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Abstract: Neutrosophic triplet structure yields a symmetric property of truth membership on the
left, indeterminacy membership in the centre and false membership on the right, as do points of
object, centre and image of reflection. As an extension of a neutrosophic set, the Q-neutrosophic set
was introduced to handle two-dimensional uncertain and inconsistent situations. We extend the
soft expert set to generalized Q-neutrosophic soft expert set by incorporating the idea of soft expert
set to the concept of Q-neutrosophic set and attaching the parameter of fuzzy set while defining
a Q-neutrosophic soft expert set. This pattern carries the benefits of Q-neutrosophic sets and soft
sets, enabling decision makers to recognize the views of specialists with no requirement for extra
lumbering tasks, thus making it exceedingly reasonable for use in decision-making issues that include
imprecise, indeterminate and inconsistent two-dimensional data. Some essential operations namely
subset, equal, complement, union, intersection, AND and OR operations and additionally several
properties relating to the notion of generalized Q-neutrosophic soft expert set are characterized.
Finally, an algorithm on generalized Q-neutrosophic soft expert set is proposed and applied to a
real-life example to show the efficiency of this notion in handling such problems.

Keywords: algorithm; decision making; expert set; generalized neutrosophic set; neutrosophic sets;
Q-neutrosophic; soft sets.

1. Introduction

Zadeh established the concept of fuzzy set [1] as a way to handle uncertain information,
by assigning a number to each element that shows the degree of membership of the element.
Intuitionistic fuzzy set [2] is another way to handle uncertainty that assigns two numbers to each
element. These numbers show the the degree of membership and the degree of nonmembership of the
element. However, these theories fail to handle an indeterminate environment, hence Smarandache
established the idea of neutrosophy [3] as an extension of fuzzy set and intuitionistic fuzzy set to
mitigate such situations. Neutrosophic set (NS) [4] is recognized via three independent membership
functions that depict the degrees of truth (T), indeterminacy (I), and falsity (F). Soft set [5] is
another commonly used method in handling uncertainties. It has been extended extensively to
fuzzy soft set [6], vague soft set [7–9] and neutrosophic soft set [10]. Although these concepts
are widely applicable to different life branches, they lack the ability to handle two-dimensional
problems. This motivates the definition of Q-fuzzy soft set [11,12] that served the uncertainty and
two-dimensionality simultaneously. Recently, this was extended to the theory of Q-neutrosophic
soft set (Q-NSS) [13] by extending the theory of Q-fuzzy soft set to a neutrosophic set. Q-NSS is a
tri-component two-dimensional set, enabling it to address inconsistent, indeterminate and imprecise
data in which the indeterminacy is measured unequivocally and truth, indeterminacy and falsity
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memberships are independent. Relations between Q-NSSs were studied in [13] while their measures
of distance, similarity and entropy were discussed in [14].

Decision-making is an exploration point of research especially in uncertain environments.
Recently, many researchers applied neutrosophic sets to real-life decision making problems containing
uncertain, indeterminate and incompatible information [15–25].

Recently, the need for models incorporating opinions of experts and validating information
supplied by observers has been recognized. In such cases, it is pertinent to have the conclusions of
a specialist to approve the information obtained from observers before these data can be utilized to
make a decision. The lack of this feature was one of the major problems that was inherent in fuzzy
and soft sets, and their hybrid models, including Q-NSSs. The concept of soft expert sets (SESs) [26] is
the first model in literature to deal with this issue, by presenting the opinions of the experts, with no
extra task. Although SES was considered a novel idea at the time of its initiation, it does not have the
capacity to represent the uncertainty that appears in most real issues. Many generalizations of the SES
model were introduced to overcome this issue such as fuzzy soft expert sets [27], neutrosophic soft
expert sets [28], neutrosophic vague soft expert set [17], complex neutrosophic soft expert set [18],
vague soft expert sets [29–31], generalized neutrosophic soft expert set [32] and Q-neutrosophic soft
expert set (Q-NSES) [33]. Q-NSES has the capacity to handle indeterminacy and two-dimensionality
simultaneously, since it incorporates the elements of both soft expert set and Q-neutrosophic set.
The structure of this concept enables it to provide the opinions of experts to activate the data obtained
from individuals and able to present the ideas within a two-dimensional indeterminate environment
which makes it suitable to describe many real problems.

In this study, we redefine the operations of Q-NSES [33] and introduce the conception of
generalized Q-neutrosophic soft expert set (GQ-NSES) as an extension of Q-NSES by attaching the
parameterization of fuzzy sets while defining a Q-NSES. The proposed concept is more practical as it
includes uncertainty in the selection of a fuzzy set corresponding to each value of the parameter. We will
introduce some concepts related to this model along with basic operations relevant to GQ-NSESs,
namely the union, intersection and complement operations. The commutative and associative
laws of these operations will be proposed and an application of GQ-NSES in decision-making will
be illustrated.

2. Preliminaries

We review some basic ideas of soft set, neutrosophic set and Q-neutrosophic soft expert set that
are related to the study in this work.

2.1. Neutrosophic Set

In the following, we recall the notion of neutrosophic set [4] with the operations of subset,
complement, intersection and union [3].

Definition 1 (see [4]). A neutrosophic set Γ on the universe X is defined as

Γ = {〈x, (TΓ(x), IΓ(x), FΓ(x))〉 : x ∈ X}, where T, I, F : X →]−0, 1+[

and
−0 ≤ TΓ(x) + IΓ(x) + FΓ(x) ≤ 3+.

Definition 2 (see [3]). Let Γ and Ψ be two neutrosophic sets. Then, we say that Γ is a subset of Ψ denoted by
Γ ⊆ Ψ if and only if TΓ(x) ≤ TΨ(x), IΓ(x) ≥ IΨ(x) and FΓ(x) ≥ FΨ(x) for all x ∈ X.

Definition 3 (see [3]). The union of two neutrosophic sets Γ and Ψ in the universe X is denoted by Γ∪Ψ = Λ,
where

Λ = {〈x, (max{TΓ(x), TΨ(x)}, min{IΓ(x), IΨ(x)}, min{FΓ(x), FΨ(x)})〉 : x ∈ X}.
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Definition 4 (see [3]). The intersection of two neutrosophic sets Γ and Ψ in the universe X is denoted by
Γ∩Ψ = Λ, where

Λ = {〈x, (min{TΓ(x), TΨ(x)}, max{IΓ(x), IΨ(x)}, max{FΓ(x), FΨ(x)})〉 : x ∈ X}.

Definition 5 (see [3]). The complement of a neutrosophic set Γ in the universe X is denoted by Γc, where

Γc = {〈x, (1− TΓ(x), 1− IΓ(x), 1− FΓ(x))〉 : x ∈ X}.

The neutrosophic empty set Γ0 in the universe X is Γ0 = {〈x, (0, 1, 1)〉 : x ∈ X}.

2.2. Q-Neutrosophic Soft Expert Set

Abu Qamar and Hassan [13] proposed Q-neutrosophic set (Q-NS) for dealing with
two-dimensional inconsistent, indeterminate and uncertain information.

Definition 6 (see [13]). Let X be a universal set and Q be a nonempty set. A Q-neutrosophic set ΓQ in X and
Q is an object of the form

ΓQ = {
〈
(x, q), TΓQ(x, q), IΓQ(x, q), FΓQ(x, q)

〉
: x ∈ X, q ∈ Q},

where TΓQ , IΓQ , FΓQ : X×Q→]−0, 1+[ are the true membership function, indeterminacy membership function
and false membership function, respectively, with −0 ≤ TΓQ + IΓQ + FΓQ ≤ 3+.

Hassan et al. raised the notion of Q-neutrosophic soft expert [33].
Let X be a universe, Q be a nonempty set, E a set of parameters, U a set of experts (agents), and

O = {1 = agree, 0 = disagree} a set of opinions. Let Z = E×U ×O and A ⊆ Z.

Definition 7 (see [33]). A pair (Γ̂Q, A) is called a Q-NSES over X, where Γ̂Q is a mapping given by Γ̂Q :
A→ QNSES such that QNSES is the set of all QNSES over U.

In the following, we refined the basic operations of Q-NSES introduced in [33].

Definition 8. Let (Γ̂Q, A) and (Ψ̂Q, B) be two Q-NSESs over X. Then, (Γ̂Q, A) is said to be Q-NSE
subset of (Ψ̂Q, B), denoted by (Γ̂Q, A)⊆̂(Ψ̂Q, B) if A ⊆ B and TΓ̂Q(a)(x, q) ≤ TΨ̂Q(a)(x, q), IΓ̂Q(a)(x, q) ≥
IΨ̂Q(a)(x, q), FΓ̂Q(a)(x, q) ≥ FΨ̂Q(a)(x, q) ∀a ∈ A, (x, q) ∈ X×Q.

Definition 9. The complement of (Γ̂Q, A) is defined as (Γ̂Q, A)c = (Γ̂c
Q, A), where Γ̂c

Q = A→ P(X×Q) and

Γ̂c
Q =

{〈
a, TΓ̂c

Q(a)(x, q), IΓ̂c
Q(a)(x, q), FΓ̂c

Q(a)(x, q)
〉

: a ∈ A, (x, q) ∈ X×Q
}

,

such that ∀a ∈ A, (x, q) ∈ X×Q

TΓ̂c
Q(a)(x, q) = 1− TΓ̂Q

(x, q),

IΓ̂c
Q(a)(x, q) = 1− IΓ̂Q

(x, q),

FΓ̂c
Q(a)(x, q) = 1− FΓ̂Q

(x, q).

Now, we propose the union and intersection of two Q-NSESs.
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Definition 10. The union of (Γ̂Q, A) and (Ψ̂Q, B) is a Q-NSES (Υ̂Q, C), defined as (Γ̂Q, A)∪̂ (Ψ̂Q, B) =

(Υ̂Q, C), where C = A ∪ B and for all c ∈ C and (x, q) ∈ X × Q the truth, indeterminacy and falsity
memberships of (Υ̂Q, C) are as follows:

TΥ̂Q(c)(x, q) =


TΓ̂Q(c)(x, q) if c ∈ A− B,

TΨ̂Q(c)(x, q) if c ∈ B− A,

max{TΓ̂Q(c)(x, q), TΨ̂Q(c)(x, q)} if c ∈ A ∩ B,

IΥ̂Q(c)(x, q) =


IΓ̂Q(c)(x, q) if c ∈ A− B,

IΨ̂Q(c)(x, q) if c ∈ B− A,

min{IΓ̂Q(c)(x, q), IΨ̂Q(c)(x, q)} if c ∈ A ∩ B,

and

FΥ̂Q(c)(x, q) =


FΓ̂Q(c)(x, q) if c ∈ A− B,

FΨ̂Q(c)(x, q) if c ∈ B− A,

min{FΓ̂Q(c)(x, q), FΨ̂Q(c)(x, q)} if c ∈ A ∩ B.

Definition 11. The intersection of (Γ̂Q, A) and (Ψ̂Q, B) is a Q-NSES (Υ̂Q, C), defined as (Γ̂Q, A)∩̂(Ψ̂Q, B) =
(Υ̂Q, C), where C = A ∩ B and for all c ∈ C and (x, q) ∈ X × Q the truth, indeterminacy and falsity
memberships of (Υ̂Q, C) are as follows:

TΥ̂Q(c)(x, q) =min{TΓ̂Q(c)(x, q), TΨ̂Q(c)(x, q)},

IΥ̂Q(c)(x, q) =max{IΓ̂Q(c)(x, q), IΨ̂Q(c)(x, q)},

FΥ̂Q(c)(x, q) =max{FΓ̂Q(c)(x, q), FΨ̂Q(c)(x, q)}.

Definition 12. If (Γ̂Q, A) and (Ψ̂Q, B) are two Q-neutrosophic soft expert sets on X, then (Γ̂Q, A) AND
(Ψ̂Q, B) is the Q-neutrosophic soft expert set denoted by (Γ̂Q, A)∧̂(Ψ̂Q, B) and defined by (Γ̂Q, A)∧̂(Ψ̂Q, B) =
(Λ̂Q, A× B), where Λ̂Q(a, b) = Γ̂Q(a)∩̂Ψ̂Q(b) for all (a, b) ∈ A× B is the operation of intersection of two
Q-neutrosophic sets on X.

Definition 13. If (Γ̂Q, A) and (Ψ̂Q, B) are two Q-neutrosophic soft expert sets on X, then (Γ̂Q, A) OR (Ψ̂Q, B)
is the Q-neutrosophic soft expert set denoted by (Γ̂Q, A)∨̂(Ψ̂Q, B) and defined by (Γ̂Q, A)∨̂ (Ψ̂Q, B) =

(Λ̂Q, A × B), where Λ̂Q(a, b) = Γ̂Q(a)∪̂Ψ̂Q(b) for all (a, b) ∈ A × B is the operation of union of two
Q-neutrosophic sets on X.

3. Generalized Q-Neutrosophic Soft Expert Set

In this section, we propose the generalized Q-neutrosophic soft expert set (GQ-NSES) and proceed
to introduce several concepts related to this model. We will put forward the operations of union,
intersection and complement of GQ-NSESs, and proceed with the properties of the commutative and
associative laws of these operations.

We begin by proposing the definition of GQ-NSES, followed by an illustrative example.
Let X be a universe, Q be a nonempty set, E a set of parameters, U a set of experts (agents),

and O = {1 = agree, 0 = disagree} a set of opinions. Let Z = E×U ×O, A ⊆ Z and f be a fuzzy set;
that is, f : A→ [0, 1].
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Definition 14. A pair (Γ̂ f
Q, A) is called a GQ-NSES over X, where Γ̂ f

Q is a mapping given by

Γ̂ f
Q : A→ P(X×Q)× I,

where P(X × Q) denotes the power Q-neutrosophic soft expert set. For all a ∈ A, Γ̂Q is referred to as the
Q-neutrosophic expert value set of the parameter a, i.e,

Γ̂Q(a) =
{〈

(x, q), TΓ̂Q
(x, q), IΓ̂Q

(x, q), FΓ̂Q
(x, q)

〉}
presents the degree of belongingness, indeterminacy belongingness and non-belongingness of elements of X in Γ̂Q,
where ∀(x, q) ∈ X×Q, ∀a ∈ A, TΓ̂Q

, IΓ̂Q
, FΓ̂Q

representing the membership functions of truth, indeterminacy
and falsity, respectively. The values TΓ̂Q

, IΓ̂Q
, FΓ̂Q

∈ [0, 1] and

0 ≤ TΓ̂Q
(x, q) + IΓ̂Q

(x, q) + FΓ̂Q
(x, q) ≤ 3.

The GQ-NSES (Γ̂ f
Q, A) is a parametrized family of Q-neutrosophic soft expert sets on X, which has the

degree of preference of the approximate value set which represented by f (a) for each paremeter a. The GQ-NSES
can be written as:

(Γ̂ f
Q, A) =

{〈
a, (Γ̂Q(a), f (a))

〉
: a ∈ A, Γ̂Q(a) ∈ P(X×Q), f (a) ∈ [0, 1]

}
.

In short, for each parameter a, Γ̂ f
Q(a) gives not only the extent to which each element in X belongs,

indeterminacy belong or not belong to Γ̂Q but also indicates how much such belonging is preferred.

Example 1. Suppose a company wants to fill a position to be chosen by an expert committee. There are three
candidates X = {x1, x2, x3} with two types of qualifications Q = {q1 = master, q2 = doctorate} and
the hiring committee takes into consideration a set of parameters E = {e1 = computer knowledge, e2 =

experience}. Let U = {u1, u2} be the set of two committee members. Then, we can view the GQ-NSES (Γ̂ f
Q, A)

as consisting of the following collection of approximation:

(Γ̂ f
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.1, 0.2, 0.6], [(x1, q2), 0.4, 0.3, 0.7], [(x2, q1), 0.5, 0.2, 0.1],

[(x2, q2), 0.7, 0.2, 0.3], [(x3, q1), 0.8, 0.3, 0.1], [(x3, q2), 0.2, 0.3, 0.6], 0.7
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.6, 0.4, 0.2], [(x1, q2), 0.5, 0.3, 0.2], [(x2, q1), 0.5, 0.4, 0.3],

[(x2, q2), 0.9, 0.4, 0.2], [(x3, q1), 0.6, 0.8, 0.4], [(x3, q2), 0.4, 0.1, 0.5], 0.5
)〉

,〈
(e2, u1, 1),

(
[(x1, q1), 0.7, 0.2, 0.3], [(x1, q2), 0.8, 0.4, 0.6], [(x2, q1), 0.3, 0.6, 0.9],

[(x2, q2), 0.1, 0.3, 0.3], [(x3, q1), 0.4, 0.7, 0.5], [(x3, q2), 0.8, 0.7, 0.4], 0.4
)〉

〈
(e2, u2, 1),

(
[(x1, q1), 0.7, 0.6, 0.5], [(x1, q2), 0.7, 0.4, 0.1], [(x2, q1), 0.8, 0.6, 0.3],

[(x2, q2), 0.7, 0.6, 0.2], [(x3, q1), 0.3, 0.4, 0.2], [(x3, q2), 0.5, 0.3, 0.7], 0.6
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.5, 0.3], [(x1, q2), 0.8, 0.8, 0.4], [(x2, q1), 0.7, 0.1, 0.3],

[(x2, q2), 0.9, 0.7, 0.5], [(x3, q1), 0.9, 0.6, 0.5], [(x3, q2), 0.6, 0.3, 0.3], 0.8
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.2, 0.2, 0.5], [(x1, q2), 0.7, 0.4, 0.9], [(x2, q1), 0.8, 0.7, 0.5],

[(x2, q2), 0.8, 0.3, 0.3], [(x3, q1), 0.3, 0.2, 0.8], [(x3, q2), 0.5, 0.5, 0.5], 0.2
)〉

,
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〈
(e2, u1, 0),

(
[(x1, q1), 0.4, 0.8, 0.8], [(x1, q2), 0.9, 0.6, 0.6], [(x2, q1), 0.9, 0.7, 0.5],

[(x2, q2), 0.2, 0.1, 0.6], [(x3, q1), 0.4, 0.7, 0.9], [(x3, q2), 0.8, 0.2, 0.1], 0.3
)〉

,〈
(e2, u2, 0),

(
[(x1, q1), 0.9, 0.4, 0.5], [(x1, q2), 0.7, 0.1, 0.6], [(x2, q1), 0.1, 0.8, 0.4],

[(x2, q2), 0.5, 0.7, 0.8], [(x3, q1), 0.4, 0.4, 0.4], [(x3, q2), 0, 6, 0.8, 0.2], 0.3
)〉}

.

Each element of the GQ-NSES implies the opinion of each expert based on each parameter about the
candidates with their qualifications and the degree of preference of the approximate value set. For example,
[(x1, q1), 0.1, 0.2, 0.6] under the parameter (e1, u1, 1) shows the degree to which expert u1 agree that the
candidate x1 with a master qualification q1 has a computer knowledge, whereas [(x1, q1), 0.5, 0.5, 0.3] under
the parameter (e1, u1, 0) shows the degree to which expert u1 disagree that the candidate x1 with a master
qualification q1 has a computer knowledge.

Now, we present the ideas of the subset of two GQ-NSESs and the equality of two GQ-NSESs.

Definition 15. Let (Γ̂ f
Q, A) and (Ψ̂g

Q, B) be two GQ-NSESs over X. Then, (Γ̂ f
Q, A) is said to be GQ-NSE subset

of (Ψ̂g
Q, B), denoted by (Γ̂ f

Q, A) v (Ψ̂g
Q, B) if A ⊆ B and for a ∈ A, the following conditions are satisfied:

1. f (a) is a fuzzy subset of g(a), that is f (a) ≤ g(a),
2. Γ̂Q(a) is a Q-neutrosophic soft expert subset of Ψ̂Q(a), that is TΓ̂Q(a)(x, q) ≤ TΨ̂Q(a)(x, q), IΓ̂Q(a)(x, q) ≥

IΨ̂Q(a)(x, q), FΓ̂Q(a)(x, q) ≥ FΨ̂Q(a)(x, q)∀(x, q) ∈ X×Q.

Definition 16. Let (Γ̂ f
Q, A) and (Ψ̂g

Q, B) be two GQ-NSESs over X. Then, (Γ̂ f
Q, A) is said to be equal to

(Ψ̂g
Q, B), denoted by (Γ̂ f

Q, A)=̂(Ψ̂g
Q, B) if (Γ̂ f

Q, A) is a GQ-NSE subset of (Ψ̂g
Q, B) and (Ψ̂g

Q, B) is a GQ-NSE
subset of (Γ̂Q, A).

Next, we give the definitions of an agree- GQ-NSES and a disagree- GQ-NSES.

Definition 17. An agree- GQ-NSES (Γ̂ f
Q, A)1 over X is a GQ-NSES subset of (Γ̂Q, A) defined as

(Γ̂ f
Q, A)1 =

{
Γ̂ f

Q1
(a) : a ∈ E×U × {1}

}
.

Definition 18. A disagree- GQ-NSES (Γ̂ f
Q, A)0 over X is a GQ-NSES subset of (Γ̂ f

Q, A) defined as

(Γ̂ f
Q, A)0 =

{
Γ̂ f

Q0
(a) : a ∈ E×U × {1}

}
.

In the following, we discuss the operations of complement, union and intersection of GQ-NSESs.

Definition 19. The complement of (Γ̂ f
Q, A) is defined as

(Γ̂ f
Q, A)

c
= ((Γ̂ f

Q)
c
, A)

=
{〈

a, (Γ̂Q
c
(a), f c(a))

〉
: a ∈ A, Γ̂Q(a) ∈ P(X×Q), f (a) ∈ [0, 1]

}
,

where, f c(a) = 1− f (a) and Γ̂c
Q =

{〈
a, TΓ̂c

Q(a)(x, q), IΓ̂c
Q(a)(x, q), FΓ̂c

Q(a)(x, q)
〉

: a ∈ A, (x, q) ∈ X ×Q
}

,

such that ∀a ∈ A, (x, q) ∈ X×Q
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TΓ̂c
Q(a)(x, q) = 1− TΓ̂Q

(x, q),

IΓ̂c
Q(a)(x, q) = 1− IΓ̂Q

(x, q),

FΓ̂c
Q(a)(x, q) = 1− FΓ̂Q

(x, q).

Example 2. Consider the approximation given in Example 1, where

Γ̂ f
Q(e1, u1, 1) =

{(
[(x1, p), 0.1, 0.2, 0.6], [(x1, q), 0.4, 0.3, 0.7], [(x2, p), 0.5, 0.2, 0.1],

[(x2, q), 0.7, 0.2, 0.3], [(x3, p), 0.8, 0.3, 0.1], [(x3, q), 0.2, 0.3, 0.6], 0.7
)}

.

By using the GQ-NSES complement, we obtain the complement of the approximation given by

(Γ̂ f
Q)

c
(e1, u1, 1) =

{(
[(x1, p), 0.9, 0.8, 0.4], [(x1, q), 0.6, 0.7, 0.3], [(x2, p), 0.5, 0.8, 0.9],

[(x2, q), 0.3, 0.8, 0.7], [(x3, p), 0.2, 0.7, 0.9], [(x3, q), 0.8, 0.7, 0.4], 0.3
)}

.

Proposition 1. If (Γ̂ f
Q, A) is a GQ-NSES over X, then ((Γ̂ f

Q, A)c)c = (Γ̂ f
Q, A).

Proof. Suppose that (Γ̂ f
Q, A) is a GQ-NSES over X defined as (Γ̂ f

Q, A) =
{〈

a,
((

T
Γ̂ f

Q(a)
(x, q),

I
Γ̂ f

Q(a)
(x, q), F

Γ̂ f
Q(a)

(x, q)
)
, f (a)

)〉
: a ∈ A, (x, q) ∈ X × Q

}
. The complement of (Γ̂ f

Q, A) denoted by

(Γ̂ f
Q, A)c = ((Γ̂ f

Q)
c
, A) is as defined below:

(Γ̂ f
Q)

c =
{〈

a,
((

T
(Γ̂ f

Q)c(a)
(x, q), I

(Γ̂ f
Q)c(a)

(x, q), F
(Γ̂ f

Q)c(a)
(x, q)

)
, f c(a)

)〉
: a ∈ A, (x, q) ∈ X×Q

}
=
{〈

a,
((

1− T
Γ̂ f

Q(a)
(x, q), 1− I

Γ̂ f
Q(a)

(x, q), 1− F
Γ̂ f

Q(a)
(x, q)

)
, 1− f (a)

)〉
: a ∈ A, (x, q) ∈ X×Q

}
.

Thus,

((Γ̂ f
Q, A)c)c =

{〈
a,
((

(1− T
Γ̂ f

Q(a)
(x, q))c, (1− I

Γ̂ f
Q(a)

(x, q))c, (1− F
Γ̂ f

Q(a)
(x, q))c), (1− f (a)))c

)〉
: a ∈ A, (x, q) ∈ X×Q

}
=
{〈

a,
((

1− (1− T
Γ̂ f

Q(a)
(x, q)), 1− (1− I

Γ̂ f
Q(a)

(x, q)), 1− (1− F
Γ̂ f

Q(a)
(x, q))

)
, 1− (1− f (a))

)〉
: a ∈ A, (x, q) ∈ X×Q

}
=
{〈

a,
((

T
Γ̂ f

Q(a)
(x, q), I

Γ̂ f
Q(a)

(x, q), F
Γ̂ f

Q(a)
(x, q)

)
, f (a)

)〉
: a ∈ A, (x, q) ∈ X×Q

}
= (Γ̂ f

Q, A).

This completes the proof.

Now, we define the union and intersection of two GQ-NSESs.
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Definition 20. The union of (Γ̂ f
Q, A) and (Ψ̂g

Q, B) is a GQ-NSES (Υ̂h
Q, C), defined as (Γ̂ f

Q, A)
⋃̂
(Ψ̂g

Q, B) =

(Υ̂h
Q, C), where C = A ∪ B and for all c ∈ C and (x, q) ∈ X × Q the truth, indeterminacy and falsity

memberships of (Υ̂h
Q, C) are as follows:

TΥ̂h
Q(c)(x, q) =


T

Γ̂ f
Q(c)

(x, q) if c ∈ A− B,

TΨ̂g
Q(c)(x, q) if c ∈ B− A,

max{T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)(x, q)} if c ∈ A ∩ B,

IΥ̂h
Q(c)(x, q) =


I
Γ̂ f

Q(c)
(x, q) if c ∈ A− B,

IΨ̂g
Q(c)(x, q) if c ∈ B− A,

min{I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)(x, q)} if c ∈ A ∩ B,

FΥ̂h
Q(c)(x, q) =


F

Γ̂ f
Q(c)

(x, q) if c ∈ A− B,

FΨ̂g
Q(c)(x, q) if c ∈ B− A,

min{F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)(x, q)} if c ∈ A ∩ B,

and h(c) = max{ f (c), g(c) : ∀c ∈ C}.

Definition 21. The intersection of (Γ̂ f
Q, A) and (Ψ̂g

Q, B) is a GQ-NSES (Υ̂h
Q, C), defined as

(Γ̂ f
Q, A)

⋂̂
(Ψ̂g

Q, B) = (Υ̂h
Q, C), where C = A∩ B and for all c ∈ C and (x, q) ∈ X×Q the truth, indeterminacy

and falsity memberships of (Υ̂h
Q, C) are as follows:

TΥ̂h
Q(c)(x, q) =min{T

Γ̂ f
Q(c)

(x, q), TΨ̂g
Q(c)(x, q)},

IΥ̂h
Q(c)(x, q) =max{I

Γ̂ f
Q(c)

(x, q), IΨ̂g
Q(c)(x, q)},

FΥ̂h
Q(c)(x, q) =max{F

Γ̂ f
Q(c)

(x, q), FΨ̂g
Q(c)(x, q)},

and h(c) = min{ f (c), g(c) : ∀c ∈ C}.

Example 3. Assume that two GQ-NSESs (Γ̂ f
Q, A) and (Ψ̂g

Q, B) are defined as follows:

(Γ̂ f
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.2, 0.5, 0.4], [(x1, q2), 0.1, 0.3, 0.3], [(x2, q1), 0.8, 0.5, 0.5],

[(x2, q2), 0.8, 0.8, 0.2], [(x3, q1), 0.6, 0.3, 0.5], [(x3, q2), 0.4, 0.3, 0.1], 0.4
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.2, 0.4, 0.7], [(x1, q2), 0.5, 0.1, 0.2], [(x2, q1), 0.1, 0.2, 0.6],

[(x2, q2), 0.6, 0.5, 0.2], [(x3, q1), 0.6, 0.4, 0.1], [(x3, q2), 0.7, 0.2, 0.4], 0.2
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.3, 0.3, 0.3], [(x1, q2), 0.7, 0.3, 0.5], [(x2, q1), 0.5, 0.6, 0.2],

[(x2, q2), 0.7, 0.3, 0.1], [(x3, q1), 0.3, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.6], 0.5
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.4, 0.4, 0.3], [(x1, q2), 0.2, 0.3, 0.6], [(x2, q1), 0.1, 0.4, 0.5],

[(x2, q2), 0.6, 0.4, 0.2], [(x3, q1), 0.2, 0.3, 0.6], [(x3, q2), 0.2, 0.1, 0.1], 0.4
)〉}

,
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(Ψ̂g
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.4, 0.4, 0.5],

[(x2, q2), 0.6, 0.5, 0.5], [(x3, q1), 0.6, 0.6, 0.2], [(x3, q2), 0.3, 0.5, 0.5], 0.4
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.7, 0.6, 0.3], [(x1, q2), 0.6, 0.7, 0.2], [(x2, q1), 0.1, 0.5, 0.7],

[(x2, q2), 0.7, 0.5, 0.1], [(x3, q1), 0.3, 0.2, 0.3], [(x3, q2), 0.1, 0.1, 0.4], 0.3
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.7, 0.4], [(x1, q2), 0.3, 0.4, 0.1], [(x2, q1), 0.5, 0.1, 0.6],

[(x2, q2), 0.8, 0.6, 0.2], [(x3, q1), 0.7, 0.8, 0.6], [(x3, q2), 0.5, 0.8, 0.6], 0.6
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.3, 0.2, 0.7], [(x1, q2), 0.4, 0.8, 0.1], [(x2, q1), 0.1, 0.1, 0.4],

[(x2, q2), 0.8, 0.3, 0.2], [(x3, q1), 0.4, 0.1, 0.2], [(x3, q2), 0.2, 0.5, 0.3], 0.6
)〉}

.

Then,

(Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, A) =
{〈

(e1, u1, 1),
(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.8, 0.4, 0.5],

[(x2, q2), 0.8, 0.5, 0.2], [(x3, q1), 0.6, 0.3, 0.2], [(x3, q2), 0.4, 0.3, 0.1], 0.4
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.7, 0.4, 0.3], [(x1, q2), 0.6, 0.1, 0.2], [(x2, q1), 0.1, 0.2, 0.6],

[(x2, q2), 0.7, 0.5, 0.1], [(x3, q1), 0.6, 0.2, 0.1], [(x3, q2), 0.7, 0.1, 0.4], 0.3
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.3, 0.3], [(x1, q2), 0.7, 0.3, 0.1], [(x2, q1), 0.5, 0.1, 0.2],

[(x2, q2), 0.8, 0.3, 0.1], [(x3, q1), 0.7, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.6], 0.6
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.4, 0.2, 0.3], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.1, 0.1, 0.4],

[(x2, q2), 0.8, 0.3, 0.2], [(x3, q1), 0.4, 0.1, 0.2], [(x3, q2), 0.2, 0.1, 0.1], 0.6
)〉}

.

The standard commutative and associative laws relevant to the operations of union and
intersection are satisfied and stated below.

Proposition 2. Let (Γ̂ f
Q, A), (Ψ̂g

Q, B) and (Υ̂h
Q, C) be GQ-NSESs over a universe X. Then, the following

properties hold true:

(1) (Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B) = (Ψ̂g
Q, B)

⋃̂
(Γ̂ f

Q, A),

(2) (Γ̂ f
Q, A)

⋂̂
(Ψ̂g

Q, B) = (Ψ̂g
Q, B)

⋂̂
(Γ̂ f

Q, A),

(3) ((Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B))
⋃̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

⋃̂
((Ψ̂g

Q, B)
⋃̂
(Υ̂h

Q, C)),

(4) ((Γ̂ f
Q, A)

⋂̂
(Ψ̂g

Q, B))
⋂̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

⋂̂
((Ψ̂g

Q, B)
⋂̂
(Υ̂h

Q, C)).

Proof. (1) We will prove that (Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B) = (Ψ̂g
Q, B)

⋃̂
(Γ̂Q, A) by using Definition 20 and we

consider the case when c ∈ A ∩ B as the other cases are trivial:

(Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B) =
{〈

c,
((

max{T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)(x, q)}, min{I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)(x, q)},

min{F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)(x, q)}
)
, max{ f (c), g(c)}

)〉
: (x, q) ∈ X×Q

}
=
{〈

c,
((

max{TΨ̂g
Q(c)(x, q), T

Γ̂ f
Q(c)

(x, q)}, min{IΨ̂g
Q(c)(x, q), I

Γ̂ f
Q(c)

(x, q)},

min{FΨ̂g
Q(c)(x, q), F

Γ̂ f
Q(c)

(x, q)}
)
, max{g(c), f (c)}

)〉
: (x, q) ∈ X×Q

}
= (Ψ̂g

Q,B)
⋃̂
(Γ̂ f

Q, A).
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(2) The proof is similar to that of part (1).

(3) We want to prove that ((Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B))
⋃̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

⋃̂
((Ψ̂g

Q, B)
⋃̂
(Υ̂h

Q, C)) by using
Definition 20 and we consider the case when c ∈ A ∩ B as the other cases are trivial

(Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B) =
{〈

c,
((

max{T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)(x, q)}, min{I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)(x, q)},

min{F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)(x, q)}
)
, max{ f (c), g(c)}

)〉
: (x, q) ∈ X×Q

}
.

Considering the case when c ∈ C, then we have

((Γ̂ f
Q, A)

⋃̂
(Ψ̂g

Q, B))
⋃̂
(Υ̂h

Q, C)

=
{〈

c,
((

max
{

max{T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)
(x, q)}, TΥ̂h

Q(c)
(x, q)

}
,

min
{

min{I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)
(x, q)}, IΥ̂h

Q(c)
(x, q)

}
,

min
{

min{F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)
(x, q)}, FΥ̂h

Q(c)
(x, q)

})
, max

{
max{ f (c), g(c)}, h(c)

}
)
〉

:

(x, q) ∈ X×Q
}

=
{〈

c,
((

max
{

T
Γ̂ f

Q(c)
(x, q), TΨ̂g

Q(c)
(x, q), TΥ̂h

Q(c)
(x, q)

}
,

min
{

I
Γ̂ f

Q(c)
(x, q), IΨ̂g

Q(c)
(x, q), IΥ̂h

Q(c)
(x, q)

}
,

min
{

F
Γ̂ f

Q(c)
(x, q), FΨ̂g

Q(c)
(x, q), FΥ̂h

Q(c)
(x, q)

})
, max

{
f (c), g(c), h(c)

})〉
:

(x, q) ∈ X×Q
}

=
{〈

c,
((

max
{

T
Γ̂ f

Q(c)
(x, q), max{TΨ̂g

Q(c)
(x, q), TΥ̂h

Q(c)
(x, q)}

}
,

min
{

I
Γ̂ f

Q(c)
(x, q), min{IΨ̂g

Q(c)
(x, q), IΥ̂h

Q(c)
(x, q)}

}
,

min
{

F
Γ̂ f

Q(c)
(x, q), min{FΨ̂g

Q(c)
(x, q), FΥ̂h

Q(c)
(x, q)}

})
, max

{
f (c), max{g(c), h(c)}

})〉
:

(x, q) ∈ X×Q
}

= (Γ̂ f
Q,A)

⋃̂
((Ψ̂g

Q, B)
⋃̂
(Υ̂h

Q, C)).

(4) The proof is similar to that of part (3).

Next, we define AND and OR operations of GQ-NSESs.

Definition 22. If (Γ̂ f
Q, A) and (Ψ̂g

Q, B) are two generalized Q-neutrosophic soft expert sets on X, then (Γ̂ f
Q, A)

AND (Ψ̂g
Q, B) is the generalized Q-neutrosophic soft expert set denoted by (Γ̂ f

Q, A)
∧̂
(Ψ̂g

Q, B) and defined by

(Γ̂ f
Q, A)

∧̂
(Ψ̂g

Q, B) = (Λ̂h
Q, A× B), where Λ̂h

Q(a, b) = Γ̂ f
Q(a)

⋂̂
Ψ̂ f

Q(b) and the truth, indeterminacy and falsity

memberships of (Λ̂h
Q, A× B) are as follows:

TΥ̂h
Q(a,b)(x, q) =min{T

Γ̂ f
Q(a)

(x, q), TΨ̂g
Q(b)(x, q)},

IΥ̂h
Q(a,b)(x, q) =max{I

Γ̂ f
Q(a)

(x, q), IΨ̂g
Q(b)(x, q)},

FΥ̂h
Q(a,b)(x, q) =max{F

Γ̂ f
Q(a)

(x, q), FΨ̂g
Q(b)(x, q)},

and h(a, b) = min{ f (a), g(b) : ∀a ∈ A and b ∈ B}.
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Definition 23. If (Γ̂ f
Q, A) and (Ψ̂g

Q, B) are two generalized Q-neutrosophic soft expert sets on X, then (Γ̂ f
Q, A)

OR (Ψ̂g
Q, B) is the generalized Q-neutrosophic soft expert set denoted by (Γ̂ f

Q, A)
∨̂
(Ψ̂g

Q, B) and defined by

(Γ̂ f
Q, A)

∨̂
(Ψ̂g

Q, B) = (Λ̂h
Q, A × B), where Λ̂h

Q(a, b) = Γ̂ f
Q(a)

⋃̂
Ψ̂g

Q(b) and the truth, indeterminacy and

falsity memberships of (Λ̂h
Q, A× B) are as follows

TΥ̂h
Q(a,b)(x, q) =max{T

Γ̂ f
Q(a)

(x, q), TΨ̂g
Q(b)(x, q)},

IΥ̂h
Q(a,b)(x, q) =min{I

Γ̂ f
Q(a)

(x, q), IΨ̂g
Q(b)(x, q)},

FΥ̂h
Q(a,b)(x, q) =min{F

Γ̂ f
Q(a)

(x, q), FΨ̂g
Q(b)(x, q)},

and h(a, b) = max{ f (a), g(b) : ∀a ∈ A and b ∈ B}.

Example 4. Assume that two GQ-NSESs (Γ̂ f
Q, A) and (Ψ̂g

Q, B) are defined as follows:

(Γ̂ f
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.2, 0.5, 0.4], [(x1, q2), 0.1, 0.3, 0.3], [(x2, q1), 0.8, 0.5, 0.5],

[(x2, q2), 0.8, 0.8, 0.2], [(x3, q1), 0.6, 0.3, 0.5], [(x3, q2), 0.4, 0.3, 0.1], 0.4
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.3, 0.3, 0.3], [(x1, q2), 0.7, 0.3, 0.5], [(x2, q1), 0.5, 0.6, 0.2],

[(x2, q2), 0.7, 0.3, 0.1], [(x3, q1), 0.3, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.6], 0.5
)〉

,

(Ψ̂g
Q, A) =

{〈
(e1, u1, 1),

(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.4, 0.4, 0.5],

[(x2, q2), 0.6, 0.5, 0.5], [(x3, q1), 0.6, 0.6, 0.2], [(x3, q2), 0.3, 0.5, 0.5], 0.4
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.7, 0.4], [(x1, q2), 0.3, 0.4, 0.1], [(x2, q1), 0.5, 0.1, 0.6],

[(x2, q2), 0.8, 0.6, 0.2], [(x3, q1), 0.7, 0.8, 0.6], [(x3, q2), 0.5, 0.8, 0.6], 0.6
)〉

.

Then,

(Γ̂ f
Q, A)

∨̂
(Ψ̂g

Q, A) =
{〈(

(e1, u1, 1), (e1, u1, 1)
)
,
(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.4, 0.3, 0.1], [(x2, q1), 0.8, 0.4, 0.5],

[(x2, q2), 0.8, 0.5, 0.2], [(x3, q1), 0.6, 0.3, 0.2], [(x3, q2), 0.4, 0.3, 0.1], 0.4
)〉

,〈(
(e1, u1, 1), (e1, u1, 0)

)
,
(
[(x1, q1), 0.5, 0.5, 0.4], [(x1, q2), 0.3, 0.3, 0.1], [(x2, q1), 0.8, 0.1, 0.5],

[(x2, q2), 0.8, 0.6, 0.2], [(x3, q1), 0.7, 0.3, 0.5], [(x3, q2), 0.5, 0.3, 0.1], 0.4
)〉

,〈(
(e1, u1, 0), (e1, u1, 1)

)
,
(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.7, 0.3, 0.1], [(x2, q1), 0.5, 0.4, 0.2],

[(x2, q2), 0.7, 0.3, 0.1], [(x3, q1), 0.6, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.5], 0.5
)〉

,〈(
(e1, u1, 0), (e1, u1, 0)

)
,
(
[(x1, q1), 0.5, 0.3, 0.3], [(x1, q2), 0.7, 0.3, 0.1], [(x2, q1), 0.5, 0.1, 0.2],

[(x2, q2), 0.8, 0.3, 0.1], [(x3, q1), 0.7, 0.5, 0.2], [(x3, q2), 0.7, 0.5, 0.6], 0.6
)〉}

.

Proposition 3. Let (Γ̂ f
Q, A), (Ψ̂g

Q, B) and (Υ̂h
Q, C) be GQ-NSESs over a universe X. Then, the following

properties hold true:

(1) ((Γ̂ f
Q, A)

∧̂
(Ψ̂g

Q, B))
∧̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

∧̂
((Ψ̂g

Q, B)
∧̂
(Υ̂h

Q, C)),

(2) ((Γ̂ f
Q, A)

∨̂
(Ψ̂g

Q, B))
∨̂
(Υ̂h

Q, C) = (Γ̂ f
Q, A)

∨̂
((Ψ̂g

Q, B)
∨̂
(Υ̂h

Q, C)).

Proof. The proof is similar to the proof of part 3 of Proposition 2.
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4. Application of Generalized Q-Neutrosophic Soft Expert Set

In this section, an application of GQ-NSES in decision making is discussed. The problem we
consider is as follows:

An investment company considers several business options to increase its portfolio. The set
of possible alternatives is X = {x1 = car company, x2 = food company, x3 = computer company},
Q = {q1 = local, q2 = international}. The company will choose the best option according to the
following three criteria E = {e1 = risk, e2 = growth, e3 = environmental impact}. Let U = {u1, u2}
be a set of experts. After deliberation, the experts construct the following GQ-NSES:

(Γ̂Q, A) =
{〈

(e1, u1, 1),
(
[(x1, q1), 0.4, 0.3, 0.7], [(x1, q2), 0.2, 0.1, 0.4], [(x2, q1), 0.3, 0.3, 0.2],

[(x2, q2), 0.5, 0.1, 0.5], [(x3, q1), 0.5, 0.6, 0.3], [(x3, q2), 0.8, 0.4, 0.2], 0.2
)〉

,〈
(e1, u2, 1),

(
[(x1, q1), 0.4, 0.6, 0.3], [(x1, q2), 0.6, 0.1, 0.1], [(x2, q1), 0.5, 0.6, 0.6],

[(x2, q2), 0.7, 0.5, 0.6], [(x3, q1), 0.6, 0.7, 0.8], [(x3, q2), 0.2, 0.7, 0.5], 0.6
)〉

,〈
(e2, u1, 1),

(
[(x1, q1), 0.3, 0.3, 0.3], [(x1, q2), 0.4, 0.9, 0.2], [(x2, q1), 0.8, 0.2, 0.1],

[(x2, q2), 0.4, 0.5, 0.5], [(x3, q1), 0.6, 0.7, 0.7], [(x3, q2), 0.5, 0.5, 0.5], 0.9
)〉

,〈
(e2, u2, 1),

(
[(x1, q1), 0.9, 0.6, 0.2], [(x1, q2), 0.2, 0.1, 0.8], [(x2, q1), 0.1, 0.8, 0.6],

[(x2, q2), 0.6, 0.4, 0.8], [(x3, q1), 0.2, 0.2, 0.2], [(x3, q2), 0.9, 0.6, 0.4], 0.7
)〉

,〈
(e3, u1, 1),

(
[(x1, q1), 0.5, 0.4, 0.3], [(x1, q2), 0.3, 0.8, 0.9], [(x2, q1), 0.3, 0.9, 0.1],

[(x2, q2), 0.1, 0.1, 0.4], [(x3, q1), 0.7, 0.1, 0.3], [(x3, q2), 0.4, 0.5, 0.7], 0.5
)〉

,〈
(e3, u2, 1),

(
[(x1, q1), 0.6, 0.6, 0.2], [(x1, q2), 0.1, 0.2, 0.2], [(x2, q1), 0.9, 0.4, 0.2],

[(x2, q2), 0.6, 0.7, 0.4], [(x3, q1), 0.5, 0.5, 0.3], [(x3, q2), 0.4, 0.5, 0.1], 0, 3
)〉

,〈
(e1, u1, 0),

(
[(x1, q1), 0.5, 0.7, 0.3], [(x1, q2), 0.4, 0.7, 0.9], [(x2, q1), 0.2, 0.8, 0.9],

[(x2, q2), 0.3, 0.2, 0.8], [(x3, q1), 0.8, 0.1, 0.4], [(x3, q2), 0.7, 0.9, 0.6], 0.8
)〉

,〈
(e1, u2, 0),

(
[(x1, q1), 0.7, 0.4, 0.2], [(x1, q2), 0.6, 0.5, 0.8], [(x2, q1), 0.3, 0.4, 0.8],

[(x2, q2), 0.6, 0.7, 0.9], [(x3, q1), 0.4, 0.3, 0.2], [(x3, q2), 0.6, 0.5, 0.9], 0.6
)〉

,〈
(e2, u1, 0),

(
[(x1, q1), 0.2, 0.1, 0.2], [(x1, q2), 0.4, 0.5, 0.8], [(x2, q1), 0.6, 0.6, 0.6],

[(x2, q2), 0.4, 0.4, 0.4], [(x3, q1), 0.8, 0.2, 0.5], [(x3, q2), 0.3, 0.7, 0.8], 0.5
)〉

,〈
(e2, u2, 0),

(
[(x1, q1), 0.1, 0.5, 0.6], [(x1, q2), 0.9, 0.4, 0.4], [(x2, q1), 0.7, 0.6, 0.5],

[(x2, q2), 0.5, 0.1, 0.2], [(x3, q1), 0.3, 0.2, 0.2], [(x3, q2), 0.7, 0.3, 0.8], 0.7
)〉

,〈
(e3, u1, 0),

(
[(x1, q1), 0.1, 0.7, 0.9], [(x1, q2), 0.4, 0.3, 0.8], [(x2, q1), 0.9, 0.9, 0.3],

[(x2, q2), 0.8, 0.8, 0.1], [(x3, q1), 0.7, 0.4, 0.6], [(x3, q2), 0.4, 0.8, 0.2], 0.8
)〉

,〈
(e3, u2, 0),

(
[(x1, q1), 0.7, 0.3, 0.2], [(x1, q2), 0.5, 0.3, 0.3], [(x2, q1), 0.7, 0.4, 0.1],

[(x2, q2), 0.3, 0.1, 0.9], [(x3, q1), 0.4, 0.6, 0.5], [(x3, q2), 0.6, 0.1, 0.1], 0.4
)〉}

.
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The experts may use the following algorithm to choose the best option for the investment:

1. Input the GQ-NSES (Γ̂ f
Q, A).

2. Find the values of |T
Γ̂ f

Q
+ I

Γ̂ f
Q
− F

Γ̂ f
Q
| for each element (x, q) ∈ X × Q, where T

Γ̂ f
Q

, I
Γ̂ f

Q
, F

Γ̂ f
Q

representing the truth, indeterminacy and falsity membership functions.
3. Compute the score of each element (x, q) ∈ X × Q by taking the sum of the products of the

numerical grade of each element with the corresponding values of f (a) (the degree of preference)
for the agree-GQ-NSES and disagree-GQ-NSES, denoted by νi and ηi, respectively.

4. Find the values of the score δj = νi − ηi.
5. Find m for which δm = max δi.

Table 1 presents the values of |TΓ̂Q
+ IΓ̂Q

− FΓ̂Q
| for each element (x, q) ∈ X×Q.

Table 1. Values of |T
Γ̂ f

Q
+ I

Γ̂ f
Q
− F

Γ̂ f
Q
| for each element (x, q) ∈ X×Q.

E×U×O (x1, q1) (x1, q2) (x2, q1) (x2, q2) (x3, q1) (x3, q2) f(a)

(e1, u1, 1) 0 −0.1 0.4 0.1 0.8 1 0.2

(e1, u2, 1) 0.7 0.6 0.5 0.6 0.5 0.4 0.6

(e2, u1, 1) 0.3 1.1 0.9 0.4 0.6 0.5 0.9

(e2, u2, 1) 1.3 −0.5 0.3 0.2 0.2 1.1 0.7

(e3, u1, 1) 0.6 0.2 1.1 −0.2 0.5 0.2 0.5

(e3, u2, 1) 1 0.1 1.1 0.9 0.7 0.1 0.3

(e1, u1, 0) 0.9 0.2 0.1 −0.3 0.5 1 0.8

(e1, u2, 0) 0.9 0.3 −0.1 0.4 0.5 0.2 0.6

(e2, u1, 0) 0.1 0.1 0.6 0.4 0.5 0.2 0.5

(e2, u2, 0) 0 0.9 0.8 0.4 0.3 0.2 0.7

(e3, u1, 0) −0.1 −0.1 1.5 1.5 0.5 1 0.8

(e3, u2, 0) 0.8 0.5 1 −0.5 0.5 0.6 0.4

Tables 2 and 3 present the grades for the agree-GQ-NSES and disagree-GQ-NSES, taken from the
first six rows and the last six rows of Table 1, respectively.

Table 2. Numerical grades for agree-GQ-NSES.

E×U×{1} (x1, q1) (x1, q2) (x2, q1) (x2, q2) (x3, q1) (x3, q2) f(a)

(e1, u1, 1) 0 −0.1 0.4 0.1 0.8 1 0.2

(e1, u2, 1) 0.7 0.6 0.5 0.6 0.5 0.4 0.6

(e2, u1, 1) 0.3 1.1 0.9 0.4 0.6 0.5 0.9

(e2, u2, 1) 1.3 −0.5 0.3 0.2 0.2 1.1 0.7

(e3, u1, 1) 0.6 0.2 1.1 −0.2 0.5 0.2 0.5

(e3, u2, 1) 1 0.1 1.1 0.9 0.7 0.1 0.3
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Table 3. Numerical grades for disagree-GQ-NSES.

E×U×{0} (x1, q1) (x1, q2) (x2, q1) (x2, q2) (x3, q1) (x3, q2) f(a)

(e1, u1, 0) 0.9 0.2 0.1 −0.3 0.5 1 0.8

(e1, u2, 0) 0.9 0.3 −0.1 0.4 0.5 0.2 0.6

(e2, u1, 0) 0.1 0.1 0.6 0.4 0.5 0.2 0.5

(e2, u2, 0) 0 0.9 0.8 0.4 0.3 0.2 0.7

(e3, u1, 0) −0.1 −0.1 1.5 1.5 0.5 1 0.8

(e3, u2, 0) 0.8 0.5 1 −0.5 0.5 0.6 0.4

Let νi and ηi represent the score of each numerical grade for the agree-GQ-NSES and
disagree-GQ-NSES, respectively. These values are given in Table 4.

Table 4. The score δj = νi − ηi.

νi ηi δj

ν(x1, q1) = 2.2 η(x1, q1) = 1.55 δ(x1, q1) = 0.65

ν(x1, q2) = 2.01 η(x1, q2) = 1.14 δ(x1, q2) = 0.87

ν(x2, q1) = 2.28 η(x2, q1) = 2.48 δ(x2, q1) = −0.2

ν(x2, q2) = 1.05 η(x2, q2) = 1.48 δ(x2, q2) = −0.43

ν(x3, q1) = 1.6 η(x3, q1) = 1.76 δ(x3, q1) = −0.16

ν(x3, q2) = 1.79 η(x3, q2) = 2.2 δ(x3, q2) = −0.41

As can be seen in Table 4, max δi = δ(x1, q2). Therefore, the best option is to invest in an
international car company.

5. Comparative Analysis

A generalized Q-neutrosophic soft expert model offers better compatibility, accuracy and flexibility
than existing models. This can be confirmed by a comparison utilizing generalized Q-neutrosophic
soft expert with the strategy utilized in [33] as seen in Table 5. We can note that the proposed method
include a degree of preference in the decision process, thus make it highly effective in decision-making.
The comparison is similarly conducted as the illustration in Section 4, whereby the ranking order is
found to be consistent.

Table 5. Comparison of GQ-NSES to Q-NSES.

Method GQ-NSES Q-NSES

True Yes Yes

Falsity Yes Yes

Indeterminacy Yes Yes

Expert Yes Yes

Q Yes Yes

Degree of preference Yes No

Ranking
(x1, q2) > (x1, q1) > (x3, q1) > (x3, q1) > (x1, q2) > (x2, q1) >

(x2, q1) > (x3, q2) > (x2, q2) (x2, q2) > (x3, q2) > (x1, q1)
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From Table 5, it can be seen that the results of the ranking on the six companies obtained by
the proposed GQ-NSES method in this paper is different from the ranking obtained by the method
introduced in [33]. The main reason is that the proposed method has some crucial advantages over
Q-NSES, which can take the preference of decision-makers into consideration.

6. Conclusions

The concept of GQ-NSES was initiated by incorporating the idea of SESs to Q-NSs and attaching a
degree of preference corresponding to each parameter. The proposed concept is significantly superior
and improved generalization of Q-NSES, which delivers better results, particularly for decision-making
problems. The basic operations on GQ-NSES were defined and subsequently the basic properties
were proven. An algorithm incorporating GQ-NSES is introduced and applied to a real-life example.
The notion of GQ-NSES extended current neutrosophic theories for dealing with indeterminacy
and will stimulate further studies on extensions and applied usage. In the future, one could study
the measures of distance, similarity and entropy of GQ-NSES by generalizing the results in [14].
Furthermore, the algebraic structures such as group, ring and field of the Q-NSS and Q-NSES and their
generalizations may be studied.
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