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Abstract: A proportionate-type normalized maximum correntropy criterion (PNMCC) with a
correntropy induced metric (CIM) zero attraction terms is presented, whose performance is also
discussed for identifying sparse systems. The proposed sparse algorithms utilize the advantage of
proportionate schemed adaptive filter, maximum correntropy criterion (MCC) algorithm, and zero
attraction theory. The CIM scheme is incorporated into the basic MCC to further utilize the sparsity
of inherent sparse systems, resulting in the name of the CIM-PNMCC algorithm. The derivation of
the CIM-PNMCC is given. The proposed algorithms are used for evaluating the sparse systems in a
non-Gaussian environment and the simulation results show that the expanded normalized maximum
correntropy criterion (NMCC) adaptive filter algorithms achieve better performance than those of
the squared proportionate algorithms such as proportionate normalized least mean square (PNLMS)
algorithm. The proposed algorithm can be used for estimating finite impulse response (FIR) systems
with symmetric impulse response to prevent the phase distortion in communication system.

Keywords: sparse adaptive filtering; normalized maximum correntropy criterion; PNLMS algorithm;
zero attraction algorithm; non-Gaussian noise

1. Introduction

Sparse adaptive filtering (AF) algorithms are becoming a boosted topic in recent decades and
they are discussed and used for sparse system identifications, multi-path channel estimations,
echo cancelation and underwater acoustic communications [1–6]. Additionally, the AF has been
used for improving the electrocardiogram (ECG) detection during magnetic resonance imaging
(MRI) [7]. Furthermore, most of the in-nature signals are sparse or can be regarded as sparse
such as underwater channels, a multi-path channel in complex terrain environments, echoes in a
high-definition television channel, in which only a few coefficients are dominant, while most of the
coefficients are unimportant [8–11]. In this case, the insignificant coefficients are usually inactive,
which are usually zeros or near zeros in a system. For such sparse signal processing, traditional least
mean square (LMS), and normalized LMS (NLMS) might perform poorly by considering only the
convergence, and steady-state error (SSE) since these conventional adaptive filters did not use the
prior sparse information of the sparse systems. Thus, the demand for sparse signal processing has
been becoming a hot topic. The fast convergence algorithms and sparse AF are desired in the sparse
finite impulse response (FIR) environments, resulting in the rapid development of proportionate-type
(Pt) adaptive filters, including the PNLMS algorithm [2]. The PNLMS algorithm exploits the sparsity
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characteristics in the sparse systems via proportionally assigning different gains to the magnitudes of
the estimated coefficients [2,3]. By using this technique, the convergence speed at the initial stage can
be improved. However, the PNLMS’s convergence speed may be slower than the traditional NLMS
algorithm for estimating long sparse signals because the small coefficients are assigned small gains,
which increases the convergence time for achieving a steady-state mean square error (MSE) [3].
Another drawback of the typical PNLMS algorithm is that the convergence speed rate may be slower in
comparison with NLMS algorithm when the sparse systems are less sparse or dispersive. In the sequel,
several improved PNLMS algorithms have been proposed to enhance its performance [3,4,12–14].
These PNLMS algorithms with low complexity were realized by using the squared error criterion
to get optimal for processing Gaussian data. All of these PNLMS algorithms mainly update their
favored adaptive filtering coefficients, which render these PNLMS algorithms suitable for sparse signal
processing [12–15]. Moreover, the PNLMS algorithm is also an NLMS algorithm if all the coefficients
are assigned the same gains. However, the PNLMS algorithm may perform worse when the data are
non-Gaussian noises such as the low frequency atmospheric noise [16]. The PNLMS algorithm and
its variants just take the second-order statistics into consideration to construct the cost function [2–4],
which is not enough to capture all the information from the data. Therefore, the performance of these
PNLMS algorithms will be poor if they are used in the non-Gaussian environments.

With the on-going AF algorithms, a minimum error entropy (MEE) was reported within
information theoretic learning framework for handling the non-Gaussian signals [16–23]. In the
information theoretic learning, a quadratic Renyi’s entropy has been used for data classification,
channel modeling and data fusion [24–26] and it is used to provide an alternative method instead
of MSE [16]. As a result, the entropy can access the samples well by using a non-parametric Parzen
window method. Then, the MEE adaptive filters were used for identifying systems, which can obtain
a better estimating performance in non-Gaussian environments [23]. This is because the entropy
employs a high-order statistic and utilizes the contents of the information instead of the power of the
signal power. After that, the proportionate MEE (PNMEE) algorithm is proposed to utilize the sparse
property in nature systems [16]. However, the PMEE algorithm has a high computational burden,
which makes it not good for practical engineering applications. To reduce the computational burden,
the maximum correntropy criterion (MCC) was developed using a similarity function to act as a
novel cost function [27]. Finally, the MCC has a comparable complexity compared with the basic LMS
algorithm, while it can provide a robustness-like performance as that of the MEE algorithm. Thereby,
the MCC algorithm is a proper selective method for practical engineering applications in non-Gaussian
environments. However, the MCC does not use the sparse-structure information in the existing
sparse system. Although a Pt technique was integrated into the normalized MCC (NMCC) to form a
proportionate NMCC (PNMCC) algorithm to handle the sparse signals, the PNMCC’s convergence
becomes slow after the early iterations and the PNMCC cannot fully use the sparse information of the
natural sparse signals.

An improved proportionate normalized MCC (PNMCC) and a correntropy induced metric
(CIM) penalized PNMCC (CIM-PNMCC) are considered for fully taking use of the inherent sparsity
characteristics in the sparse systems. The developed PNMCC algorithm is realized by incorporating
the proportionate-type technique, the normalization method and a generalized Gaussian density
function (GGDF) into the MCC algorithm, while the CIM-PNMCC algorithm is implemented by means
of the CIM theory which is integrated into the newly presented PNMCC algorithm to form an amazing
zero attractor. The proposed PNMCC and the CIM-PMCC algorithms are mathematically given in
detail and they are used for estimating sparse systems. These two algorithms perform better for
identifying the sparse systems in non-Gaussian noises compared with the PNLMS algorithm.

The paper is well constructed as follows. We review the MCC and zero attraction methods in
Section 2. In Section 3, the PNMCC and CIM-PNMCC algorithms will be proposed. The performance for
sparse system identification of the developed algorithms is discussed in Section 4. Finally, we give a
short summary of this paper.
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Notations:
‖·‖ l2-norm
(·)T Transpose operation for a matrix or a vector
x with bold front Vector or Matrix

2. Review of the MCC and Zero-Attraction (ZA) Technique

2.1. Conventional MCC

We consider a sparse system identification within the MCC framework shown in Figure 1.
From Figure 1, we can see that the MCC-based adaptive filtering is to mimic the entropy error
e(n) that is a difference between output y(n) and desired signal d(n) under non-Gaussian noise v(n).
As we know, the entropy is to quantify the uncertainty with designated random variables, and, hence,
the minimized errors are concentrated. Herein, we discuss the MCC algorithm based on a linear
system given in Figure 1. From the system identification theory, d(n) is depicted by:

d(n) = xT(n)wo(n) + v(n), (1)

where x(n) = [x(n), x(n− 1), · · · , x(n− N − 1)]T represents an input vector, wo(n) =

[w0, w1, · · · , wN−1]
T denotes an unknown system which is an FIR channel, T is the transpose operation,

v(n) denotes noise or interference signal which is non-Gaussian. Here, the memory size of the channel
is N. In the AF framework, the estimated output is y(n) = xT(n)w̃(n), and, hence, e(n) is given by:

e(n) = d(n)− y(n). (2)

w̃(n) represents the estimated system. The MCC algorithm is to calculate the equation [23,27]:

min 1
2 ‖w̃(n + 1)− w̃(n)‖2 ,

subject to ê(n) =
[

1− ξ exp
(
− e2(n)

2σ2

)]
e(n).

(3)

Herein, ê(n) = d(n)− xT(n)w̃(n + 1), ‖·‖ represents l2 norm, and we use ξ = χMCC ‖x(n)‖2.
To get the solution of Equation (3), the Lagrange multiplier (LM) method is used in this paper.

Therefore, the MCC’s cost function is [27]:

JMCC(n) =
1
2
‖w̃(n + 1)− w̃(n)‖2 + λ

(
ê(n)−

[
1− ξ exp

(
− e2(n)

2σ2

)]
e(n)

)
, (4)

where λ denotes Lagrange multiplier. Then, we have:

∂JMCC(n)
∂w̃(n + 1)

= 0,

and
∂JMCC(n)

∂λ
= 0.

Thus, we can get the following formula:

w̃(n + 1) = w̃(n) + λx(n). (5)

Here, λ is obtained:

λ = ξ

exp
(
− e2(n)

2σ2

)
e(n)

‖x(n)‖2 . (6)
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We substitute Equation (6) into Equation (5), the updating of the MCC is [23,27]:

w̃(n + 1) = w̃(n) + χMCC exp
(
− e2(n)

2σ2

)
e(n)x(n). (7)

Input signal
Unknown 

system

Non-Gaussian noise

Adaptive 

filtering

maximum 

correntropy 

criterion

System identification

∑

∑

( )d n

+

−

( )e n

( )v n

( )y n

+
+

x(n)

Figure 1. A typical adaptive system identification scheme under the MCC method.

Compared to the basic LMS, an exponential weighting is considered and used in MCC, which is
for eliminating the large errors. The MCC algorithm is robust for dealing with impulsive noises for
system identifications.

2.2. Zero Attracting Technique

From the update equation in Equation (7), it is found that the MCC system identification method
does not consider the sparse-structure information in the sparse system wo(n). Furthermore, the
MCC-based system identification method can be written as [23,27]

w̃(n + 1) = w̃(n) + Adaption error updates. (8)

In recent years, the zero attracting methods [10,27–40] have been widely studied to use the
sparsity information in the FIR channels. These zero attracting algorithms are realized by integrating
norm penalties, such as l1-norm and reweighted l1-norm [10], into the traditional AF algorithms. Thus,
the zero attracting sparse MCC-based adaptive filters can be summarized as [10,27–40]

w̃(n + 1) =

MCC algorithm︷ ︸︸ ︷
w̃(n) + Adaptive error− update+Sparsity constraint term︸ ︷︷ ︸

Zero−attracting MCC algorithms

. (9)

In Equation (9), the sparsity penalty term is usually given by introducing different norm
penalties to utilize the prior sparse inform of these sparse systems [10,27–40]. Thus, the l1- and
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reweighted l1-norms are considered for exploiting the sparse MCCs to form ZA MCC (ZA-MCC)
and reweighting ZA-MCC (RZA-MCC) algorithms [41]. Although the sparse MCCs achieve better
estimation performance compared with the traditional MCC algorithm for identifying sparse systems,
they are still needed to be improved for practical applications. Thus, we will develop a sparse
NMCC algorithm by using the normalization method, proportionate-type method and the zero
attracting techniques.

3. Proposed Proportionate NMCC Algorithms

3.1. Proportionate NMCC (PNMCC) Algorithm

In order to get the PNMCC, we reinvestigate the MCC in the AF framework again. Here, the NMCC
is also rewritten in Equation (3). The differences between the MCC and NMCC algorithms are that we
use ξ = χ in NMCC algorithm to replace the ξ = χMCC ‖x(n)‖2 in the MCC. Similarly, the NMCC is to
implement the following updating equation:

w̃(n + 1) = w̃(n) + χ

exp
(
− e2(n)

2σ2

)
‖x(n)‖2 e(n)x(n). (10)

Then, we use a reweighting controlling matrix G(n) for reassigning different weights to the
magnitudes of the filter coefficients, where the idea is obtained from the known Pt algorithms.
Introducing G(n) into (10), we get

w̃(n + 1) = w̃(n) + χ

G(n) exp
(
− e2(n)

2σ2

)
xT(n)G(n)x(n) + ϑ

e(n)x(n). (11)

Here, ϑ > 0 represents a constant to get a stable solution. We know that a diagonal matrix G(n) is
used to give a modification of NMCC’s step size under a rule given as follows. In general, G(n) is [2–4]

G(n) = diag(g0(n), g1(n), · · · , gN−1(n)), (12)

where the individual gain gi(n) is

gi(n) =
κi(n)

N−1
∑

i=0
κi(n)

, 0 ≤ i ≤ N − 1 (13)

with
κi(n) = max[γg max[ρp, |w̃0(n)| , |w̃1(n)| , · · · , |w̃N−1(n)|], |w̃i(n)|]. (14)

Here, ρp > 0 and γg > 0 are constants, and they are usually set to be ρp = 0.01 and γg = 5/N [2].
ρp is implemented to avoid the stalling. The parameter γg is used for preventing w̃i(n) from stalling.

3.2. Proportionate NMCC with a CIM

Here, we first introduce the CIM theory [41–50]. As we know, the correntropy method is
achieved from nonlinear measurement of random similar vectors g = [ g1 g2 · · · gN ]T and
f = [ f1 f2 · · · fN ]T , which are in kernel space. Thus, we have

L(g, f) = E[κ(g, f)] =
∫

κ(g, f)dFg f (g, f ), (15)
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where κ(g, f) represents the shift-invariant Mercer kernel, and Fg f (g, f ) represents the joint distribution
of g and f, and E[x] is the expectation operation of x. In general, the distribution of the data is
usually unknown. Moreover, only a few samples of {gi, fi} are available in practice. Thus, the correntropy
can be obtained by [41–50]

L̄(g, f) =
1
N

N

∑
i=1

κ(gi, fi). (16)

According to the correntropy theory, the Gaussian kernel is a kind of typical kernel, which is
given by [41–50]

κ(g, f ) =
1

σ1
√

2π
exp

(
− e2

2σ2
1

)
, (17)

where e = g− f , and σ1 is the width of a kernel. The used correntropy has a boundary under various
distributions and it can give robustness characteristics for non-Gaussian noise, which has been used
for exploiting MCC algorithms.

Next, we give the CIM to better understand the correntropy theory. By considering g and f in a
sampling space, we can define the CIM as [41–50]

CIM(g, f) =
√
(κ(0)− L̄(g, f)), (18)

where κ(0) = 1
σ1
√

2π
. Thus, we can get

CIM2(g, 0) =
1

σ1N
√

2π

N

∑
i=1

(
1− exp

(
−

a2
i

2σ2
1

))
. (19)

It can be seen that, if |gi| > ς, ∀gi 6= 0, then, as σ1 = 0, we found that the CIM is an l0-norm
approximation, and ς > 0 is set to be a very small constant.

Finally, we propose a CIM penalized PNMCC (CIM-PNMCC) algorithm, which is realized
by introducing CIM penalty into PNMCC’s cost function to construct a sparse PNMSS with a
implementation of the CIM. We also take the gain controlling matrix into consideration to design
the desired zero-attractor. According to the zero attracting sparse AF algorithms, the developed
CIM-PNMCC is to calculate

(w̃(n + 1)− w̃(n))TG−1(n)(w̃(n + 1)− w̃(n)) + γCIMG−1(n)CIM2(w̃(n + 1), 0)

subject to ê(n) =
[

1− ξ exp
(
− e2(n)

2σ2

)]
e(n),

(20)

where G−1(n) denotes the inverse operation of G(n). γCIM > 0 is a regularization, which is a balance
between the system identification errors and CIM penalty of w̃(n + 1). Our devised CIM-PNMCC is
different from the general zero attracting since it provides a scaling by G−1(n) on the CIM penalty.

To get the minimization of (20), the LM method is employed. Therefore, the proposed
CIM-PNMCC’s cost function is

J(n + 1) = (w̃(n + 1)− w̃(n))TG−1(n)(w̃(n + 1)− w̃(n)) + γCIMG−1(n)CIM2(w̃(n + 1), 0)

+λ

(
ê(n)−

[
1− ξ exp

(
− e2(n)

2σ2

)]
e(n)

)
.

(21)

The gradients on J(n + 1) in Equation (20) by considering w̃(n + 1) and λ are given by

∂J(n + 1)
∂w̃(n + 1)

= 0 and
∂J(n + 1)

∂λ
= 0 (22)
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and

w̃(n + 1) = w̃(n) + λG(n)x(n)− γCIM
1

Nσ3
1

√
2π

w̃(n) exp

(
−‖w̃(n)‖2

2σ2
1

)
. (23)

Multiplying xT(n) on both sides of Equation (23), we get

xT(n)w̃(n + 1) =

xT(n)w̃(n) + λxT(n)G(n)x(n)− γCIMxT(n)
1

Nσ3
1

√
2π

w̃(n) exp

(
−‖w̃(n)‖2

2σ2
1

)
.

(24)

Considering Equation (22), we obtain

ê (n) =
[

1− ξ exp
(
− e2 (n)

2σ2

)]
e (n) . (25)

The Lagrange multiplier is obtained

λ =

ξ exp
(
− e2 (n)

2σ2

)
e (n) +

γCIMxT (n)
Nσ3

1

√
2π

w̃ (n) exp

(
−‖w̃ (n)‖2

2σ2
1

)
xT (n)G (n) x (n)

.
(26)

Considering Equations (26) and (23), we get

w̃(n + 1) = w̃(n) +

ξ exp
(
− e2 (n)

2σ2

)
e (n) +

γCIMxT (n)
Nσ3

1

√
2π

w̃ (n) exp

(
−‖w̃ (n)‖2

2σ2
1

)
xT (n)G (n) x (n)

G(n)x(n)

−γCIM
1

Nσ3
1

√
2π

w̃(n) exp

(
−‖w̃(n)‖2

2σ2
1

)

= w̃(n) +
ξe(n) exp

(
− e2 (n)

2σ2

)
G(n)x(n)

xT(n)G(n)x(n)

−γCIM

{
I− G(n)x(n)xT(n)

xT(n)G(n)x(n)

}
1

Nσ3
1

√
2π

w̃(n) exp

(
−‖w̃(n)‖2

2σ2
1

)
.

(27)

From the updated Equation (27), we can see that the elements in G(n)x(n)xT(n){xT(n)G(n)x(n)}−1

are very small in comparison with 1. Thus, we can ignore this term, and the proposed CIM-PNMCC’s
updating equation is

w̃(n + 1) = w̃(n) +
ξe(n) exp

(
− e2 (n)

2σ2

)
G(n)x(n)

xT(n)G(n)x(n)
− γCIM

1
Nσ3

1

√
2π

w̃(n) exp

(
−‖w̃(n)‖2

2σ2
1

)
. (28)

We introduce a step-size β and εCIM = δ2
x/N. Then, the proposed CIM-PNMCC’s updating

equation is changed to be

w̃(n + 1) =

w̃(n) + χ1

exp
(
− e2 (n)

2σ2

)
G(n)e(n)x(n)

xT(n)G(n)x(n) + εCIM
− ρCIM

1
Nσ3

1

√
2π

w̃(n) exp

(
−‖w̃(n)‖2

2σ2
1

)
,

(29)
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where χ1 = ξβ, and ρCIM = βγCIM is a regularization parameter used for controlling the zero
attracting strength. Similar to the early reported zero attracting algorithms, there is an additional

term −ρCIM
1

Nσ3
1

√
2π

w̃(n) exp

(
−‖w̃(n)‖2

2σ2
1

)
in the CIM-PNMCC algorithm, which is called a CIM

zero-attractor. In the devised CIM-PNMCC, the constructed CIM zero-attractor attracts small
coefficients to zero with a high probability. Furthermore, our proposed CIM-PNMCC algorithm
employs a gain controlling matrix to assign a large step-size for the dominant coefficients, while the zero
attractor mainly gives a strong zero-attraction to the inactive coefficients. Therefore, our CIM-PNMCC
algorithm has the advantages of the proportionate-type algorithms, normalized adaptive filtering
algorithms and zero attraction adaptive filters.

From the derivation of the CIM-PNMCC, we can put the remarks as follows:

1. A PNMCC algorithm is devised by using a generalized Gaussian distribution function to utilize
the prior-sparse-structure information in the in-nature systems.

2. A CIM constraint is adopted and incorporated into the proposed PNMCC’s cost function to create
a modified cost function.

3. The derivation of the devised CIM-PNMCC algorithm is presented by the use of the LM method
to further take the advantages of the prior-sparse-structure information.

4. The convergence of the CIM-PNMCC is analyzed and its performance is discussed for identifying
sparse systems, which is compared with the previous MCC algorithms.

5. Our developed CIM-PNMCC outperforms the previous MCC algorithms in terms of the
convergence and MSD.

4. Convergence Analysis of the Devised CIM-PNMCC

The mean and convergence for the CIM-PNMCC is performed based on an approximation
approach. For simple description, our proposed CIM-PNMCC is rewritten as

w̃ (n + 1) = w̃ (n) +
χ1G (n) f (e (n)) e (n) x (n)
xT (n)G (n) x (n) + εCIM

+ ρCIMm (n) , (30)

where f (e (n)) = exp
(
− e2(n)

2σ2

)
and m (n) = − 1

Nσ3
1

√
2π

w̃ (n) exp
(
− ‖w̃(n)‖2

2σ2
1

)
. For simple convergence

analysis, we give some assumptions that are used frequently in [51–54].
We have the following assumptions (A): A1: x (n) with zero mean is i. i. d.
A2: v (n) is independent with x (n), and it is zero mean, and its variance is σ2

v .
A3: f (e (n)) is independent with x (n).
A4: w̃ (n) and m (n) are independent with x (n).
A5: The expectation of a ration of two random variables is equal to the ration of the expectation
of each random variable. Moreover, the expectation is existing, and E

[
xT (n)G (n) x (n) + εCIM

]
=

Nσ2
x + εCIM, and E

[(
xT (n)G (n) x (n) + εCIM

)2
]
=
(

Nσ2
x + εCIM

)2 [55].

4.1. Mean Convergence

A misalignment vector is defined by

ŵ (n) = w̃ (n)−w0 (n) . (31)
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Then, combining Equations (1), (2) and (30), we obtain

ŵ (n + 1) = ŵ (n) +
χ1G (n) f (e (n)) e (n) x (n)
xT (n)G (n) x (n) + εCIM

+ ρCIMm (n)

= ŵ (n) +
χ1G (n) f (e (n))

xT (n)G (n) x (n) + εCIM

(
xT (n)w0 (n) + v (n)− xT (n) w̃ (n)

)
x (n) + ρCIMm (n)

= ŵ (n) +
χ1G (n) f (e (n)) v (n) x (n)

xT (n)G (n) x (n) + εCIM
− χ1G (n) f (e (n)) x (n) xT (n) ŵ (n)

xT (n)G (n) x (n) + εCIM
+ ρCIMm (n)

=

[
I− χ1G (n) f (e (n)) x (n) xT (n)

xT (n)G (n) x (n) + εCIM

]
ŵ (n) +

χ1G (n) f (e (n)) v (n) x (n)
xT (n)G (n) x (n) + εCIM

+ ρCIMm (n) .

(32)

Taking the expectation on Equation (32) and using the A1, A2, A3 and A5, we get

E [ŵ (n + 1)] =

[
I −

χ1G (n)E
[

f (e (n)) x (n) xT (n)
]

E [xT (n)G (n) x (n) + εCIM]

]
E [ŵ (n)] + ρCIME [m (n)]

=

[
I − χ1G (n)R

Nσ2
x + εCIM

]
E [ŵ (n)] + ρCIME [m (n)] ,

(33)

where R = E
[

f (e (n)) x (n) xT (n)
]

represents the auto-correlation matrix. Based on the symmetric
and positive semidefinite property of the R, we have

R = QΛQT , (34)

where Λ = diag (λ1, λ2, · · · , λk) is the eigenvalue matrix. Next, premultiplying QT on both sides of
Equation (33), and considering Q unitarians, we get

ŵ′ (n + 1) =
[

I− χ1G (n)Λ

Nσ2
x + εCIM

]
ŵ′ (n) + ρCIMQTE [m (n)] , (35)

where ŵ′ (n) = QTE [ŵ (n)], and
[
I− χ1G(n)Λ

Nσ2
x+εCIM

]
represents a diagonal. E [m (n)] is bounded [41]

and every element of ŵ′ (n + 1) is independent. Hence, ŵ′ (n + 1) converges to zero if and only if
|1− χ1gkλk| < 1. As a result, our CIM-PNMCC algorithm converges only if it converges for the λmax.
Since λmax ≤ tr [R], where tr [·] is matrix trace operation, ŵ (n) converges to zero when χ1 meets

0 < χ1 <
2

tr
[

G(n)R
Nσ2

x+εCIM

] . (36)

Using A1 and A3, we have R = E [ f (e (n))] σ2
x I. Moreover, considering tr [AB] ≤ tr [A] tr [B], and

tr [G (n)] = N, we obtain

0 < χ1 <
2tr
(

Nσ2
x + εCIM

)
Nσ2

xE [ f (e (n))]
. (37)

4.2. Mean Square Convergence (MSC)

As for the MSC of our CIM-PNMCC, we give the auto-covariance of ŵ (n)

S (n) = E
[
z (n) zT (n)

]
, (38)

where
z (n) = ŵ (n)− E [ŵ (n)] . (39)
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Then, considering Equations (39), (32) and (33), we get

z (n + 1) =
[

I− χ1G (n) f (e (n)) x (n) xT (n)
xT (n)G (n) x (n) + εCIM

]
ŵ (n) +

χ1G (n) f (e (n)) v (n) x (n)
xT (n)G (n) x (n) + εCIM

+ ρCIMm (n)

−
[

I − χ1G(n)R
Nσ2

x+εCIM

]
E [ŵ (n)]− ρCIME [m (n)]

=

[
I− χ1G (n) f (e (n)) x (n) xT (n)

xT (n)G (n) x (n) + εCIM

]
z (n) +

χ1G (n) f (e (n)) v (n) x (n)
xT (n)G (n) x (n) + εCIM

+ ρCIMm (n)

−ρCIME [m (n)] + χ1

[
G (n)R

Nσ2
x + εCIM

− G (n) f (e (n)) x (n) xT (n)
xT (n)G (n) x (n) + εCIM

]
E [ŵ (n)]

= Φ (n) z (n) + χ1Y (n)E [ŵ (n)] +
χ1G (n) f (e (n)) v (n) x (n)

xT (n)G (n) x (n) + εCIM
+ ρCIMB (n) ,

(40)

where

Φ (n) =
[

I− χ1G (n) f (e (n)) x (n) xT (n)
xT (n)G (n) x (n) + εCIM

]
,

Y (n) =
[

G (n)R
Nσ2

x + εCIM
− G (n) f (e (n)) x (n) xT (n)

xT (n)G (n) x (n) + εCIM

]
,

B (n) = m (n)− E [m (n)] .

(41)

Under the assumptions 1–5, we can say that Y (n) and B (n) are both zero means. In addition, we
know that ŵ (n), x (n) and v (n) are independent with each other. Putting Equation (40) into Equation
(38), we have

S (n + 1) = E


(

Φ (n) z (n) + χ1Y (n) E [ŵ (n)] +
χ1G (n) f (e (n)) v (n) x (n)

xT (n)G (n) x (n) + εCIM
+ ρCIMB (n)

)
×(

Φ (n) z (n) + χ1Y (n)E [ŵ (n)] +
χ1G (n) f (e (n)) v (n) x (n)

xT (n)G (n) x (n) + εCIM
+ ρCIMB (n)

)T


= E

[
Φ (n) z (n) zT (n)ΦT (n)

]
+ ρCIME

[
Φ (n) z (n)BT (n)

]
+χ2

1E
[
Y (n) ϕ (n) ϕT (n)YT (n)

]
+

χ1G2 (n)E
[

f 2 (e (n))
]

σ2
x σ2

v

(Nσ2
x + εCIM)

2 + ρ2
CIME

[
B (n)BT (n)

]
+ρCIME

[
B (n) zT (n)ΦT (n)

]
,

(42)

where ϕ (n) = E [ŵ (n)]. Since the Gaussian variable with fourth-order moment is three times the
variable square [52], and we also know that S (n) is symmetric [52], we obtain

E
[
Φ (n) z (n) zT (n)ΦT (n)

]
=

[
1− 2χ1G (n)E [ f (e (n))] σ2

x
Nσ2

x + εCIM
+

2χ2
1G2 (n)E

[
f 2 (e (n))

]
σ4

x

(Nσ2
x + εCIM)

2

]
S (n)

+
χ2

1G2 (n)E
[

f 2 (e (n))
]

σ4
x

(Nσ2
x + εCIM)

2 tr [S (n)]

E
[
Y (n) ϕ (n) ϕT (n)YT (n)

]
=

G2 (n)E
[

f 2 (e (n))
]

σ4
x

(Nσ2
x + εCIM)

2

[
ϕ (n) ϕT (n) + tr

[
ϕ (n) ϕT (n)

]
IN

]
.

(43)

Moreover, using Equations (31) and (39) and B (n), we have

E
[
Φ (n) z (n)BT (n)

]
= E

[
B (n) zT (n)ΦT (n)

]
=
[
1− χ1G(n)E[ f (e(n))]σ2

x
Nσ2

x+εCIM

]
E
[
w̃ (n)BT (n)

]
. (44)



Symmetry 2018, 10, 683 11 of 20

According to Equations (42)–(44), we have

tr [S (n + 1)] =
[

1− 2χ1tr[G(n)]E[ f (e(n))]σ2
x

Nσ2
x+εCIM

+ (N + 2)
χ2

1tr[G2(n)]E[ f 2(e(n))]σ4
x

(Nσ2
x+εCIM)

2

]
tr [S (n)]

+2ρCIM

[
1− χ1tr[G(n)]E[ f (e(n))]σ2

x
Nσ2

x+εCIM
+
]

E
[
w̃ (n)BT (n)

]
+χ2

1 (N + 1)
tr[G2(n)]E[ f 2(e(n))]σ4

x

(Nσ2
x+εCIM)

2 ϕ (n) ϕT (n)

+
Nχ2

1G2(n)E[ f 2(e(n))]σ2
x σ2

v

(Nσ2
x+εCIM)

2 + ρ2
CIME

[
B (n)BT (n)

]
.

(45)

In Equation (45), ϕ (n), E [w̃ (n)], and B (n) are all bounded. Thus, E
[
w̃ (n)BT (n)

]
is converged.

Then, the CIM-PNMCC is stable when∣∣∣∣∣1− 2χ1tr [G (n)]E [ f (e (n))] σ2
x

Nσ2
x + εCIM

+ (N + 2)
χ2

1tr
[
G2 (n)

]
E
[

f 2 (e (n))
]

σ4
x

(Nσ2
x + εCIM)

2

∣∣∣∣∣ < 1. (46)

By solving the Equation (46), we can get the range of χ1

0 < χ1 <
2
(

Nσ2
x + εCIM

)
tr [G (n)]E [ f (e (n))]

(N + 2) tr [G2 (n)]E [ f 2 (e (n))] σ2
x

. (47)

5. Results and Discussions of the PNMCC and CIM-PNMCC Algorithms

We will discuss the behavior of our proposed PNMCC and CIM-PNMCC for identifying
sparse systems. Furthermore, their system identification performance is analyzed by comparing
with NMCC, MCC, RZA-MCC and ZA-MCC algorithms. Additionally, the PNLMS algorithm is also
employed for estimation performance comparison since the MCC is an LMS-like algorithm and the
PNLMS is a proportionate-typed NLMS, which is also a PNMCC-like algorithm. The MSD is employed
for evaluating the behaviors of the devised PNMCC and CIM-PNMCC algorithms, defining by

MSD(w̃(n)) = E[‖wo(n)− w̃(n)‖2]. (48)

Based on the derivation of the PNMCC and CIM-PNMCC algorithms, χ gives an important
effect on the PNMCC algorithm, while χ1 and ρCIM play important effects on the CIM-PNMCC
algorithm. Thereby, we first investigate their effects on the estimation behaviors over sparse systems
with impulsive noise. In this paper, (1− θ)N(ι1, ν2

1) + θN(ι2, ν2
2) = (0, 0.01, 0, 20, 0.05) is used for

generating the desired noise, where N(ιi, ν2
i )(i = 1, 2) are the Gaussian distributions with means of ιi

and variances of ν2
i , where θ is a mixture parameter. Herein, a sparse system with a length of N = 16

is adopted. One non-zero tap randomly distributes in the system. To investigate the effects of χ on the
PNMCC algorithm, the simulation parameters are ϑ = 0.01 and σ = 1000 with corresponding results
presented in Figure 2. The developed PNMCC converges faster when χ increases from χ = 0.3 to
χ = 1, which has a similar function in the PNLMS algorithm to implement the step-size.

Similarly, the parameter χ1 is also selected to understand the performance of the derived
CIM-PNMCC, whose performance is described in Figure 3. The CIM-PNMCC’s convergence speed
rate becomes faster when χ1 increases from 0.2 to 0.7. However, the estimation misalignment is
getting worse with an increment of χ1. Additionally, ρCIM is a zero attraction controlling parameter,
which is designed to trade off the sparsity development and estimation bias. The effects of ρCIM on the
CIM-PNMCC estimation behavior is illustrated in Figure 4. It is observed that the estimation bias of the
CIM-PNMCC is reduced as ρCIM ranges from 9× 10−4 to 5× 10−5. If ρCIM is reduced from 5× 10−5 to
5× 10−7, the estimation bias rebounds towards the opposite direction. Therefore, we should choose
proper parameter value to obtain good performance of the PNMCC and CIM-PNMCC algorithms.
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Figure 2. Effects on the PNMCC algorithm with different χ.
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Figure 3. Effects on the CIM-PNMCC algorithm with different χ1.
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Figure 4. Behaviors the CIM-PNMCC algorithm with different ρCIM.

Then, these parameters are used to obtain the convergence speed investigation of the developed
PNMCC and CIM-PNMCC algorithms. Here, χMCC = 0.0052, χNMCC = 0.085, µZA = 0.01,
µRZA = 0.015, ρZA = 3 × 10−5, ρRZA = 7 × 10−5, µPNLMS = 0.072, χ = 0.088, χ1 = 0.4,
ρCIM = 2× 10−5, where χNMCC, χMCC, µRZA, µZA, µPNLMS are step-sizes for NMCC, MCC, RZA-MCC,
ZA-MCC and PNLMS algorithms. ρRZA and ρZA are the regularization parameters for RZA-MCC and
ZA-MCC, respectively. The convergence comparisons for PNMCC and CIM-PNMCC algorithms are
given in Figure 5. From Figure 5, we observe that the PNMCC converges faster than the PNLMS and
NMCC algorithms. It is worth noting that our developed CIM-PNMCC gets the fastest convergence
speed for adaptive system identifications. The CIM-PNMCC algorithm only needs 200 iterations to
reach a steady-state MSD, while the previously reported RZA-MCC algorithm requires more than 400
iterations to get its steady-state MSD. Thereby, the CIM-PNMCC algorithm converges much quicker
than the RZA-MCC algorithm for achieving the same MSD.
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Figure 5. Convergence of the PNMCC and CIM-PNMCC algorithms.



Symmetry 2018, 10, 683 14 of 20

Next, the effects of the sparsity level are analyzed by using the non-zero coefficients K in the
FIR system. Here, we still use a 16 length sparse system that has K dominant coefficients. The simulated
parameters for the mentioned adaptive filtering algorithms are χMCC = 0.03, χNMCC = 0.4,
µZA = µRZA = 0.03, ρZA = 8 × 10−5, ρRZA = 2 × 10−4, µPNLMS = 0.27, χ = 0.24, χ1 = 0.3,
ρCIM = 5× 10−5. The estimation behavior of our developed PNMCC and CIM-PNMCC algorithms
is discussed for various K, and their estimation behaviors are given in Figures 6–9, respectively. It is
noted that our developed PNMCC achieves a little gain compared with the PNLMS because they have
comparable complexity and similar updating equation except the exponential weighting. However,
our PNMCC algorithm achieves lower steady-state bias for K = 1. As for the CIM-PNMCC, it provides
the lowest steady-state misalignment because it has a zero attraction term that can quickly force
inactive coefficients to zero. With an increase of K, the MSD floor is increased. However, our developed
CIM-PNMCC still provides the lowest steady-state misalignment, indicating that the CIM-PNMCC is
more useful. Even for K = 8, our CIM-PNMCC algorithm can still get an MSD level of 10−4, which is a
very low estimation bias. As we know, the ZA-MCC is a regular zero attraction algorithm. However,
with the increasing of K, we can see that the performance of the ZA-MCC has degraded because of its
uniform zero attraction on all the channel coefficients.
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Figure 6. Behaviors of the PNMCC and CIM-PNMCC algorithms for K = 1.
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Figure 7. Behaviors of the PNMCC and CIM-PNMCC algorithms for K = 2.
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Figure 8. Behaviors of the PNMCC and CIM-PNMCC algorithms for K = 4.
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Figure 9. Behaviors of the PNMCC and CIM-PNMCC algorithms for K = 8.

Then, we construct an example to discuss the tracking behavior of our devised PNMCC and
CIM-PNMCC algorithms. Herein, we investigate their tracking performance over network echo
channels with different sparsities, and the channel length is set to be 256. We use ζ12(wo) =

N
N−
√

N

(
1− ‖wo‖1√

N‖wo‖2

)
to measure the sparsity of the designated network echo channel [37]. A typical

network echo channel is given in Figure 10. The simulation parameters used in this experiment are
χMCC = 0.0055, χNMCC = 1.3, µZA = µRZA = 0.0055, ρZA = 4× 10−6, ρRZA = 1× 10−5, µPNLMS = 1,
χ = 0.9, χ1 = 0.8, ρCIM = 6× 10−8. The tracking behavior for ζ12(wo) = 0.8222 and ζ12(wo) = 0.7362
is illustrated in Figure 10. Our PNMCC algorithm outperforms the PNLMS, MCC and NMCC
algorithms in terms of the estimation bias for ζ12(wo) = 0.8222. However, our PNMCC algorithm
achieves the similar tracking behavior to the PNLMS algorithm because of the weighted step-size
assignment scheme. For our developed CIM-PNMCC, it possesses the fastest convergence speed and
lowest MSD for both ζ12(wo) = 0.8222 and ζ12(wo) = 0.7362. Therefore, a conclusion is given that
our developed PNMCC and CIM-PNMCC algorithms can be used to effectively handle the sparse
system identification. Furthermore, the CIM-PNMCC algorithm has little effect on the sparsity of wo

compared with the mentioned algorithms above.
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Figure 10. Tracking behaviors of the PNMCC and CIM-PNMCC algorithms for estimating an echo
channel (An example of typical echo channel is also included on the top of this figure.).

Finally, a practical speech is considered as the input signal to test the performance of the devised
CIM-PNMCC. In this experiment, the used speech signal is a 2 s real speech, which has a sampling
ratio of 8 kHz. The parameter used herein is the same as the last experiment. The speech signal,
as well as the results, are shown in Figures 11 and 12, respectively. The proposed CIM-PNMCC can
still get the best convergence speed and lower estimation error for echo cancellation applications.

According to the aforementioned discussion of the proposed PNMCC and CIM-PNMCC
algorithms, the CIM-PNMCC achieves the smallest estimation misalignment and quickest convergence
compared with the mentioned adaptive system identification algorithms. For the proposed PNMCC
algorithm, it has a similar complexity to the PNLMS, while it can provide a little better gain than
the PNLMS in impulsive noise environments. Moreover, the CIM-PNMCC performs better than the
PNMCC since it introduces a CIM zero-attractor to use the sparsity characteristics in the used systems.
This is attributed to the CIM measurement which can account for the dominant non-zero coefficients.
In addition, the CIM zero attractor forces the inactive coefficients to zero rapidly. Additionally, the
developed CIM-PNMCC algorithm has an additional regularization parameter ρCIM that is used for
controlling the zero attraction ability.
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Figure 11. Speech signal used in the experiment.
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Figure 12. Performance of the CIM-PNMCC for sparse echo response with speech input.

6. Conclusions

PNMCC and CIM-PNMCC algorithms were developed, and their behaviors were presented
and discussed for sparse system identification. The CIM-PNMCC algorithm can provide the
fastest convergence, while the PNMCC also performs better than the PNLMS algorithm. Since the
CIM-PNMCC algorithm integrates a CIM zero attraction in its iteration, its convergence is faster and
its estimation bias is smaller than the presented PNMCC algorithm. The obtained results showed
that the CIM-PNMCC is stable, and it can obtain more gains. Therefore, the proposed CIM-PNMCC
is a good candidate to consider the practical applications for sparse system identifications. For the
future work, we will develop the block sparse PNMCC algorithmbased on the block method in [56,57]
and reduce the complexity of the proposed CIM-PNMCC algorithm.
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