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Abstract: This paper focuses on estimation of a nonlinear functional of state vector (NFS) in 
discrete-time linear stochastic systems. The NFS represents a nonlinear multivariate functional of 
state variables, which can indicate useful information of a target system for control. The optimal 
mean-square estimator of a general NFS represents a function of the Kalman estimate and its error 
covariance. The polynomial functional of state vector is studied in detail. In this case an optimal 
estimation algorithm has a closed-form computational procedure. The novel mean-square 
quadratic estimator is derived. For a general NFS we propose to use the unscented transformation 
to calculate an optimal estimate. The obtained results are demonstrated on theoretical and practical 
examples with different types of NFS. Comparative analysis with suboptimal estimators for NFS is 
presented. The subsequent application of the proposed estimators to linear discrete-time systems 
demonstrates their practical effectiveness. 

Keywords: nonlinear functional; quadratic functional; mean square error; discrete-time system; 
Kalman filtering; multivariate normal distribution 

 

1. Introduction 

This paper is focused on the development of the optimal mean-square estimator for a nonlinear 
functional of state vector (NFS) in linear discrete-time stochastic systems. In this section, background 
material, a concise literature review, the formulation of the problem of interest for this study, the 
scope and the contributions of this investigation, and the organization of the paper are provided. 

1.1. Background and Significance 

Kalman filtering and its variations are well-known state estimation techniques in wide use in a 
variety of applications, such as navigation, target tracking, unmanned vehicle state estimation, 
communications engineering, air traffic control, biomedical and chemical processing, and many 
others [1–10]. 

However, some applications require the estimation of not only a state vector x ∈ ℝ  but also 
NFS, z = f(x ), which expresses practical and worthwhile information for control systems. For 
example, the Euclidean norm, f(x ) = ‖x − x ‖, represents distance between the current x  and 
nominal x  states, respectively. 
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1.2. Literature Review 

The problem of estimation of nonlinear functionals with unknown parameters and signals 
based on the minimax theory has been studied by many authors [11–14] and the references therein. 
Estimation of parameters of nonlinear functional model with known error covariance matrix is 
presented in [15]. Minimax quadratic estimate for integrated squared derivative of a periodic 
function is derived in [16]. In [17,18], the optimal matrix of a quadratic functional is determined 
based on cumulant criteria. Estimation of penalty considered as a quadratic cost functional for a 
quantum harmonic oscillator is given in [19]. Estimators for integrals of nonlinear functions of a 
probability density are developed in [20,21]. We also mention estimation of nonlinear functionals of 
spectral density, periodogram of stationary linear signals [22–24]. Some extension of these results is 
obtained by [25]. In [26] an unknown distance between a target and radar is approximated by Taylor 
polynomial to subsequent estimation of its coefficients. For algorithms and theory of estimation 
information measures representing a nonlinear functional of signals the reader is referred to [27,28]. 
However, most authors have not focused on estimation of nonlinear functionals of vector signals in 
dynamical models defined by stochastic equations. The first step in this direction is given in [29]. 
However, main results in [29] are obtained by estimation of an unknown signal with time delays 
using the robust receding horizon approach, rather than estimation of a nonlinear functional. The 
current paper focuses on the development of an analytical and computational framework for the 
optimal mean square estimation of a nonlinear functional, and the original signal is estimated by 
using the Kalman filter. 

1.3. Formulation of the Problem of Interest for this Investigation 

Consider a discrete-time linear stochastic system x = F x + G v ,			k = 0,1, … ,y = H x + w ,																							  (1) 

where	x ∈ ℝ  is a state vector, y ∈ ℝ  is a measurement vector, the system noise v ∈ ℝ  and the 
measurement noise w ∈ ℝ  are uncorrelated white Gaussian noises with zero mean and 
covariances 	Q ∈ ℝ ×  and 	R ∈ ℝ × , respectively, and F , 	G , and H  are matrices with 
compatible dimensions. The initial state, x ~ℕ(m , C ), is assumed to be Gaussian and uncorrelated 
with v  and w , and m = (x ), 	C = Cov(x , x ). 

A problem associated with the system portrayed in Equation (1) is that of estimation of the NFS: z = f(x ):		ℝ → ℝ (2) 

from the overall noisy sensor measurements Y = y ,… , y . 
1.4. Scope and Contributions of this Investigation 

The aim of this paper is to develop an optimal two-stage minimum mean square error (MMSE) 
estimator for an arbitrary NFS in a linear stochastic system, and investigate special polynomial and 
quadratic estimators for which one can obtain important mean square estimation results. The main 
contributions of the paper are the following: 

(1) This paper studies the MMSE estimation problem of an NFS within the discrete-time Kalman 
filtering framework. Using the mean square estimation approach, an optimal two-stage 
nonlinear estimator is proposed. 

(2) The optimal MMSE estimator for polynomial functionals (such as quadratic, cubic and quartic) 
is derived. We establish that the polynomial estimator representing a compact closed-form 
formula depends only on the Kalman estimate and its error covariance. 

(3) An important class of quadratic estimators is comprehensively investigated, including 
derivation of novel matrix equations for the estimated and true mean square error. 

(4) Performance of the proposed estimators for real NFS illustrates their theoretical and practical 
usefulness. 
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1.5. Organization of the Paper 

This paper is organized as follows. Section 2 presents two motivating examples. The main 
theoretical results are presented in Section 3, which is divided into four subsections: (i) main idea 
and general solution; (ii) optimal closed-form MMSE estimator for quadratic functional; (iii) optimal 
closed-form MMSE estimator for polynomial functional; and, (iv) application of the unscented 
transformation for estimation of general NFS. Simulation analysis and verification of the proposed 
estimators are given in Section 4, which is divided into four subsections: (i) estimation of distance 
between unknown and moving points; (ii) estimation of power and modulus of unknown signal; (iii) 
estimation of total kinetic energy of wind tunnel system; and, (iv) estimation of size of oil spread 
contour. In Section 5, the summary of this investigation, the conclusions drawn in this paper, and 
the future direction of research are provided. 

2. Motivating Examples 

Two examples illustrate an NFS and how it may be used in practice. The first motivating 

example of the NFS is kinematic quantities of projectile motion. State vector of an object x ∈ ℝ , an 

angle ( ) and range (r) are shown in Figure 1. f(x) = θ = tan (x / ),																														f(x) = r = x + x ,																																						f(x) = |v| = x + x , x = v , x = v . (3) 

 
Figure 1. Kinematic quantities of projectile motion. 

The second example can be an arbitrary quadratic form, f(x ) = x Ωx ,  representing an 
energy-like function of an object or the Euclidean square distance, f(x ) = d (x , x ), between the 
current x 	and nominal x  states, respectively. Mechanical examples of a quadratic form as energy 
and work are shown in Section 3.2.1. Hence, estimation and prediction of quantities represented by 
an NFS can be helpful in different applications, such as system control and target tracking. 

3. Theoretical Results: Optimal Mean Square Estimator for NFS 

3.1. Main Idea and General Solution 

The main idea of the proposed optimal estimator includes two stages: the optimal Kalman 
estimate of a state vector computed at the first stage is nonlinearly transformed at the second stage 
based on the NFS (2) and the MMSE criterion. 
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At first, according to the MMSE criterion, the optimal estimate of the state x  represents the 
conditional mean, i.e., x = x Y . The conditional mean and corresponding error covariance P = Cov(e , e ), e = x − x , are described by the recursive Kalman filter (KF) equations [2,8–10]: x = F x ,			k = 0,1, … ;		x = m ,														P = F P F + G Q G ,			P = C ,															K = P H H P H + R ,x = x + K (y − H x ),								P = (I − K H )P .																											

 (4) 

Next, the optimal mean square estimate of the NFS z = f(x ) based on the overall sensor 
measurements Y , also represents a conditional mean: z = z Y = f(x)p x Y dx, (5) 

where p x Y = ℕ(x , P ) is a multivariate conditional Gaussian probability density function. 
Thus, the best estimate in (5) represents the MMSE estimator: z = F(x , P ), (6) 

which depends on the Kalman estimate x  and its error covariance P  determined by the KF 
Equation (4). 

Remark: For the general NFS, z = f(x ), calculation of the optimal estimate, z = z Y , is 
reduced to calculation of the multivariate integral (5). The shortcoming of the proposed estimator 
can be attributed to the impossibility of analytically calculating the integrals (optimal estimate) for 
an arbitrary class of nonlinear functionals. Analytical calculation of the integrals is possible only in 
special cases which are considered in Sections 3.2.2 and 3.3. In these cases, the conditional mean z Y  can be explicitly calculated in terms of x  and P , and the best MMSE estimator (5) takes 
a closed-form. 

3.2. Optimal Closed-Form MMSE Estimator for Quadratic Functional 

Consider an arbitrary quadratic functional (QF) of a state vector x ∈ ℝ : z = f(x ) = x Ω x + a x , (7) 

where	Ω = Ω 0 and a  are an arbitrary matrix and vector, respectively. 

3.2.1. Examples of Quadratic Functional as Energy and Work 

Example 1. Work done from a moving particle 

Consider a particle with mass M and speed υ = υ(t ), which is moving along the x-axis. Let 
the particle have a velocity υ  at displacement x = x(t ).  Then current work done, z = W , 
represents a QF such as: W = 12Mυ − 12Mυ = X ΩX ,where																																																																													X = υυ ,			Ω = −M 00 M .						  (8) 

Example 2. Energy of a harmonic oscillator 

The equation of motion of a harmonic oscillator in a random environment is: Mx = −kx + ξ ,																								or																																																																						xυ = 0 1−ω 0 xυ + 01 ξ ,  (9) 
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where	υ = x ,ω = k M⁄ , M is the mass, k	is the force constant of a spring. White Gaussian noise ξ  
is added to represent the random environment. 

Let sampling period be Δt = t − t ≪ 1	so that terms of order Δt  can be ignored. Then the 
discretized model of the harmonic oscillator is approximately: X = 1 Δt−ω Δt 1 X + 01 ξ ,			X = xυ , (10) 

where ξ  represents discrete white noise. 
Then energy,	z = E , is conserved as: E = 12Mυ + 12kx = 12X ΩX , Ω = k 00 M . (11) 

Here the potential energy is U = kx 2.⁄  

3.2.2. Closed-Form Quadratic Estimator 

In the case of the QF (7) the optimal nonlinear estimate (5) can be explicitly calculated in terms 
of a state estimate x  and its error covariance P . Using the formula [30]: (x Ωx) = tr[Ω(C + mm )],m = (x),			C = Cov(x, x),						 (12) 

we obtain the optimal mean-square estimate for the QF: z = x Ω x + a x Y 																= tr Ω P + x x + a x .  
(13) 

In (12) and (13), tr(A) is the trace of a matrix A. 
In parallel to the optimal estimate (13) consider a suboptimal estimate of the QF, such as		z =f(x ): z = x Ω x + a x . (14) 

3.2.3. True Mean Square Error for Quadratic Estimators 

We compare the estimation accuracy of the optimal and suboptimal quadratic estimators (13) 
and (14), respectively. 

The following theorem defines the true mean square errors (MSEs): P , = z − z ,		P , = z − z . 
(15) 

Theorem 1. The mean square errors P ,  and P ,  for the optimal and suboptimal quadratic estimators (13) 
and (14) are given by: P , = 4tr(Ω P Ω C ) − 2tr(Ω P Ω P )																+4μ Ω P Ω μ + a P a + 4μ Ω P a ,  

(16) 

and P , = 4tr(Ω P Ω C ) − 2tr(Ω P Ω P )+4μ Ω P Ω μ + tr (Ω P )			+a P a + 4μ Ω P a ,												  

(17) 

respectively. Here the mean μ = (x ) and covariance C = Cov(x , x ) are determined by the Lyapunov 
equation: μ = F μ , k = 0,1, … ; 	μ = m = (x ),						C = F C F + G Q G , 	C = Cov(x , x ).					  

(18) 
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The proof of the theorem is given in the Appendix A. 

Corollary 1. In the particular case with = ‖ ‖ = ,  the optimal and suboptimal quadratic 
estimators and MSEs take the form: z = tr P + x x = x x + tr(P ),			z = x x ,																																																			P , = 4tr(P C ) − 2tr(P ) + 4μ P μ ,P , = 4tr(P C ) − tr(P ) + 4μ P μ .		 

(19) 

Generalization of a QF is a multivariate polynomial functional, which we consider in the next 
section. 

3.3. Optimal Closed-Form MMSE Estimator for Polynomial Functional 

Here we consider a special NFS which represents an arbitrary multivariate polynomial 
functional of an Nth degree: z = f(x ) = Aℓ ℓ …ℓ x ,ℓ x ,ℓ ⋯ x ,ℓ ,ℓ ⋯ ℓℓ , ℓ , … , ℓ = 0,1, … , N,																																												  

(20) 

where	Aℓ ℓ …ℓ  are a nonzero coefficients. 
Further for simplicity, we ignore the subscript  of x , x , x , , x ,  and P , P , . In case of the 

polynomial functional (20), the MMSE estimator, z = f(x) Y , has a closed form because the best 
estimate (conditional expectation) z = f(x) Y 																																																										= ∑ Aℓ ℓ …ℓ xℓ xℓ ⋯ xℓ Y ,ℓ ⋯ ℓ   

(21) 

depends on high-order conditional moments, mℓ ℓ …ℓ = xℓ xℓ … xℓ Y ,  of a multivariate 
Gaussian distribution, which can be explicitly calculated in terms of first- and second-order 
conditional moments, namely, the Kalman estimate and its error covariance (x, P) [31,32]. For 
example, the third- and fourth-order moments of the components x  of a state vector 	x =[x … x ] are: x Y = x ,																																																							x x Y = x x + P ,																																							x x xℓ Y = x x xℓ + x Pℓ + x Pℓ + xℓP ,x x x xℓ Y = x x x xℓ + P P ℓ + P Pℓ+PℓP + x x P ℓ + x x Pℓ + x xℓP+x x Pℓ + x xℓP + x xℓP ,															where																																																																									x = [x … x ],			P = P ,			i, j = 1,… , n.

 

(22) 

For an arbitrary NFS,	z = f(x ), we can use a truncated Taylor series. Then an optimal estimate 
of NFS can be approximately evaluated using the analytical Equation (22) for high-order moments. 
Also, to avoid complicated calculations of the multivariate integral in (5) it is useful to apply the 
unscented transformation. 

3.4. Application of Unscented Transformation for Estimation of General NFS 

The unscented transformation (UT) approximates the statistics of a transformed random 
variable, for example, the mean and covariance [33]. Following this approach, the procedure to 
calculate the best estimate of an NFS, z = f(x )|Y ,	using the UT can be summarized as follows: z z = ∑ ω( )f X( )   

(23) 
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where the sigma points X( ) and corresponding weights ω( ) are determined by: X( ) = x , 		X( ) = x + (n + ℓ)P ,								X( ) = x − (n + ℓ)P , 	ω( ) = ℓn + ℓ ,ω( ) = ω( ) = 12(n + ℓ) ,			s = 1,… , n.										 
(24) 

Here P  is the sth column of the matrix square root of P , and ℓ is the scaling parameter 
[34]. Thus, the UT estimate z  is represented by known functional of the Kalman estimate x  and 
error covariance P . 
4. Numerical Verification 

In this section, demonstrative examples are used for testing the effectiveness of the MMSE 
estimators developed in this paper. 

4.1. Estimation of Distance between Unknown and Moving Points 

If θ is a scalar unknown which is measured in the presence of additive white noise then: x = x ,			k = 0,1, …,			x ≡ θ~ℕ(θ, σ ),y = x + w ,			w ~ℕ(0, r).																			  
(25) 

The KF Equation (4) becomes: x = x + K (y − x ),			x = θ,						P = P ,			K = P (r + P )⁄ , P = σ ,P = (1 − K )P ,			k = 0,1, …												  

(26) 

Using “step-by-step” induction, we obtain an exact formula for the error covariance P =[(θ − x ) ]: P = rσr + kσ ,			k = 0,1, …		. (27) 

Further, we consider an NFS representing distance between two points. In this case an NFS 
becomes z = |θ − a |. Using (5), the best estimate of the distance between an unknown point 
(location) θ and the moving point a , k = 1,2, …, is: z = |θ − a |ℕ(x , P )dθ = exp − 					+x 1 − 2Φ − + a 2Φ − 1 ,   

(20) 

where x  and P  are determined by (26) and (27), respectively, and Φ(u)  is the Gaussian 
cumulative distribution function: Φ(u) = √ e / dt.  

(29) 

4.2. Estimation of Power and Modulus of Unknown Signal 

If x  is a scalar random signal measured in additive white noise then the system model is x = ax + v ,			x ~ℕ(m , σ ),y = x + w ,			k = 1,2, …,				  
(30) 

where v ~ℕ(0, q),	and w ~ℕ(0, r) are the uncorrelated white Gaussian noises, and a ∈ (0; 1). 
The KF Equation (4) gives the following: 
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x = ax + K (y − ax ),			x = m ,P = a P + q,			K = P(r + P ),			P = σ ,P = (1 − K )P ,			k = 0,1, …		.														  

(31) 

Further, we consider two specific nonlinear functionals of the scalar signal x . They represent 
power and modulus of the signal. 

4.2.1. Estimation of Power of Signal 

In this case an NFS represents quadratic functional, z = f(x ) = x . Using Equation (13) we 
obtain the optimal MMSE estimate of power of the signal, z = x + P . In addition to the optimal 
estimate consider a simple suboptimal estimate of the power, such as z = f(x ) = x . 

We can compare the estimation accuracy of the optimal and suboptimal estimates. Using 
Theorem 1 with Formulas (16)–(18) we derive the precise formulas for the true MSEs of these 
estimates, P = [(z − z ) ] and P = [(z − z ) ],	respectively:  P = [(x − x − P ) ] = 4P C − 2P + 4μ P ,P = [(x − x ) ] = 4P C − P + 4μ P .											 (32) 

Here the mean μ  and covariance C  of the signal x  are determined by the Lyapunov 
Equation (18): μ = aμ ,				C = a C + q. (33) 

The analytical solution of the Lyapunov equations is: μ = a m ,			C = a σ + q∑ a ,			k = 1,2, …  (34) 

Thus, the KF Equation (31) with Formulas (32)–(34) completely establish the true MSEs for the 
optimal and suboptimal estimates, z = x + P , and z = x , respectively. The difference between P  and P  is equal to P − P = P .	Figures 2 and 3 show the MSEs and the relative error Δ = P − P /P 100%	 for the values a = 0.9, q = 0.05,m = 0, σ = 4,  and r = 1, 
respectively. From Figure 3 we observe that the relative error Δ (%)	varies from 3% to 6% within the 
time zone k 11, and then increases. In a steady-state regime,	k 40, the relative error reaches the 
value ∆ = 18.3%,	and at the same time zone the absolute values of the MSEs are equal to P =0.1087 and P = 0.1286. Thus, the numerical results show that the suboptimal estimate z = x  
may be significantly worse than the optimal one	z = P + x . 

 
Figure 2. Optimal and suboptimal MSEs for power of signal z = x . 
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Figure 3. Relative error for power of signal z = x . 

4.2.2. Estimation of Modulus of Signal 

Based on Equation (28), the best estimate of an unknown modulus z = f(x ) = |x |	takes the form: z = exp − + x 1 − 2Φ − .  
(35) 

In contrast to the optimal estimate (35) we can consider a simple suboptimal estimate: z = f(x ) = |x |. (36) 

To study the behavior of the true MSEs, P = [(z − z ) ] and P = [(z − z ) ],	set a =0.99, q = 1, r = 0.5, and x ~ℕ(1; 4). To compare the MSEs, a Monte-Carlo simulation with 1000 
runs was used. As shown in Figure 4, the optimal estimate z  demonstrates an improvement over 
the suboptimal estimate z . 

 
Figure 4. MSEs of estimates for modulus function z = |x |. 

4.3. Numerical Example of QF: Wind Tunnel System 

Following is a comparative experimental analysis of the optimal and suboptimal quadratic 
estimators considered in an example of total kinetic energy of the wind tunnel system. 

A discrete-time high-speed closed-air unit wind tunnel model is given in [35]: 

x = 0.9032 0 00 0.6245 0.07010 −2.5247 −0.0488 x + v . (37) 

The state vector x ∈ ℝ  consists of the state variables x , , 	x ,  and x , ,  representing 
derivatives from a chosen equilibrium point of the following quantities: x =Mach number, x =actuator position guide vane angle in a driving fan, and x =actuator rate. The initial mean and 
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covariance are m = [3	28	10] 	and C = diag[1	1	0], the sampling period of Δt = 0.01, and v ∈ℝ  is white Gaussian noise, v ~ℕ(0, Q), Q= diag[0.01 0.01 0.01 ]. 
Two sensory measurement model is given by: y = 1 0 00 0 1 x + w , 		w ~ℕ(0, R),R = diag[0.5 0.5].																																		  

(38) 

The total kinetic energy of an actuator represented by the QF, z = x Ωx , can be expressed as 
the sum of the translational kinetic energy of the center of mass, E = Mυ 2,⁄  and the rotational 
kinetic energy about the center of mass, E = ω 2,⁄  where  is rotational inertia, ω = x ,  is 
angular velocity, M is mass and υ = x ,  is linear velocity. 

Applying finite difference approximation for the velocity, ω x , − x , , ∆t⁄ , the total 
kinetic energy can be expressed in the following QF (see Section 3.2.2): z = E + E = 12 x , + 12Mx , = 12X ΩX ,

X = x ,x ,x ,x , ,			Ω = 00 0
00 0 00 0

M0 0 ,									  

(39) 

where	X ∈ ℝ  is extended state vector, and	 = 0.136	kgm ,M = 7.39	kg. 
Using the obtained results of Equations (13) and (14) the optimal and suboptimal quadratic 

estimators take the form: z = tr Ω P + X X ,			z = X ΩX , (40) 

respectively. The estimate of the state X ∈ ℝ  and error covariance P ∈ ℝ ×  are determined by 
the KF Equation (4). 

Our point of interest is the behavior of MSEs of the estimators (40). Using Theorem 1, the MSEs 
are given by P , = 4tr(ΩP ΩC ) − 2tr(ΩP ΩP ) + 4μ ΩP Ωμ ,P , = P , + tr (ΩP ),																																																			  

(41) 

respectively. Here the mean μ  and covariance C  of the state vector X  satisfy the Lyapunov 
Equation (18). 

We observe in Figure 5 that the difference between absolute values of the MSEs P  and P  
is very small; for example, P 0.938 and P 0.884 at k 10. However, the relative error 
exceeds 6% at the same time zone, Δ (%) 6.2%	. For this reason we conclude that the suboptimal 
estimator is not suitable for evaluation of the kinetic energy of the wind tunnel system. 
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Figure 5. Comparison of MSEs of total kinetic energy z  using optimal and suboptimal estimators. 

4.4. Numerical Example of General NFS: Motion of Unmanned Marine Probe 

A comparative experimental analysis of the proposed estimators is considered for the motion of 
an unmanned marine probe (UMP). In a marine inspection environment, an UMP system is often 
considered because of their benefits of convenience and human safety. 

Assume a scenario in which the UMP detected an oil-tanker accident, from which oil has spread 
on the surface of the water without the influence of wind. As an initial action, the UMP estimates the 
length of a contour of the oil spread (Figure 6). 

To control the size of the surface, the UMP must compute the distance from the oil-tanker d =d 	at every time instance represented by the NFS: d = f(x ) = x , + x , / , (42) 

where	x , 	and	x ,  are coordinates of UMP. 
Here, we verify the proposed estimators using a discretization of a continuous-time model of 

the UMP [36]: x , = x , − 2x , + v , ,			t ∈ [0; 3],x , = x , − x , + v , ,																							 (43) 

where v ,  and v ,  are uncorrelated white Gaussian noises with intensities q = q =0.1;	x , ~ℕ(20; 0.2), and x , ~ℕ(0; 0.2). 
(x1,t2

, x2,t2
)

(x1,t1
, x2,t1

)

dt1

dt2

 
Figure 6. Estimation of size of oil spread contour. 

The UMP measures the relative coordinates x ,  and x ,  from the oil-tanker, respectively. The 
measurement model for the UMP is given by: y , = x , + w , ,y , = x , + w , , (44) 

where w , ~ℕ(0; 0.1) and w , ~ℕ(0; 0.1) are uncorrelated white Gaussian noises. 
A comparative experimental analysis of the optimal estimate d  which is based on the UT 

(23) and the suboptimal estimate, d = f(x ) = x , + x , / ,  is considered. To compare the 
MSEs P = [(d − d ) ] and P = d − d 	, a Monte-Carlo simulation with 1000 runs 
and finite-difference approximation with the step t=0.01 were performed. Figure 7 illustrates the 
time histories of the MSEs for the both estimators. It shows that the optimal estimate d  has the 
best performance due to the lowest value of the MSE, P < P . 
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Figure 7. MSEs of optimal and suboptimal estimators for oil spread contour dk. 

5. Conclusions 

In some application problems, nonlinear functional of state variables are interpreted as a cost 
function that denotes useful information of a target system for control. In order to estimate an 
arbitrary NFS, the optimal MMSE estimator is proposed. However, calculation of the optimal 
estimate z  is reduced to calculation of the multivariate integral (Equation (5)) or usage of the 
unscented transformation z . To avoid these numerical difficulties, two important classes of an 
NFS (quadratic and polynomial) are studied in detail. Analytical calculation of the integral 
(Equation (5)) in terms of the Kalman statistics (x , P ) is possible for these functionals and, as a 
result, effective closed-form quadratic and polynomial MMSE estimators are derived. 

Special attention is given for quadratic functionals. In this case, the quadratic estimator is 
comprehensively investigated, and novel compact matrix forms for the optimal estimate (Equation 
(13)) and true MSE (Theorem 1) are derived. 

In view of the importance of an NFS in practice, the proposed estimation algorithms are 
illustrated on theoretical and practical examples for a real NFS. The examples show that the optimal 
estimator yields reasonably good estimation accuracy, and we confirm that the proposed optimal 
MMSE estimator is suitable for data processing in practice although, in some situations, the 
suboptimal estimators are slightly worse (in terms of absolute MSE) than the optimal estimator 
(Sections 4.2.1 and 4.3). In such situations, we propose an additional comparison of the estimators 
through a relative error Δ (%), which exceeds 6% and demonstrates the advantage of the optimal 
estimator over the suboptimal one. 

The KF gain K  and error covariance P  may be pre-computed, since they do not depend on 
current measurements but only on the noise statistics and system matrices, which are part of the 
system model (Equation (1)). Thus, once the measurement schedule has been settled, real-time 
implementation of the MMSE estimator (Equation (6)) or (Equation (13)) requires only the 
computation of the state estimate and final estimate of the NFS. 

The optimality and statistical accuracy of the proposed estimator of NFS as well as the KF 
depends on several factors, such as quality of prior assumptions about the system model (Equation 
(1)), especially the process Q  and measurement R  noise covariances, respectively.	The quality of 
prior assumptions is an important factor that leads to the optimality of estimates. Inadequacy of 
prior information could lead to unexpected results and estimator divergence. Determination of 
suitable values for noise covariances and system matrices plays a crucial role in obtaining a 
converged estimator. Adaptive filtering is one of the powerful approaches to prevent the 
divergence problem of the filter when precise knowledge on the prior assumptions is not available 
[37,38]. Therefore, the adaptive Kalman estimate x  can be used in the proposed MMSE estimator 
(6). 
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For future work, we propose to extend the MMSE estimator for nonlinear functionals which 
depend not only on the current state x , but also on its past x , x , … , x , for example, f =∑ x Q x . 
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Appendix A 

The Proof of Theorem 1. The derivation of the optimal MSE (16) is based on the following lemma. 

Lemma A1: Let X ∈ ℝ  be a composite multivariate Gaussian vector, X = [U V W ], i.e., X~ℕ(x; μ, S), U, V,W ∈ ℝ ,μ = μμμ ,			S = S S SS S SS S S . 
(A1) 

Then the third- and fourth-order vector moments of the composite random vector X are given 
by: (i)	 (U VW) = μ μ μ + tr(S )μ +										μ S + μ S ;																													(ii)	 (U UV V) = μ μ μ μ + 2tr(S S ) +tr(S )tr(S ) + tr(S )μ μ +	tr(S )μ μ + 4μ S μ ;													(iii)	 (U VV U) = μ μ μ μ + tr(S S ) +		tr(S )tr(S ) + tr(S ) +											μ S μ + μ S μ + μ S μ +μ S μ + 2tr(S )μ μ ;															

 

(iv)	 (U VW U) = μ μ μ μ +																									tr(S )tr(S ) + tr(S S ) +		tr(S S ) + tr(S )μ μ +						tr(S )μ μ + μ S μ +										μ S μ + μ S μ + μ S μ .  

(A2) 

The derivation of the vector Formula (A2) is based on their scalar versions [31,32]: x x x = μ μ μ + μ S + μ S + μ S ;x x x xℓ = μ μ μ μℓ + S S ℓ + S Sℓ +S ℓS + μ μ S ℓ + μ μ S ℓ + μ μℓS +μ μ S ℓ + μ μℓS + μ μℓS ,																			where																																																																					μ = (x ),			S = Cov x , x ,											
 

(A3) 

and standard matrix manipulations. 
This completes the proof of Lemma A1. □ 

To derive Equation (16), for simplicity, we omit the time index . Then using Equation (7) and 
Equation (13), the error can be written as: 



Symmetry 2018, 10, 630  14 of 15 

 

e = z − z = x Ωx + a x − tr[Ω(P + xx )] −a x = x Ωx − x Ωx − tr(ΩP) + a e =									(e + x) Ω(e + x) − x Ωx − tr(ΩP) + a e =e Ωe + 2e Ωx + a e − tr(ΩP),																							where																																																																			e = x − x,			tr(Ωxx ) = x Ωx, x Ωe = e Ωx.
 

(A4) 

Next, using the unbiased and orthogonality properties of the Kalman estimate (e) = (ex ) =0, we obtain: P = (e ) = (e Ωee Ωe) + 4 (e Ωxx Ωe)+a Pa + tr (ΩP) + 4 (e Ωee Ωx) +									2 (e Ωee )a − 2tr (ΩP) + 4 (e Ωxe )a.  

(A5) 

Using Lemma A1 we can calculate high-order moments in Equation (A5). We have: (a)	 (e Ωee Ωe) = 2tr(ΩPΩP) + tr (ΩP),							U = e, V = Ωe;																																					(b)	 (e Ωxx Ωe) = tr(PΩP Ω) + μ ΩPΩμ =		tr(PΩCΩ) − tr(ΩPΩP) + μ ΩPΩμ,U = e, V = Ωx,																																					(c)		 (e Ωee Ωx) = (e Ωex Ωe) = 0,													U = e, V = Ωe,W = Ωx,																	(d)		 (e Ωee ) = 0,			U = e,			V = Ωe,			W = e,(e)		 (e Ωxe ) = μ ΩP, U = e, V = Ωx,W = e,where																																																												μ = (x) = (x),			 (Ωx) = Ωμ,																	P = Cov(e, e),			Cov(Ωe, Ωe) = ΩPΩ,								C = Cov(x, x),			P = Cov(x, x) = C − P.

 

(A6) 

Substituting Equation (A6) into Equation (A5), and after some manipulations, we obtain the 
optimal MSE (16). 

In the case of the suboptimal estimate z , the derivation of the MSE (Equation (17)) is similar. 
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