarity measures of decision
maker Dp and the other decision makers at the positions {(1, 1), (1, 2), (3, 5), (4, 2), (4, 6)} in evaluation
matrix Qk

1 , we can obtain the non-consensus decision maker set:

IRD11 =

{
Dp

∣∣∣∣A1 ∈ IRA ∧ C1 ∈ IRC1 ∧ d(p)
11 = max

k

{
d(k)11

}}
= {D3};

IRD12 =

{
Dp

∣∣∣∣A1 ∈ IRA ∧ C2 ∈ IRC1 ∧ d(p)
12 = max

k

{
d(k)12

}}
= {D2};

IRD35 =

{
Dp

∣∣∣∣A3 ∈ IRA ∧ C5 ∈ IRC3 ∧ d(p)
35 = max

k

{
d(k)35

}}
= {D1};

IRD42 =

{
Dp

∣∣∣∣A4 ∈ IRA ∧ C2 ∈ IRC4 ∧ d(p)
42 = max

k

{
d(k)42

}}
= {D1};

IRD46 =

{
Dp

∣∣∣∣A4 ∈ IRA ∧ C6 ∈ IRC4 ∧ d(p)
46 = max

k

{
d(k)46

}}
= {D3}.

Finally, based on the identification rules 1~3, the non-consensus evaluation information set IR
that should be revised in round one can be determined as:

IR =
{
(p, (i, j))

∣∣Dp ∈ IRDij ∧ Ai ∈ IRA ∧ Cj ∈ IRCi
}
= {(3, (1, 1)), (2, (1, 2)), (1, (3, 5)), (1, (4, 2)), (3, (4, 6))}.

Step 2.4: Aggregate the individual evaluation matrix Qk
1 in round one using the q-ROFAA

operator to obtain collective evaluation matrix Q1 =
(
aij,1
)

4×6; then, the direction rules can be put
forward to revise the non-consensus evaluation information in set IR as shown in Table 3. Set r = 2
and proceed to Step 1.2.

Table 3. Direction rules in round one.

IR Individual Evaluation
Information

Collective Evaluation
Information Direction Rules

(3,(1,1)) ML, (0.45,0.65) (0.4750,0.7136) ML→M
(2,(1,2)) VL, (0.25,0.85) (0.6345,0.5116) VL→L
(1,(3,5)) EH, (0.95,0.15) (0.7823,0.5135) EH→VH
(1,(4,2)) EL, (0.15,0.95) (0.7332,0.4364) EL→VL
(3,(4,6)) EL, (0.15,0.95) (0.6745,0.4882) EL→VL

Then, combined with the similar Steps 2.2~2.4, we can obtain the global consensus measure in
round four ce = 0.8556 > ε, which means that a high consensus level between decision makers has

been achieved; the individual acceptable consensus q-ROF evaluation matrix Qk
are determined as

shown in Table 4.



Symmetry 2018, 10, 687 16 of 28

Table 4. Individual acceptable consensus q-rung orthopair fuzzy (q-ROF) evaluation matrices.

Decision Makers Alternatives C1 C2 C3 C4 C5 C6

D1 A1 (0.15,0.95) (0.75,0.35) (0.75,0.35) (0.15,0.95) (0.75,0.35) (0.55,0.55)
A2 (0.45,0.65) (0.35,0.75) (0.35,0.75) (0.75,0.35) (0.55,0.55) (0.35,0.75)
A3 (0.75,0.35) (0.75,0.35) (0.55,0.55) (0.35,0.75) (0.85,0.25) (0.75,0.35)
A4 (0.75,0.35) (0.45,0.65) (0.35,0.75) (0.65,0.45) (0.65,0.45) (0.75,0.35)

D2 A1 (0.25,0.85) (0.45,0.65) (0.55,0.55) (0.35,0.75) (0.75,0.35) (0.45,0.65)
A2 (0.35,0.75) (0.65,0.45) (0.45,0.65) (0.65,0.45) (0.55,0.55) (0.45,0.65)
A3 (0.75,0.35) (0.85,0.25) (0.55,0.55) (0.35,0.75) (0.15,0.95) (0.75,0.35)
A4 (0.65,0.45) (0.75,0.35) (0.35,0.75) (0.65,0.45) (0.65,0.45) (0.75,0.35)

D3 A1 (0.45,0.65) (0.65,0.45) (0.65,0.45) (0.25,0.85) (0.85,0.25) (0.55,0.55)
A2 (0.25,0.85) (0.35,0.75) (0.35,0.75) (0.65,0.45) (0.65,0.45) (0.55,0.55)
A3 (0.65,0.45) (0.65,0.45) (0.45,0.65) (0.45,0.65) (0.15,0.95) (0.65,0.45)
A4 (0.55,0.55) (0.85,0.25) (0.15,0.95) (0.55,0.55) (0.55,0.55) (0.45,0.65)

Step 3: Aggregation of individual acceptable consensus evaluation matrices.
Steps 3.1~3.2: Suppose that the subjective weight values of decision makers are equal, i.e.,

w = (1/3, 1/3, 1/3)T ; we can use Equations (21)~(23) to calculate the weighted support degree of
ak

ij as:

T1 =


0.5333 0.5333 0.5667 0.5667 0.6333 0.6333
0.5667 0.5667 0.6333 0.6000 0.6333 0.5667
0.6333 0.6000 0.6333 0.6333 0.2000 0.6333
0.5667 0.4333 0.6000 0.6333 0.6333 0.5667

;

T2 =


0.5667 0.5000 0.5667 0.5667 0.6333 0.6000
0.6000 0.4667 0.6000 0.6333 0.6333 0.6000
0.6333 0.5667 0.6333 0.6333 0.4333 0.6333
0.6000 0.5333 0.6000 0.6333 0.6333 0.5667

;

T3 =


0.5000 0.5667 0.6000 0.6000 0.6000 0.6333
0.5667 0.5667 0.6333 0.6333 0.6000 0.5667
0.6000 0.5667 0.6000 0.6000 0.4333 0.6000
0.5667 0.5000 0.5333 0.6000 0.6000 0.4667

.

Then, the weights associated with ak
ij can be determined as:

ξ1 =


0.3333 0.3333 0.3310 0.3310 0.3356 0.3356
0.3310 0.3406 0.3356 0.3288 0.3356 0.3310
0.3356 0.3380 0.3356 0.3356 0.2951 0.3356
0.3310 0.3209 0.3380 0.3356 0.3356 0.3406

;

ξ2 =


0.3406 0.3261 0.3310 0.3310 0.3356 0.3288
0.3380 0.3188 0.3288 0.3356 0.3356 0.3380
0.3356 0.3310 0.3356 0.3356 0.3308 0.3356
0.3380 0.3333 0.3380 0.3356 0.3356 0.3406

;

ξ3 =


0.3261 0.3406 0.3380 0.3380 0.3288 0.3356
0.3310 0.3406 0.3356 0.3356 0.3288 0.3310
0.3288 0.3310 0.3288 0.3288 0.3308 0.3288
0.3310 0.3261 0.3239 0.3288 0.3288 0.3188

.

Step 3.3: Use the q-ROFPWA operator to fuse the evaluation matrix Qk
to obtain the collective

evaluation matrix Q as shown in Table 5.
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Table 5. Collective evaluation matrix.

Alternatives C1 C2 C3 C4 C5 C6

A1 (0.3331,0.8082) (0.6512,0.4677) (0.6660,0.4425) (0.2747,0.8461) (0.7904,0.3133) (0.5221,0.5811)
A2 (0.3692,0.7456) (0.4985,0.6341) (0.3893,0.7155) (0.6888,0.4143) (0.5883,0.5149) (0.4665,0.6449)
A3 (0.7225,0.3801) (0.7690,0.3396) (0.5221,0.5811) (0.3893,0.7155) (0.6271,0.6421) (0.7225,0.3801)
A4 (0.6660,0.4425) (0.7415,0.3869) (0.3116,0.8097) (0.6220,0.4807) (0.6220,0.4807) (0.6926,0.4264)

Step 4: Determine the weights of the criteria.
Step 4.1: Because the subjective weights of criteria were determined in the literature [16], we adopt

the subjective weight vector of criteria as λS = (0.180, 0.090, 0.130, 0.130, 0.310, 0.160)T .
Step 4.2: Based on the collective evaluation matrix Q, we can construct the programming

model, i.e., Equation (26); then, the objective weight vector of criteria can be determined as
λO = (0.201, 0.160, 0.150, 0.182, 0.151, 0.156)T .

Step 4.3: Set the importance coefficient of subjective weights to ϕ = 0.5; we can obtain the
comprehensive weights of criteria as λ = (0.191, 0.125, 0.140, 0.156, 0.230, 0.158)T .

Step 5: Rank the green suppliers using the TODIM method under a q-ROF environment (θ = 1).
Step 5.1: Utilize Equation (31) to compute the relative weight λjr of criteria Cj concerning the

reference criteria Cr as:

λ1r = 0.8304, λ2r = 0.5435, λ3r = 0.6087, λ4r = 0.6783, λ5r = 1.0000, λ6r = 0.6870.

Step 5.2: Compute the dominance degree of green supplier Ai over each green supplier:

δ =


0 −1.5220 −4.0821 −4.2886

−3.7277 0 −4.7679 −4.0119
−1.3699 −1.2635 0 −1.5385
−0.6062 −0.7501 −2.5158 0

.

Step 5.3: Compute the global value of green supplier Ai by Equation (34):

Φ(A1) = 0.3028, Φ(A2) = 0, Φ(A3) = 0.9653, Φ(A4) = 1.

Step 5.4: Based on the global values of green suppliers, the ranking of potential green suppliers
can be determined as A4 > A3 > A1 > A2. The green supplier A4 is the best choice for the electric
automobile company.

5.2. Comparison and Sensitivity Analysis

To investigate the influence of the consensus-reaching process on the ranking result and further
verify the effectiveness of the proposed approach, we compared the ranking result of the green
suppliers in Section 5.1 with the results that were obtained by the proposed approach without the
consensus-reaching process, the green supplier selection approach based on the intuitionistic fuzzy
TOPSIS (IF-TOPSIS) method [16], and the green supplier selection approach based on the fuzzy TODIM
method [75]. The ranking results of the three green supplier selection approaches are shown in Figure 3;
the detailed computation procedures of the proposed approach without consensus-reaching process,
IF-TOPSIS method, and fuzzy TODIM method are presented in Appendices A–C, respectively.

The inconsistent ranking results between the proposed approach and the proposed approach
without consensus-reaching process, i.e., the different ranking orders of green suppliers A3 and A4,
can be explained by ignoring the consensus level of q-ROF evaluation information of decision makers.
For instance, the linguistic term of decision maker D1 for green supplier A3 with respect to criteria
C5 was extremely low (EL); by contrast, the linguistic evaluation information of decision makers D2

and D3 for green supplier A3 with respect to criteria C5 were both extremely high (EH). Similarly,
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the linguistic terms of decision makers D1 and D2 for green supplier A4 concerning criteria C6 were
both high (H); however, the linguistic evaluation information of decision maker D3 for green supplier
A4 concerning criteria C6 was EL. The aforementioned non-consensus evaluation information led to
a change in the ranking orders of green suppliers A3 and A4 without a consensus-reaching process.
In the procedures of the proposed approach, an iteration-based consensus model under a q-ROF
environment was utilized to revise this non-consensus evaluation information until an acceptable
consensus level between decision makers was achieved. Thus, we can obtain the ranking of green
suppliers that was accepted by decision makers or enterprise; furthermore, the possible extreme
evaluation information of individual decision maker was also revised to avoid affecting the accuracy
of ranking result.
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A notable difference existed between the rankings of the proposed method and IF-TOPSIS method.
With the exception of ignoring the consensus problem between decision makers, the inconsistent
result was caused by several other reasons. First, the evaluation information was represented by the
q-ROFS in the proposed method, which is a generalized form of IFS that is used in the IF-TOPSIS
method. Different basic data of green suppliers will lead to different result by aggregation tools.
Second, combined with the q-ROFPWA operator, the decision maker weights were obtained by the
subjective weights and support degrees between the evaluation information in the proposed approach;
nevertheless, the determination of decision maker weights was omitted in the IF-TOPSIS method.
Third, instead of the TOPSIS method, we utilized the q-ROF-TODIM method to determine the ranking
of green suppliers. The q-ROF-TODIM method can consider the bounded rationality behavior of
decision makers, which cannot be achieved by the TOPSIS method; consequently, the ranking result of
green suppliers may differ.

From Figure 3, we can see that the ranking orders of green suppliers A3 and A4 were different
between the rankings obtained by the proposed approach and fuzzy TODIM method. The main
reason for this result is that the consensus-reaching process was omitted in the fuzzy TODIM method;
the non-consensus evaluation information of decision makers made green supplier A3 rank first in
the ranking results determined by the proposed approach without a consensus-reaching process,
IF-TOPSIS method, and fuzzy TODIM method. Moreover, the fuzzy TODIM method utilizes the
triangular fuzzy numbers to express the evaluation information of decision makers, in which the
non-membership and indeterminacy membership levels were ignored. The weights of decision makers
in fuzzy TODIM method were assumed to be equal, which was inconsistent with the actual situation.

Furthermore, a sensitivity analysis was implemented by changing the weights of criteria as shown
in Table 6. The rankings under different situations of the proposed approach, IF-TOPSIS method, and
fuzzy TODIM method are illustrated in Figures 4–6, respectively. Example 0 showed the weights of
criteria that were determined by the proposed method, and Examples 1~7 showed the other possible
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weight values. From Table 6 and Figure 4, we can see that when the weight values of criteria C4

and C5 were relatively large, the best green supplier changed from A4 to A3, which means that the
criteria weights play a crucial role in determining the ranking of green suppliers. Therefore, we should
select the appropriate weighting method in practice. The comprehensive weighting approach in the
proposed method considered the subjective and objective factors to obtain the more accurate weights
of criteria. Once decision makers were confident for the evaluation information of criteria weights,
the coefficient ϕ could be assigned a large value; otherwise, the coefficient ϕ could be assigned a
small value. On the other hand, in addition to Examples 5 and 6, the rankings remain the same as
A4 > A3 > A1 > A2 under other situations; the proposed method is proven to be relatively insensitive
to the weights of criteria.

Table 6. Different weights of criteria in the sensitivity analysis.

Examples C1 C2 C3 C4 C5 C6

Example 0 0.191 0.125 0.140 0.156 0.230 0.158
Example 1 1/6 1/6 1/6 1/6 1/6 1/6
Example 2 0.750 0.050 0.050 0.050 0.050 0.050
Example 3 0.050 0.750 0.050 0.050 0.050 0.050
Example 4 0.050 0.050 0.750 0.050 0.050 0.050
Example 5 0.050 0.050 0.050 0.750 0.050 0.050
Example 6 0.050 0.050 0.050 0.050 0.750 0.050
Example 7 0.050 0.050 0.050 0.050 0.050 0.750
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The Spearman’s rank correlation coefficient is a powerful tool for measuring the similarity between
rankings obtained by MCGDM methods [76]. To investigate the robustness of different green supplier
selection approaches, combined with the rankings in Figures 4–6, we can calculate the Spearman’s
rank correlation coefficients between the ranking of Example 0 and the rankings of other possible
weights of criteria, respectively. Thus, the average of these Spearman’s rank correlation coefficients can
be utilized to measure the robustness of each green supplier selection approach, which are presented
in Table 7. The larger the average of Spearman’s rank correlation coefficients, which means that the
smaller the rankings change with different criteria weights, the stronger the robustness of this green
supplier selection approach and vice versa. From Table 7, we can see that the robustness levels of all
three green supplier selection approaches were relatively high, and the robustness of the proposed
method and IF-TOPSIS was is slightly stronger than that of fuzzy TODIM method.

Table 7. Average of Spearman’s rank correlation coefficients of different approaches.

Methods Average of Spearman’s Rank Correlation Coefficients

The proposed approach 0.9429
IF-TOPSIS method 0.9429

Fuzzy TODIM method 0.9143

Based on the analysis above, the advantages of determining the best green supplier by using the
proposed approach can be summarized as follows.

(1) The q-ROFS is utilized to represent the evaluation information of decision makers, which
can express the membership, non-membership, and indeterminacy membership degrees,
simultaneously. Furthermore, with the increasing rung q, the space of acceptable orthopairs of
q-ROFS is larger than IFS and PFS; as a generalized form of IFS and PFS, the proposed approach
can also be transformed into other green supplier selection approaches under an IF and PF
environment if necessary.

(2) In practice, decision makers always differentiate from research fields and domain experiences;
the non-consensus evaluation information of green suppliers will inevitably be given. Combined
with an iteration-based consensus model under q-ROF environment, the non-consensus
evaluation information of all the decision makers can be revised in each round. Therefore,
a ranking of green suppliers accepted by decision makers or enterprises can be obtained using
the proposed approach, and the efficiency of the consensus-reaching process is relatively high.
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(3) The q-ROFPWA operator is introduced to fuse the individual evaluation matrices; the weight
vectors of decision makers can be determined by two aspects, namely, the subjective aspect and
the objective aspect. Consequently, we can obtain a ranking of green suppliers that is closer to
reality. Additionally, the determination of weights of decision makers is solved, which has been
ignored by most existing approaches.

(4) The weights of criteria are determined by a comprehensive weighting approach, which is
composed of the subjective evaluation method and a deviation maximization model. Through
changing the valve of coefficient ϕ, the weights of the criteria can be determined; whether they
are closer to subjective weights or objective weights depends on the choice of the decision makers
or enterprises. Thus, the proposed approach is more able to cope with different scenarios.

(5) During the green supplier evaluation process, the bounded rationality behavior of decision
makers cannot be avoided. The TODIM method is a powerful tool to solve these MCGDM
problems; in the proposed approach, the TODIM method is extended to the q-ROF environment
to compute the ranking of green suppliers, which makes the evaluation result more realistic and
accurate. In addition, the robustness of the proposed method is relatively strong.

The proposed approach also presents several limitations. With respect to the complicated green
supplier selection issues, in which the number of evaluation criteria is relatively large; the interactions
or dependencies between the criteria will inevitably exist. These situations cannot be solved combined
with the proposed green supplier selection approach. Furthermore, decision makers may have difficulty
determining the accurate value of a membership degree or linguistic term in real life. The proposed
approach cannot deal with the issue of allowing decision makers to provide several possible values of
different membership degrees or linguistic terms, which will be the focus of future research.

6. Conclusions

To deal with the complexity of green supplier selection problems in practice, this paper proposed
a novel approach for green supplier selection under q-ROF environment. The q-ROFNs were utilized
to express the evaluation information of decision makers; the uncertainty and incompleteness of the
evaluation information were effectively addressed. Combined with the consensus measures on three
levels, a q-ROF consensus model was developed to revise the non-consensus evaluation information
of decision makers to improve the accuracy of the ranking results. To aggregate the q-ROF evaluation
information of decision makers, the q-ROFPWA operator that considers both subjective and objective
factors of decision maker weights was applied. Furthermore, a comprehensive weighting method was
constructed to determine the weights of criteria, which consisted of the subjective weighting method
and a deviation maximization model. Finally, the TODIM method under an q-ROF environment was
proposed to obtain a ranking of potential green suppliers. An example of a green supplier selection
problem in an electric automobile company was used to demonstrate the feasibility of the proposed
method; subsequently, the effectiveness of the proposed method was illustrated by the sensitivity
analysis and comparative analysis. In the case of increasingly complex green supplier selection issues,
the proposed approach can deal with several aspects effectively, such as providing a relaxed evaluation
environment for decision makers, promoting a relatively high consensus level between decision
makers, and determining the weights of decision makers comprehensively. Thus, this paper provides
a more reasonable and effective approach for enterprises to choose green suppliers in practice.

In future research, we will introduce the Choquet integral or Bonferroni mean operator to
aggregate the evaluation information, which takes into account the relationships between the
criteria. Furthermore, we can extend the proposed method into the q-rung orthopair hesitant fuzzy
environment, in which decision makers have difficulty in determining the accurate membership and
non-membership degrees.
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Appendix A

The ranking of potential green suppliers can be obtained by the proposed approach without the
consensus-reaching process as below.

Step 1: Obtain the normalized evaluation matrices of decision makers
Combined with the Steps 1.1~1.3 in Section 5.1, we can obtain the normalized q-ROF evaluation

matrix Qk =
(

ak
ij

)
4×6

.

Step 2: Aggregation of individual evaluation matrices
Steps 2.1~2.2: According to the subjective weight of decision makers w = (1/3, 1/3, 1/3)T ,

we can utilize Equations (21)~(23) to calculate the weighted support degree of ak
ij as:

T1 =


0.4667 0.4667 0.5667 0.5667 0.6333 0.6333
0.5667 0.5667 0.6333 0.6000 0.6333 0.5667
0.6333 0.6000 0.6333 0.6333 0.1333 0.6333
0.5667 0.2333 0.6000 0.6333 0.6333 0.4667

;

T2 =


0.5000 0.3667 0.5667 0.5667 0.6333 0.6000
0.6000 0.4667 0.6000 0.6333 0.6333 0.6000
0.6333 0.5667 0.6333 0.6333 0.4000 0.6333
0.6000 0.4333 0.6000 0.6333 0.6333 0.4667

;

T3 =


0.3667 0.5000 0.6000 0.6000 0.6000 0.6333
0.5667 0.5667 0.6333 0.6333 0.6000 0.5667
0.6000 0.5667 0.6000 0.6000 0.4000 0.6000
0.5667 0.4000 0.5333 0.6000 0.6000 0.2667

.

Then, the weights associated with ak
ij can be determined as:

ξ1 =


0.3385 0.3385 0.3310 0.3310 0.3356 0.3356
0.3310 0.3406 0.3356 0.3288 0.3356 0.3310
0.3356 0.3380 0.3356 0.3356 0.2881 0.3356
0.3310 0.3033 0.3380 0.3356 0.3356 0.3492

;

ξ2 =


0.3261 0.2971 0.3310 0.3310 0.3356 0.3288
0.3380 0.3188 0.3288 0.3356 0.3356 0.3380
0.3356 0.3310 0.3356 0.3356 0.3231 0.3356
0.3380 0.3116 0.3380 0.3356 0.3356 0.3188

;

ξ3 =


0.2971 0.3261 0.3380 0.3380 0.3288 0.3356
0.3310 0.3406 0.3356 0.3356 0.3288 0.3310
0.3288 0.3310 0.3288 0.3288 0.3231 0.3288
0.3310 0.3043 0.3239 0.3288 0.3288 0.3754

.

Step 2.3: Use the q-ROFPWA operator to fuse the evaluation matrix Qk to obtain the collective
evaluation matrix Q as shown in Table A1.



Symmetry 2018, 10, 687 23 of 28

Table A1. Collective evaluation matrix.

Alternatives C1 C2 C3 C4 C5 C6

A1 (0.4590,0.7352) (0.6344,0.5111) (0.6660,0.4425) (0.2747,0.8461) (0.7904,0.3133) (0.5221,0.5811)
A2 (0.3692,0.7456) (0.4985,0.6341) (0.3893,0.7155) (0.6888,0.4143) (0.5883,0.5149) (0.4665,0.6449)
A3 (0.7225,0.3801) (0.7690,0.3396) (0.5221,0.5811) (0.3893,0.7155) (0.7552,0.5600) (0.7225,0.3801)
A4 (0.6660,0.4425) (0.7177,0.4399) (0.3116,0.8097) (0.6220,0.4807) (0.6220,0.4807) (0.6747,0.4890)

Step 3: Determine the weights of criteria.
Step 3.1: We adopt the subjective weights of criteria in the literature [16] as λS =

(0.180, 0.090, 0.130, 0.130, 0.310, 0.160)T .
Step 3.2: Based on the collective evaluation matrix Q, we construct the programming

model, i.e., Equation (26), then, the objective weights of criteria can be determined as λO =

(0.187, 0.157, 0.157, 0.186, 0.152, 0.161)T .
Step 3.3: Set the importance coefficient of subjective weights ϕ = 0.5; we can obtain the

comprehensive weights of criteria as λ = (0.183, 0.124, 0.143, 0.158, 0.231, 0.161)T .
Step 4: Rank the green suppliers using the TODIM method under the q-ROF environment (θ = 1).
Step 4.1: Utilize Equation (31) to compute the relative weight λjr of criteria Cj concerning the

reference criteria Cr as:

λ1r = 0.7922, λ2r = 0.5368, λ3r = 0.6190, λ4r = 0.6840, λ5r = 1.0000, λ6r = 0.6970.

Step 4.2: Compute the dominance degree of green supplier Ai over each green supplier as:

δ =


0 −0.8829 −4.1540 −3.8594

−4.3201 0 −5.7749 −3.8519
−0.8835 −0.3974 0 −0.2696
−0.7944 −1.1371 −3.7778 0

.

Step 4.3: Compute the global value of green supplier Ai by Equation (34):

Φ(A1) = 0.4074, Φ(A2) = 0, Φ(A3) = 1, Φ(A4) = 0.6645.

Step 4.4: Based on the global values of green suppliers, the ranking of potential green suppliers
can be determined as A3 > A4 > A1 > A2. The green supplier A3 is the best choice for the electric
automobile company.

Appendix B

The ranking of potential green suppliers can be obtained by the IF-TOPSIS method [16] as below.
Step 1: According to the linguistic terms of decision makers in Table 2 and the relationships

between linguistic terms and intuitionistic fuzzy numbers in the literature [16], we transform the
linguistic terms into IF evaluation matri ces of decision makers; then, the intuitionistic fuzzy weighted
average operator [77] is utilized to fuse the individual evaluation information to determine the
collective evaluation matrix as presented in Table A2.

Table A2. Collective evaluation matrix.

Alternatives C1 C2 C3 C4 C5 C6

A1 (0.4590,0.7352) (0.6344,0.5111) (0.6660,0.4425) (0.2747,0.8461) (0.7904,0.3133) (0.5221,0.5811)
A2 (0.3692,0.7456) (0.4985,0.6341) (0.3893,0.7155) (0.6888,0.4143) (0.5883,0.5149) (0.4665,0.6449)
A3 (0.7225,0.3801) (0.7690,0.3396) (0.5221,0.5811) (0.3893,0.7155) (0.7552,0.5600) (0.7225,0.3801)
A4 (0.6660,0.4425) (0.7177,0.4399) (0.3116,0.8097) (0.6220,0.4807) (0.6220,0.4807) (0.6747,0.4890)



Symmetry 2018, 10, 687 24 of 28

Step 2: According to the type of criteria, we can obtain the IF positive ideal solution a+ and IF
negative ideal solution a− as:

a+ = ((0.2348, 0.6649), (0.7116, 0.1817), (0.3458, 0.5944), (0.6366, 0.2621), (1.0000, 0.0000), (0.6698, 0.2289)),

a− = ((1.0000, 0.0000), (0.3650, 0.5278), (1.0000, 0.0000), (0.1037, 0.8243), (0.5358, 0.4217), (0.3458, 0.5944)).

Step 3: Utilize the maximum average weighted distance method to construct a programming
model as:

max
m
∑

i=1

n
∑

j=1
λO

j d
(
aij, a−

)
s.t.

n
∑

j=1

(
λO

j

)2
= 1, 0 ≤λO

j ≤ 1.
(A1)

Then, we can use the Lagrange function to solve this model, and the objective weights of criteria
are obtained as λO = (0.253, 0.122, 0.217, 0.186, 0.117, 0.105)T .

Step 4: Set the importance coefficient of subjective weights ϕ = 0.5, combined with the
subjective weight vector of criteria λS = (0.180, 0.090, 0.130, 0.130, 0.310, 0.160)T , we can obtain
the comprehensive weights of criteria as λ = (0.217, 0.106, 0.173, 0.158, 0.213, 0.133)T . Furthermore,
the weighted IF evaluation matrix can be determined as presented in Table A3.

Table A3. Weighted IF evaluation matrix.

Alternatives C1 C2 C3 C4 C5 C6

A1 (1.0000,0.0000) (0.0756,0.8983) (0.0708,0.9139) (0.0172,0.9699) (0.2482,0.6757) (0.0744,0.9193)
A2 (0.2365,0.6907) (0.0470,0.9345) (0.1744,0.7749) (0.1478,0.8093) (0.1508,0.8320) (0.0549,0.9332)
A3 (0.0564,0.9153) (0.1235,0.8346) (0.1243,0.8612) (0.0414,0.9376) (1.0000,0.0000) (0.1370,0.8219)
A4 (0.0880,0.8933) (0.0946,0.8709) (1.0000,0.0000) (0.1246,0.8493) (0.1642,0.8024) (0.1013,0.8670)

Step 5: Utilize the following equations to calculate the distances between each green supplier and
the IF positive ideal solution a+ and IF negative ideal solution a−, respectively.

S+
i =

n

∑
j=1

(∣∣∣µij − µ+
j

∣∣∣+ ∣∣∣vij − v+j
∣∣∣), (A2)

S−i =
n

∑
j=1

(∣∣∣µij − µ−j

∣∣∣+ ∣∣∣vij − v−j
∣∣∣). (A3)

Subsequently, the relative closeness coefficient of each green supplier concerning the positive
ideal solution can be computed by:

CCi =
S−i

S−i + S+
i

. (A4)

Thus, the result can be obtained as CC1 = 0.3430, CC2 = 0.4743, CC3 = 0.5533, CC4 = 0.3520.
Step 6: According to the relative closeness coefficient value of each green supplier, we can

determine the ranking of the green supplier as A3 > A2 > A4 > A1; the green supplier A3 is the best
choice for the electric automobile company.

Appendix C

The ranking of potential green suppliers can be obtained by the fuzzy TODIM method [75]
as below.

Step 1: Because of the linguistic terms utilized in the literature [75] are divided into five grades,
we reconstruct the relationships between linguistic terms and triangular fuzzy numbers as presented
in Table A4 to implement the numerical example in this paper.
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Table A4. Linguistic terms and the corresponding triangular fuzzy numbers.

Linguistic Terms Corresponding Triangular Fuzzy Numbers

Extremely High (EH) (0.8,0.9,1.0)
Very High (VH) (0.6,0.7,0.8)

High (H) (0.5,0.6,0.7)
Medium High (MH) (0.4,0.5,0.6)

Medium (M) (0.3,0.4,0.5)
Medium Low (ML) (0.2,0.3,0.4)

Low (L) (0.1,0.2,0.3)
Very Low (VL) (0.0,0.1,0.2)

Extremely Low (EL) (0.0,0.0,0.1)

Step 2: According to Tables 2 and A4, we can transform the linguistic evaluation information of
decision makers into the corresponding triangular fuzzy numbers. The weights of decision makers are
considered equal in the literature [75]; thus, the collective evaluation matrix can be obtained as shown
in Table A5.

Table A5. Collective evaluation matrix.

Alternatives C1 C2 C3 C4 C5 C6

A1 (0.53,0.63,0.73) (0.30,0.40,0.50) (0.20,0.30,0.40) (0.03,0.10,0.20) (0.53,0.63,0.73) (0.27,0.37,0.47)
A2 (0.50,0.60,0.70) (0.20,0.30,0.40) (0.47,0.57,0.67) (0.43,0.53,0.63) (0.33,0.43,0.53) (0.20,0.30,0.40)
A3 (0.13,0.23,0.33) (0.50,0.60,0.70) (0.33,0.43,0.53) (0.13,0.23,0.33) (0.27,0.30,0.40) (0.47,0.57,0.67)
A4 (0.20,0.30,0.40) (0.37,0.43,0.53) (0.60,0.70,0.80) (0.37,0.47,0.57) (0.37,0.47,0.57) (0.33,0.40,0.50)

Step 3: To obtain a more objective comparison result, we adopt the weights of criteria in the
Section 5.1 as λ = (0.191, 0.125, 0.140, 0.156, 0.230, 0.158)T .

Step 4: Rank the green suppliers using the fuzzy TODIM method (θ = 1); similar to the improved
TODIM method in this paper, compute the relative weight λjr of criteria Cj concerning the reference
criteria Cr as

λ1r = 0.8304, λ2r = 0.5435, λ3r = 0.6087, λ4r = 0.6783, λ5r = 1.0000, λ6r = 0.6870.

Step 5: Compute the dominance degree of green supplier Ai over each green supplier:

δ =


0 −1.4414 −4.3211 −4.5594

−3.5201 0 −4.8305 −3.3162
−1.3910 −1.2951 0 −1.4217
−0.8218 −1.0348 −3.7089 0

.

Step 6: Compute the global value of green supplier Ai:

Φ(A1) = 0.3102, Φ(A2) = 0, Φ(A3) = 1, Φ(A4) = 0.8072.

Step 7: Based on the global values of green suppliers, the ranking of potential green suppliers
can be determined as A3 > A4 > A1 > A2. The green supplier A3 is the best choice for the electric
automobile company.
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