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Abstract: The competition of speech recognition technology related to smartphones is now getting
into full swing with the widespread internet of thing (IoT) devices. For robust speech recognition, it is
necessary to detect speech signals in various acoustic environments. Speech/music classification that
facilitates optimized signal processing from classification results has been extensively adapted as an
essential part of various electronics applications, such as multi-rate audio codecs, automatic speech
recognition, and multimedia document indexing. In this paper, we propose a new technique to
improve robustness of a speech/music classifier for an enhanced voice service (EVS) codec adopted
as a voice-over-LTE (VoLTE) speech codec using long short-term memory (LSTM). For effective
speech/music classification, feature vectors implemented with the LSTM are chosen from the
features of the EVS. To overcome the diversity of music data, a large scale of data is used for
learning. Experiments show that LSTM-based speech/music classification provides better results
than the conventional EVS speech/music classification algorithm in various conditions and types of
speech/music data, especially at lower signal-to-noise ratio (SNR) than conventional EVS algorithm.
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1. Introduction

Speech/music classification algorithms are an important component of variable rate speech
coding and coverage of the communication bandwidth, and provide effective means for enhancing
the capacity of the bandwidth. In addition, a major concern in speech coding is optimizing speech
input, and many types of input are being investigated, such as music. Speech/music classification
algorithms are an essential part for providing high performance sound quality in speech coding.
Recently, a number of adaptive multi-rate (AMR) voice codecs have been proposed to efficiently utilize
the limited bandwidth resources available [1–3]. Precise determination of speech/music classification
is quite necessary, as different bit rate allocations for the correct input/output formats affect the voice
characteristic of these adaptive multi-rate voice codecs [4,5].

Recently, further improvements in speech/music classification problems have been achieved
by adopting several machine learning techniques, such as the support vector machine (SVM) [6,7],
Gaussian mixture model (GMM) [8], and deep belief network (DBN) [9] for the selectable mode
vocoder (SMV) codec. The enhanced voice services (EVS) speech/music classifier, which is known as
the 3rd-generation partnership project (3GPP) standard speech codec for the voice-over-LTE (VoLTE)
network, is also based on GMM, but its features were calculated either at a current frame or as a
moving average between those in the current and the previous frames [10]. The speech/music classifier
uses a binary classification, but the diversity of music is greater than that of speech, and it can be
generally said that it is a multiclass classification method, according to each musical genre. The GMM
is not suitable for solving multiclass classification problems due to scalability issues.
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In this paper, we propose a robust speech/music classifier based on long-short term memory
(LSTM) [11,12], which can solve the vanishing gradient problem [13] better than the RNNs. In the
case of an audio signal, a high correlation exists between signal samples in consecutive frames in
the sequence. LSTMs, a particular type of RNNs, were basically proposed as a scheme of extending
NNs to sequential signals. The extension of recurrent connections allows LSTMs to utilize the prior
frame and makes them more robust to manipulating sequential data compared to non-recurrent NNs.
The proposed method employs an LSTM using a feature vector derived from EVS codec. To appraise
the accuracy of the proposed algorithm, speech/music classification experiments are performed under
a variety of simulated conditions.

2. Conventional 3GPP Enhanced Voice Services

The EVS is a 3GPP speech codec designed for the VoLTE network. The EVS codec supports two
modes: ACELP (for low and intermediate bitrates) and MDCT (for intermediate and high bitrates).
The mode is selected depending on channel capacity and speech quality requirements.

The EVS speech/music classifier operates when the EVS codec is detected as “active” by voice
activity detection (VAD) every 20 ms frame.

2.1. Feature Selection

The speech/music classification method applied to the EVS codec reuses the 68 parameters
calculated in the early stages of codec preprocessing to minimize complexity. The EVS codec uses the
technique proposed by Karnebäck [14], which is a method of analyzing the correlation matrix of all
the features, for the initial selection of the features to be used in the Gaussian mixture model. In this
way, we analyze the candidate feature sets with minimal cross-correlation and select the feature by
calculating the discrimination probability as follows:

Uh =
1
2

J

∑
j=0

∣∣∣m(sp)
h (j)−m(mus)

h (j)
∣∣∣ (1)

where m(mus)
h and m(sp)

h are the feature histograms that h generated on the music and the speech
training database, respectively, and J is the whole number of frames in the database. The following
12 feature vectors are selected from the initial 68 feature vectors through the discriminatory probabilities
Uh; five LSF parameters, normalized correlation, open-loop pitch, spectral stationarity, non-stationarity,
tonality, spectral difference, and residual LP error energy [3].

2.2. GMM-Based Method

The GMM has been estimated via the expectation maximization algorithm [15] on a speech/music
database, and is a weighted sum of L-component Gaussian densities, given by the following equation:

p(z|θ) =
L

∑
k=1

ωk N(z|µk, Σk) (2)

where N(z|µk, Σk) are the component Gaussian densities, ωk are the component weights, and z is a
normalized N-dimensional feature vector. The GMM generates two probabilities, pm and ps, for the
music probability and the speech probability, respectively.

By analyzing the values of music and speech probabilities in each frame, a discrimination measure
between music and speech can be obtained by subtracting the log-probabilities, as:

y = log(pm)− log(ps) (3)
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2.3. Context-Based Method

The GMM-based speech/music classification responds very rapidly to change-over from speech
to music and vice versa. To effectively utilize the discrimination potential of the GMM-based approach,
y is sharpened and smoothed by the following adaptive auto-regressive filter:

y = γcy + (1− γc)y[−1] (4)

where [−1] denotes the previous frame and γc is a filter factor.
If the segment is energetically significant, the scaled relevant frame energy value will be close to

1, and for background noise, will be close to 0.01. Accordingly, if the SNR is high, more weight is given
to the current frame, whereas if the SNR is low, the classifier has more dependency on the past data
because it is difficult to make accurate short-term decisions. This situation potentially occurs when y is
smaller than 0, and is smaller than the value of the previous frame. In this case:

g = g[−1] +
y[−1] − y

20
, 0.1 < g < 1 (5)

where g is the gradient of the GMM approach, and g[−1] is initialized to the value of −y each frame.
Finally, previous frames of varying sizes (0–7) are combined according to the characteristics of the
signal to determine speech/music [10].

3. Proposed LSTM-Based Speech/Music Classification

In this paper, an improved LSTM-based speech/music classification algorithm applicable to
the framework of a speech/music classifier is proposed. LSTMs are sequence-based models of key
importance for speech processing, natural language understanding, natural language generation,
and many other areas. Because speech/music signals are highly correlated in time, LSTM is an
appropriate method to classify speech/music. As shown in Figure 1, speech/music classification
is performed using LSTM when it makes a decision as active speech in the EVS codec, compared
with the conventional EVS codec and RNN-based algorithm. The feature vectors for speech/music
classification are limited to 12 feature vectors used in the conventional EVS.
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Figure 1. (a) Block diagram of the conventional EVS speech/music classification. (b) Block diagram of
the recurrent neural network based speech/music classification. (c) Block diagram of the proposed
speech/music classification.
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The LSTM unit consists of an input activation function, a single memory cell, and three gates
(input it, forget ft, and output ot), as shown in Figure 2. it permits the input signal to change or
block the memory cell state. ft controls what to remember and what to forget in the cell, and avoids
vanishing gradients. Finally, ot allows the memory cell state to have an influence on other neurons,
or prevent this influence. With the addition of a memory cell, the LSTM can overcome the gradation
problem of capturing and disappearing very complex and long-term dynamics. According to the
LSTM unit, for an input xt, the LSTM calculates a hidden/control state ht, a block input gt, and a state
of memory cell ct, which is an encoding of everything the cell has recognized until time t:

it = σ(Wxixt + Whiht−1 + bi) (6)

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(7)

ot = σ(Wxoxt + Whoht−1 + bo) (8)

gt = φ
(

Wxgxt + Whght−1 + bg

)
(9)

ct = ft
⊙

ct−1 + it
⊙

gt (10)

ht = ot
⊙

φ(ct) (11)

where Wij are the weight matrices,
⊙

is the point-wise product with the gate value, bj is the bias, φ(x)
is the activation function, and σ(x) is the logistic sigmoid. As shown in Figure 3, LSTM units are
gathered together to form layers and are connected at each time step.
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4. Experiments and Results

For evaluating the proposed method, we have compared the LSTM-based speech/music
classification algorithm with the EVS method. The evaluation was implemented on the TIMIT speech
database [16], Billboard year-end CDs from 1980 to 2013, and classical music CDs. From the music
CDs, different genres (jazz, hip-hop, classic, blues, etc.) of music were collected. The entire music
database was 221 h long and a large amount of data was employed in the experiment.

For training the LSTM-based speech/music classifier, 60 h of speech signal and 160 h of music
signal were randomly selected from database. The length of each speech segment ranged from 6 to
12 s, and the length of each music segment ranged from 3 to 12 min. To create noisy environments,
we added babble, car, white, pink, factory1, and factory2 noises from the NOISEX-92 database to the
clean speech data at 5, 10, 15, and 20 dB SNR. As initial parameters of the proposed LSTM, we have
used the parameter setting listed in Table 1.

Table 1. Parameter setting of the proposed LSTM.

Parameter Value

Number of first hidden layer units 200
Number of second hidden layer units 600
Number of third hidden layer units 200

Learning rate 0.00006
Dropout rate 0.2

For testing, we randomly chose 20 h of speech data and 61 h of music data, which were separated
from the training data. The data were sampled at 16 kHz with a frame size of 20 ms. To calculate
the accuracy of the algorithm, each frame was manually labelled and compared to the corresponding
classification results of the classifier.

For proper understanding of the performance difference, the results of the speech/music
classification in conjunction with the test speech/music segment are shown in Figure 4. It can
be observed from this figure that the proposed method has effectively classified speech and music,
according to manual marking (silence = 0, speech = 1, music = 2), and has yielded better results in white
noise (5 dB SNR) conditions when compared with the EVS based algorithm and RNN based algorithm.

To appraise the performance of the proposed algorithm, the speech/music classifier accuracy
of the algorithm was investigated. The results are shown in Table 2. The test results verified that
the proposed LSTM based method effectively improves the performance of the EVS. In particular, in
the case of pink and factory1 noise environments at 5 dB SNR, the accuracy of the proposed method
is significantly improved when compared with that of the EVS-based method. In the comparison
between RNN and LSTM, the performance of LSTM is shown to have better performance than the
RNN in all conditions.
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Table 2. Comparison of speech/music classification accuracy.

dB EVS RNN Proposed

speech

clean - 0.9980 0.9981 0.9985

car

5 dB 0.8830 0.8911 0.9135
10 dB 0.9131 0.9414 0.9517
15 dB 0.9933 0.9940 0.9951
20 dB 0.9927 0.9941 0.9943

babble

5 dB 0.5757 0.6157 0.6524
10 dB 0.7214 0.7561 0.7752
15 dB 0.9649 0.9710 0.9760
20 dB 0.9905 0.9914 0.9920

white

5 dB 0.6633 0.6917 0.7017
10 dB 0.8362 0.8581 0.8710
15 dB 0.8792 0.9012 0.9104
20 dB 0.9642 0.9775 0.9867

pink

5 dB 0.3752 0.6016 0.6312
10 dB 0.6900 0.6925 0.8110
15 dB 0.9312 0.9450 0.9757
20 dB 0.9853 0.9937 0.9948

factory1

5 dB 0.3289 0.5948 0.6391
10 dB 0.6702 0.7491 0.8471
15 dB 0.9265 0.9481 0.9513
20 dB 0.9850 0.9871 0.9906

factory2

5 dB 0.7251 0.8362 0.8974
10 dB 0.9119 0.9341 0.9591
15 dB 0.9711 0.9721 0.9812
20 dB 0.9855 0.9856 0.9878

music
classical - 0.9868 0.9912 0.9931
others - 0.9311 0.9435 0.9514
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5. Conclusions

In this paper, a robust method for enhancing the performance of speech/music classification of the
3GPP EVS codec has been proposed. The proposed method, based on the EVS, uses the feature vectors,
which shows statistically superior performance in the encoding process of the EVS. The experimental
results have shown that the performance was improved in low-SNR noise environments compared to
high-SNR noise environments. The key idea of this paper is to obtain an effective method to integrate
the LSTM within the EVS for speech/music classification.
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