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Abstract: The Lie algebraic scheme for constructing Hamiltonian operators is differential-algebraically
recast and an effective approach is devised for classifying the underlying algebraic structures
of integrable Hamiltonian systems. Lie–Poisson analysis on the adjoint space to toroidal loop
Lie algebras is employed to construct new reduced pre-Lie algebraic structures in which the
corresponding Hamiltonian operators exist and generate integrable dynamical systems. It is also
shown that the Balinsky–Novikov type algebraic structures, obtained as a Hamiltonicity condition, are
derivations on the Lie algebras naturally associated with differential toroidal loop algebras. We study
nonassociative and noncommutive algebras and the related Lie-algebraic symmetry structures on
the multidimensional torus, generating via the Adler–Kostant–Symes scheme multi-component
and multi-dimensional Hamiltonian operators. In the case of multidimensional torus, we have
constructed a new weak Balinsky–Novikov type algebra, which is instrumental for describing
integrable multidimensional and multicomponent heavenly type equations. We have also studied
the current algebra symmetry structures, related with a new weakly deformed Balinsky–Novikov
type algebra on the axis, which is instrumental for describing integrable multicomponent dynamical
systems on functional manifolds. Moreover, using the non-associative and associative left-symmetric
pre-Lie algebra theory of Zelmanov, we also explicate Balinsky–Novikov algebras, including their
fermionic version and related multiplicative and Lie structures.

Keywords: nonassociative algebra; loop algebra; Lie–Poisson structure; Hamiltonian operator;
R-structure; toroidal loop algebra; Poisson structure; Hamiltonian system; derivation; Balinsky–
Novikov algebra; weak Balinsky–Novikov algebra; weakly deformed Balinsky–Novikov algebra;
reduced pre-Lie algebra; fermionic Balinsky–Novikov algebra; Lie algebra; Lie derivation; Leibniz
algebra; Riemann algebra

PACS: 02.20.Sv; 02.20.Qs; 02.10.Hh; 02.30.lk; 03.65.Fd; 11.25.-w; 11.25.Hf

MSC: 17B68; 35Q53; 37K10; 58J70; 17D25; 17B20; 17A36

Symmetry 2018, 10, 601; doi:10.3390/sym10110601 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-3524-9538
http://dx.doi.org/10.3390/sym10110601
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/11/601?type=check_update&version=2


Symmetry 2018, 10, 601 2 of 28

1. Introduction

A left pre-Lie algebra (A,+, ◦) is a vector space A over an algebraically closed field F with a bilinear
map ◦ : A⊗ A→ A, satisfying the relation

(a ◦ b) ◦ c− a ◦ (b ◦ c) = (a ◦ c) ◦ b− a ◦ (c ◦ b) (1)

for any a, b, c ∈ A. This is just the invariance of the associator (a, b, c) = (a ◦ c) ◦ b− a ◦ (c ◦ b) under
the interchange of b, c ∈ A. Hence, every associative algebra is also a pre-Lie algebra, as the associator
vanishes identically. It follows from (1) that usual anti-symmetrization yields a Lie bracket

[a, b] := a ◦ b− b ◦ a (2)

on A for arbitrary a, b ∈ A. However, not every Lie algebra arises from a pre-Lie algebra. These algebras
have been used, under various names, for a long time. As is known [1,2], they were called
left-symmetric algebras in the work of Vinberg [3] on convex homogeneous cones, and so were
dubbed as Vinberg algebras in some papers. They also appear in the study of affine manifolds, named as
right-symmetric algebras [4]. It was proposed in [1] to adopt the name pre-Lie algebras, which had been
used by Gerstenhaber [5] as the Lie bracket on the Hochschild cohomology, which arises as a pre-Lie
algebra structure on cochains. These pre-Lie algebras have applications in many fields, including
perturbative quantum field theory [6,7], where insertion of Feynman graphs into each other equips
them with a pre-Lie structure which controls the combinatorics of renormalization.

Moser pointed out the importance of connections between Lie algebraic structures and
Hamiltonian dynamics, especially with regard to questions of integrability, in numerous contributions
including [8–10]. The fact that many of the integrable Hamiltonian systems discovered during the
last several decades have been shown to depend intimately on the Lie-algebraic properties of their
internal hidden symmetry structures [11–15] has more than served to confirm Moser’s observations.
A first account of the Hamiltonian operators and related differential-algebraic relationships, lying in
the background of integrable systems and coinciding with reduced pre-algebraic structures, was given
by Gelfand and Dorfman [16,17] and later extended by Dubrovin and Novikov [18,19], and also
by Balinsky and Novikov [20]. In addition, new special differential-algebraic techniques were
devised [21–23] for studying the Lax integrability and the structure of related Hamiltonian operators
for a wide class of the Riemann type hydrodynamic hierarchies. Recently, much work [21,24–29] has
been devoted to the finite-dimensional representations of the reduced pre-Lie algebraic structures now
called the Balinsky–Novikov algebras. Their importance for constructing integrable multi-component
nonlinear Camassa–Holm type dynamical systems on functional manifolds was demonstrated by
Strachan and Szablikowski [30]. Moreover, they suggested in part the Lie-algebraic embedding of
the Balinsky–Novikov algebra in the general Lie–Poisson orbits scheme of classifying Lax integrable
Hamiltonian systems. It is worth mentioning the related work [31] by Holm and Ivanov, where
integrable multi-component nonlinear Camassa–Holm type dynamical systems were also constructed.

We have devised a formal differential-algebraic recasting of the classical Lie algebraic scheme and
developed an effective approach to classification of the underlying algebraic structures of integrable
multi-component and multi-dimensional Hamiltonian systems. In particular, we have devised a simple
algorithm, based on the Lie–Poisson structure analysis on the adjoint space to toroidal Lie algebras,
rigged with non-associated and noncommutative algebras, which enables singling out new algebraic
pre-Lie algebraic structures, containing the corresponding Hamiltonian operators, which generate
integrable multi-component and multidimensional dynamical systems. The theory of these systems
was recently started in [32–42] and developed in [43,44]. In particular, we studied nonassociative and
noncommutive algebras over C and the related Lie-algebraic symmetry structures on the torus Tn

for n ∈ N, generating via the Adler–Kostant–Symes scheme multi-component and multi-dimensional
Hamiltonian operators. The latter serve for describing integrable heavenly type equations, whose
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theory has been just recently started in [30,32,39–41,45–48] and advanced in [12,21,43,49,50]. In the
case of multidimensional torus Tn for n ∈ N\{1} we have constructed a new weak Balinsky–Novikov
type algebra, which is instrumental for describing integrable multidimensional and multicomponent
heavenly type equations.

We have also studied the current algebra symmetry structures, related with a new weakly
deformed Balinsky–Novikov type algebra on the real axis R, which is instrumental for describing
integrable multicomponent dynamical systems [51–54] on functional manifolds. We also show that
the well-known Balinsky–Novikov algebraic pre-Lie algebraic structures, obtained in [17,20] as a
condition for a matrix differential system to be Hamiltonian and in [55–58] as that on a flat torsion free
left-invariant affine connection on affine manifolds, affine structures and convex homogeneous cones,
arise as a derivation on the Lie-algebra associated with a differential loop algebra.

Using the theory of Zelmanov [59], we introduce and describe Balinsky–Novikov type algebras in
detail, including their fermionic version and related multiplicative and Lie structures.

2. General Setting

2.1. Pre-Lie Algebraic Structures and Related Hamiltonian Operators

Let (A,+, ◦) be a finite-dimensional algebra (in general noncommutative and associative) over
an algebraically closed field F endowed with a nondegenerate symmetric trace-like [30,60] bilinear
form 〈·, ·〉 : A⊗ A→ F. We shall require that A allows a natural Lie algebra extension (LA,+, [·, ·]) via
the usual commutator operation [·, ·] : A⊗A→A, with respect to which 〈·, ·〉 is ad-invariant; that is,

〈[a, b], c〉+ 〈b, [a, c]〉 = 0 (3)

for any a, b, c ∈ LA. Using A, one can construct the related toroidal algebra Ã of smooth mappings
Tn → A of the n-dimensional torus Tn, n ∈ Z+, and endow it with the suitably generalized commutator
operation [·, ·] : Ã⊗ Ã → Ã subject to the natural pointwise multiplication operation ◦ : Ã⊗ Ã →
Ã. The corresponding loop Lie algebra LÃ will be naturally rigged with a generalized symmetric
nondegenerate bilinear ad-invariant form (·, ·) : LÃ⊗LÃ → F, such that

(a, b) :=
∫
Tn
〈a, b〉dx = (b, a) (4)

and
([a, b], c) + (b, [a, c]) = 0 (5)

for any a, b, c ∈ LÃ. The form (4) makes possible the natural identification Ã∗ ' Ã; in particular, for a
linear functional u∗ ∈ Ã we also define its adjoint action on Ã as

(u∗ ◦ a, b) := (a, u ◦ b) (6)

for a fixed u ∈ Ã and any a ∈ Ã. Now, one can naturally identify the space L∗
Ã

, adjoint with respect to
the form (4) to LÃ, with itself and consider further the space D(L∗

Ã
) of smooth scalar functions on L∗

Ã
together with its related Lie–Poisson bracket:

{ f , g}0 := (u, [∇ f (u),∇g(u)]) (7)

for any f , g ∈ D(L∗
Ã
), where the weak gradient map ∇ : D(L∗

Ã
)→ LÃ is defined for any h ∈ D(L∗

Ã
)

and all ξ ∈ LÃ ' L
∗
Ã

at u ∈ LÃ ' L
∗
Ã

as

(ξ,∇h(u)) := dh(u + εξ)/dε|ε=0. (8)
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Owing to its definition [11,14,61,62], bracket (7) satisfies the classical Jacobi condition, so it is a
powerful tool for constructing the related Hamiltonian operators on D(L∗

Ã
). In particular, we call,

following [17,63], a smooth map ϑ : L∗
Ã
→ Hom(LÃ;L∗

Ã
) a Hamiltonian operator if the related bracket

{ f , g} := (ϑ(u)∇ f (u),∇g(u)) (9)

is determined for any f , g ∈ D(L∗
Ã
) and satisfies the Jacobi identity.

As the canonical Lie–Poisson bracket (7) does not involve essentially the loop Lie algebra structure
of LÃ, we proceed further to a new Lie algebra structure on LÃ via its central extension. Namely,
let LÂ := LÃ ⊕ F denote the centrally extended Lie algebra LÃ endowed with the extended Lie
bracket

[(a; α), (b; β)] := ([a, b]; ω2(a, b)) (10)

for any for any a, b ∈ LÃ and α, β ∈ F, where the 2-cocycle ω2 : LÃ ×LÃ → F is a skew-symmetric
bilinear form and satisfies the Jacobi identity:

ω2([a, b], c) + ω2([b, c], a) + ω2([c, a], b) = 0 (11)

for any a, b, c ∈ LÃ. It is evident that the existence of nontrivial central extensions on LÃ strongly
depends on the underlying structure of the algebra A as presented above. However, there are some
algebraic properties that allow us to proceed. Namely, assume that a smooth map Du : LÃ → LÃ
defines for a fixed u ∈ LÃ a weak derivation of LÃ, that is

(c, Du[a, b]) = (c, [Dua, b] + [a, Dub]) (12)

for any a, b, c ∈ LÃ. Then, the following important result holds [60,64].

Proposition 1. Let a smooth map Du : LÃ → LÃ be a skew-symmetric weak derivation of LÃ, where
u ∈ LÃ ' L

∗
Ã

. Then,
ω2(a, b) := (a, Dub) (13)

for any a, b ∈ LÃ and u ∈ L∗Ã ' LÃ defines a nontrivial 2-cocycle on LÃ.

A proof simply requires verifying (11) and is omitted.
There many ways to construct a priori nontrivial derivations on LÃ such as the following simple

consequence of Proposition 1 [16,60,64]:

Theorem 2. Let a nondegenerate skew-symmetric endomorphism R : LÃ → LÃ satisfy the well known
Yang–Baxter commutator condition:

[Ra,Rb] = R([Ra, b] + [a,Rb]) (14)

for any a, b ∈ LÃ. Then, the inverse mapR−1 : LÃ → LÃ is a skew-symmetric derivation of the Lie algebra
LÃ and

ω2(a, b) = (a,R−1b) (15)

defines a 2-cocycle on LÃ for any a, b ∈ LÃ.

Remark 3. An interesting consequence of Theorem 2 is that the subspaces

L±
Ã

:= 1/2(I±R)LÃ (16)



Symmetry 2018, 10, 601 5 of 28

are Lie subalgebras of LÃ, splitting it into the direct sum

L+
Ã
⊕L−

Ã
= LÃ.

In particular, the R-structures on LÃ can be used for constructing additional Hamiltonian
operators on L∗

Ã
. More precisely, we endow, following [17], L∗

Ã
with the natural differential algebraic

structure assuming it to be a polynomial differential algebra Ã(u), generated by an element u ∈ Ã and
its derivatives u(j) ∈ Ã (j ∈ Z+) with respect to be the standard derivation Dx := ∂/∂x, x ∈ S1, on Ã.
On Ã(u), one can naturally define the space of linear uniform gradient-wise derivations ΓÃ(u) as

∇ : Ã(u)→ Der Ã(u),

where [∇h, Dx] = 0 for any h ∈ Ã(u) and the expression

∇h := ∑
j∈Z+

h(j)(u)∂/∂u(j) (17)

acts on any f ∈ Ã(u) as
(∇h f )(u) := ∑

j∈Z+

〈h(j)(u), ∂ f (u)/∂u(j)〉. (18)

Taking into account the action of the derivations −Ã(u) on Ã(u), one can rig it with a natural Lie
algebra structure

[∇h,∇g] := ∇{h,g}, (19)

where the element
{h, g} := g′(h)− h′(g) ∈ Ã(u)

is written by means of the standard Fréchet derivative on Ã(u) :

f ′(h) := ∇h f (20)

for any h, f ∈ Ã(u). Following [17], on Ã(u), supplemented with a unit element, one can determine a
space of functionals FÃ(u) as the set of equivalent elements f ∼ h ∈ Ã(u) for which f − h ∼ Dxg for
some element g ∈ Ã(u). Such functionals can be denoted as the integrals

f̃ :=
∫
S1

f (u)dx ∈ FÃ(u).

On FÃ(u), there exists a natural differential δ : FÃ(u)→ Λ1(Ã(u)) defined for any f̃ ∈ FÃ(u) as

δ f̃ (∇h) :=
∫
S1

〈 f ′,∗(u)(1), h〉dx, (21)

where the conjugation mapping “∗” is taken with respect to the bilinear form (4) on Ã introduced
above. Owing to the relationship

f ′,∗(u)(1) := ∇ f (u)

for all u ∈ Ã, (21) can be rewritten as

δ f̃ (∇h) = (∇ f (u), h). (22)
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Using (22), one can successively determine the whole Grassmann algebra Λ(Ã(u)) of differential
forms on Ã(u), generated u ∈ Ã. In particular, suppose a closed nondegenerate differential 2-form
ω(2) ∈ Λ2(Ã(u)), δω(2) = 0, is given on Ã(u). Then, from [11,61,62],

{ f̃ , g̃}ω(2) := −ω(2)(∇ f̃ ,∇g̃), (23)

where, for any f̃ , g̃ ∈ FÃ(u), the maps

δ f̃ (·) := ω(2)(∇ f̃ , ·) = (δu,∇ f̃ (u)), δg̃(·) := ω(2)(∇g̃, ·) = (δu,∇g̃(u)), (24)

on the algebra Ã(u) determine for any u ∈ Ã∗ ' Ã the corresponding Hamiltonian operator ϑ(u) :
LÃ → L

∗
Ã

via the identification

{ f̃ , g̃}ω(2) := −(ϑ(u)∇ f̃ (u),∇g̃(u)). (25)

Thus, we are led making use of [60,64,65] to the following result.

Proposition 4. Suppose that LÃ allows a skew-symmetric nondegenerate R-structure homomorphism R :
LÃ → LÃ, satisfying the generalized Yang–Baxter condition

[Ra,Rb]−R([Ra, b] + [a,Rb]) = −α[a, b] (26)

for any a, b ∈ LÃ and α ∈ F. Then, differential 2-forms ω
(2)
j ∈ Λ2(Ã(u)) (j = 1, 2) on the algebra Ã(u)

defined as
ω
(2)
1 (∇ f̃ ,∇g̃) := (∇ f̃ (u),R−1∇g̃(u)) (27)

and
ω
(2)
2 (∇ f̃ ,∇g̃) := (u, [R∇ f̃ (u),R∇g̃(u)]) (28)

for any f̃ , g̃ ∈ FÃ(u) are closed. Moreover, the corresponding Hamiltonian operators, determined from (27)
and (28) via the identifications

ω
(2)
1 (∇ f̃ ,∇g̃) := (ϑ1∇ f̃ ,∇g̃), ω

(2)
2 (∇ f̃ ,∇g̃) := (ϑ2∇ f̃ ,∇g̃), (29)

are compatible; that is, the sum λϑ1 + µϑ2 : LÃ → L
∗
Ã

is also a Hamiltonian operator for arbitrary λ, µ ∈ F.

Sketch of a proof. As (27) is closed a priori, a proof of the proposition consists in checking the
closedness of the 2-forms ω

(2)
2 ∈ Λ2(Ã(u)), which is equivalent to (26). Taking into account (27)

and (28) and the representation of ϑ2 : LÃ → L∗
Ã

as the composition ϑ2 = ϑ−1
1 ϑ0, where the

Hamiltonian operator ϑ0 : LÃ → L
∗
Ã

is naturally determined from (7) as

(u, [∇ f̃ (u),∇g̃(u)]) := (ϑ0∇ f̃ (u),∇g̃(u)) (30)

for any f̃ , g̃ ∈ FÃ(u). This is equivalent to the compatibility of the Hamiltonian operators ϑ1 and ϑ2 on
Ã(u) [11,13,17,60,64]. Alternatively, if the parameter α = 0, (27) determines a 2-cocycle on LÃ owing
to the fact that the inverse mapR−1 : LÃ → LÃ is a derivation on LÃ; that is,

R−1[a, b] = [R−1a, b] + [a,R−1b] (31)

for any a, b ∈ LÃ, presenting a 2-cocycle on LÃ. Consequently, λϑ0 + µϑ1 : LÃ → L
∗
Ã

is Hamiltonian

for arbitrary λ, µ ∈ F, which also yields the compatibility of ϑ1 and ϑ2 on Ã(u).

Similarly, one can verify the following [60,64–66] so called “quadratic” compatibility result.
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Proposition 5. Let a skew-symmetricR-structureR : LÃ → LÃ on LÃ satisfy (26). Then,

{ f̃ , g̃}1 := (u ◦ ∇ f̃ (u),R(u ◦ ∇g̃(u)))− ( ∇ f̃ (u) ◦ u,R(∇g̃(u) ◦ u)) (32)

and
{ f̃ , g̃}2 := (u, [R∇ f̃ (u),∇g̃(u)] + [∇ f̃ (u),R∇g̃(u)]) (33)

defined for any f̃ , g̃ ∈ FÃ(u), are Poisson and compatible on Ã(u).

2.2. Lie–Poisson Brackets, Skew-Symmetric Derivations and Balinsky–Novikov Type Algebraic Structures

Here, we consider for any u ∈ Ã ' Ã∗from Ã at n = 1 a simple skew-symmetric derivation
Du := u∗ ∂

∂x + ∂
∂x u : LÃ → LÃ on LÃ acting as

(a, Dub) := (a, (u∗ ∂
∂x + ∂

∂x u)b) =
= (u ◦ a, ∂

∂x b) + (a, ∂
∂x u ◦ b) + (a, u ◦ ∂

∂x b)
(34)

for any a, b ∈ LÃ, parameterized by an arbitrary yet fixed u ∈ Ã∗ and modeling the Hamiltonian
operator, analyzed in [17,20] and used in [30]. To verify that (34) is a weak derivation of LÃ, it suffices
to check that the tri-linear Leibniz type relationship

(a, Du[b, c]) = (a, [Dub, c] + [b, Duc]) (35)

holds for any a, b and c ∈ LÃ. Following simple calculations, taking into account that u ∈ LÃ and
∂

∂x u ∈ LÃ are functionally independent, one finds that (34) is a skew-symmetric weak derivation of
LÃ iff the following algebraic constraints are imposed on A:

l[a,b] = [la, lb], [ra, rb] = 0, (36)

where any a, b ∈ A la(b) := a ◦ b and ra(b) := b ◦ a denote, respectively, the left and right shifts on the
A. The commutator expressions (36) imposed on A coincide with those that determine the well-known
Balinsky–Novikov algebra (BNA) by means of

(a ◦ b) ◦ c = (a ◦ c) ◦ b (37)

and
(a ◦ b) ◦ c− (b ◦ a) ◦ c = a ◦ (b ◦ c)− b ◦ (a ◦ c), (38)

which hold for any a, b, c ∈ A, and were derived in a similar context by Gelfand and Dorfman [17]
and Balinsky and Novikov in [20]. As already mentioned, the algebra, defined by (36) and (38), is a
reduced pre-Lie algebra A, which was first introduced in [3,5]. In [29] this algebra was also called a
Novikov algebra. In particular, commutative BNA’s are associative.

It is worth observing that the linearity of (35) with respect to u ∈ Ã ' Ã∗ allows the canonical
Lie–Poisson [61,62,65] representation:

{(u, a), (u, b)} := (u, [a, b]D) = (a, Dub) (39)

for any a, b ∈ Ã, where

[a, b]D := a ◦ ∂b
∂x
− b ◦ ∂a

∂x
(40)

is a new skew-symmetric commutator structure imposed on Ã. Moreover, since the bracket (39) needs
here no symmetry and invariance properties (4) and (5), we simply state that it is Poisson iff the
commutator (40) generates a weak Lie algebra structure on Ã, that is
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(u, [[a, b]D, c]D) + (u, [[b, c]D, a]D) + (u, [[c, a]D, b]D) = 0 (41)

for any fixed u ∈ Ã∗ and arbitrary elements a, b, c ∈ Ã. It follows from (41) that A coincides with the
BNA algebra (38).

Example 6. Having defined the Lie bracket

[a, b]D :=
∂a
∂x
◦ ∂2b

∂x2 −
∂b
∂x
◦ ∂2a

∂x2 , (42)

for any a, b ∈ Ã, one easily deduces from the weak Jacobi condition (41) the reduced pre-Lie algebra structure:

rab + rarb + r[a,b] = 0, {la, lb} := lalb + lbla = 0. (43)

Example 7. In the case of the one-dimensional loop algebra Ã, a commutator Lie structure, defined for any
elements a, b ∈ Ã as

[a, b]D := a ◦
(

∂

∂x

)−1
b − b ◦

(
∂

∂x

)−1
a, (44)

where the inverse acting as
(

∂
∂x

)−1
(...) := 1

2

[∫ x
0 (...)dy−

∫ 2π
x (...)dy

]
, generates a weak Lie algebra structure

iff the following hold [21] for arbitrary a, b ∈ A :

ra◦b = [ra, rb], r{a,b} := ra◦b + rb◦a = 0. (45)

Example 8. It was recently shown in [21] that the spatially one-dimensional skew-symmetric bilinear map

[a, b]D = D−1
x b ◦ Dxa− D−1

x a ◦ Dxb, (46)

imposed on Ã for any a, b ∈ Ã, generates an adjacent Lie algebra LÃ iff the following Riemann type reduced
pre-Lie algebra structure holds for all a, b ∈ A.

[ra, rb] = 0, ra◦b = la◦b, l[a,b] = 0. (47)

Example 9. For the two-dimensional toroidal algebra Ã, one can define for any a, b ∈ Ã the following new
commutator structure

[a, b]D :=
∂a
∂x
◦ ∂b

∂y
− ∂b

∂x
◦ ∂a

∂y
(48)

on Ã, which generates a weak Lie algebra LÃ iff

[ra, rb] = 0 = [la, lb] (49)

and
[ra, lb] = 0 (50)

hold for any a, b ∈ A.

Remark 10. Note that the similar to (51) Lie commutator structure

[a, b]D :=
∂a
∂x
◦ ∂2b

∂y∂x
− ∂b

∂x
◦ ∂2a

∂y∂x
(51)
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generates an adjacent Lie algebra LÃ iff the following degenerate constraint la◦b = 0 holds for all a, b ∈ Ã.
Similarly, the Lie-commutator structure

[a, b]D :=
∂2a

∂x∂y
◦ b− ∂2b

∂x∂y
◦ a (52)

generates no pre-Lie algebraic structure on the algebra A related to a Hamiltonian operator on Ã∗.

3. Weak and Weakly Deformed Balinsky–Novikov Type Algebras

In this section, we study nonassociative and noncommutive algebras over C and the related
Lie-algebraic symmetry structures on the torus Tn for n ∈ N, generating via the Adler–Kostant–Symes
scheme multi-component and multi-dimensional Hamiltonian operators. The latter serve for describing
integrable heavenly type equations, whose theory has been just recently started in [30,32,39–41,45–48]
and advanced in [12,21,43,49,50]. In the case of multidimensional torus Tn for n ∈ N\{1}, we
have constructed a new weak Balinsky–Novikov type algebra, which is instrumental for describing
integrable multidimensional and multicomponent heavenly type equations.

We have also studied the current algebra symmetry structures, related with a new weakly
deformed Balinsky–Novikov type algebra on the real axis R, which is instrumental for describing
integrable multicomponent dynamical systems on functional manifolds.

3.1. A Weak Balinsky–Novikov Type Symmetry Algebra

Let (A;+, ·) be a finite dimensional nonassociative and, in general, noncommutative algebra over
the field C, endowed with a nondegenerate symmetric and invariant bilinear form < ·, · >, that is
< a, b >=< b, a > and < a, b · c >=< a · b, c > for any a, b and c ∈ A. Let also G̃± := d̃i f f±(Tn)⊗ A,
n ∈ N, be A-valued loop subalgebras of the algebra G̃ : = G̃+ ⊕ G̃− on the torus Tn, holomorphic,
respectively, inside D1

+ and outside D1
− of the unit disk D1 ⊂ C1, such that for any ã(λ) ∈ G̃− the

value ã(∞) = 0. The loop algebra G̃ can be naturally identified with a dense subspace of the dual
space G̃∗ through the pairing

(l̃, ã) := res
λ=∞

∫
Tn

< l(x, λ), a(x, λ) > dx. (53)

Here, we put, by definition [61,67], a A-valued loop vector field ã ∈ Γ(T̃(Tn)⊗ A and a A-valued
loop differential 1-form l̃ ∈ Λ̃1(Tn)⊗ A, given as

ã =
n

∑
j=1

a(j)(x, λ)∂/∂xj := 〈a(x; λ), ∂/∂x〉En , l̃ =
n

∑
j=1

lj(x, λ)dxj := 〈l(x; λ), dx〉En

and introduced, for brevity, the gradient operator ∂/∂x := (∂/∂x1, ∂/∂x2, ..., ∂/∂xn)
ᵀ and the standard

bilinear form < ·, · >En in the Euclidean space En. The algebra G̃ can be further equipped with the
Lie bracket

[ã, b̃]D = 〈〈a(x; λ), ∂/∂x〉En · b(x; λ), ∂/∂x〉En − 〈〈b(x; λ), ∂/∂x〉En · a(x; λ), ∂/∂x〉En . (54)

Let us assume now that this way obtained A-valued vector field algebra G̃ is a weak Lie algebra LG̃ ,
that is

(l̃, [[ã, b̃]D, c̃]D + [[b̃, c̃]D, ã]D + [[c̃, ã]D, ã]D) = 0 (55)

for any ã, b̃ and c̃ ∈ LG̃ ' Γ(T̃(Tn)⊗ A and arbitrary l̃ ∈ L∗G̃ ' Λ̃1(Tn)⊗ A. As a result of easy enough
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calculations for the case of the A-valued loop vector field Lie algebra LG̃ on the torus Tn of dimension
n ∈ N\{1}, one finds that the algebra A should satisfy the following algebraic constraints:

Ra◦b = RaRb, LaLb = LbLa (56)

for any a, b ∈ A, where, by definition, Rab := b · a is the right shift and Lab := a · b is the left shift on
the algebra A. This, in particular, means that the canonical [11,13,14,61,65] Lie–Poisson bracket

{(l̃, ã), (l̃, b̃)} := (l̃, [ã, b̃]D) (57)

for any ã, b̃ ∈ LG̃ and arbitrary element l̃ ∈ L∗G̃ satisfies the Jacobi identity (55).

Remark 11. In case of the A-valued loop vector field Lie algebra LG̃ ' Γ(T̃(S1)⊗ A on the one-dimensional
circle S1, the corresponding algebraic constraints reduce to the following less strong dual Balinsky–Novikov

algebra A expressions:
Ra◦b − RaRb = Rb◦a − RbRa, LaLb = LbLa (58)

for any a, b ∈ A. Thereby, the obtained algebra A will be naturally called a weak Balinsky–Novikov type algebra.

Summarizing the reasonings above, we can now formulate the obtained above result as the
following theorem.

Theorem 12. The canonical Lie–Poisson bracket (57) on the co-adjoint space G̃∗' Λ̃1(Tn) ⊗ A in the
case n ∈ N\{1} is compatible with the internal algebraic structure of the algebra A iff it satisfies the weak
Balinsky–Novikov algebraic constraints (56).

Observe now that, owing to pairing (53), the corresponding dual spaces G̃∗+ and G̃∗− satisfy the
relationships

G̃∗+ ' G̃−, G̃∗− ' G̃+,

where, for any l̃(λ) ∈ G̃∗−, one can impose the dual constraint l̃(0) = 0. Having defined the projections

P± : G̃ → G̃± ⊂ G̃, (59)

one can construct a classical R-structure [14,60,65] on the Lie algebra G̃ as the endomorphism R :
G̃ → G̃, where

R := (P+ − P−)/2, (60)

which allows for determining on the vector space G̃, the new Lie algebra structure

[ã, b̃]R := [Rã, b̃] + [ã,Rb̃] (61)

for any ã, b̃ ∈ G̃, satisfying the standard Jacobi identity.
Let D(G̃∗) denote the space of smooth functions on G̃∗. Then, for any f , g ∈ D(G̃∗), one can write

the general canonical [11,14,65,68] Lie–Poisson bracket

{ f , g} := (l̃, [∇ f (l̃),∇g(l̃)]), (62)

where l̃ ∈ G̃∗ is a seed element and ∇ f , ∇g ∈ G̃ are the standard functional gradients at l̃ ∈ G̃∗
with respect to the metric (53). The related (62) space of Casimir invariants is defined as the set
I(G̃∗) ⊂ D(G̃∗) of smooth independent functions hj ∈ D(G̃∗), j = 1, n, for which

ad∗∇hj(l̃)
l̃ = 0, (63)
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where, for any A-valued seed element
l̃ =< l, dx >En , (64)

the gradients
∇hj(l̃) :=

〈
∇hj(l), ∂/∂x

〉
En (65)

and the coadjoint action (63) can be equivalently rewritten, for instance, as〈
∂/∂x, (l∇hj(l))

〉
En +

〈
∂/∂x,∇hj(l)

〉
En l = 0 (66)

for any j = 1, n. If taking two smooth functions h(y), h(t) ∈ I(G̃∗) ⊂ D(G̃∗), their second Poisson
bracket

{h(y), h(t)}R := (l̃, [∇h(y),∇h(t)]R) (67)

on the space G̃∗ vanishes, that is
{h(y), h(t)}R = 0 (68)

at any seed element l̃ ∈ G̃∗. Since the functions h(y), h(t) ∈ I(G̃∗), the following coadjoint action
relationships hold:

ad∗∇h(y)(l̃) l̃ = 0, ad∗∇h(t)(l̃) l̃ = 0, (69)

which can be equivalently rewritten as〈
∂/∂x, (l∇h(y)(l))

〉
En

+
〈

∂/∂x,∇h(y)(l)
〉
En

l = 0 (70)

and similarly 〈
∂/∂x, (l∇h(t)(l))

〉
En

+
〈

∂/∂x,∇h(t)(l)
〉
En

l = 0. (71)

Consider now the following Hamiltonian flows on the space G̃∗:

∂l̃/∂y := {h(y), l̃}R = −ad∗∇h(y)(l̃)+
l̃, (72)

∂l̃/∂t := {h(t), l̃}R = −ad∗∇h(t)(l̃)+
l̃,

where h(y), h(t) ∈ I(G̃∗) and y, t ∈ R are the corresponding evolution parameters. Since h(y), h(t) ∈
I(G̃∗) are Casimirs, the flows (72) commute. Thus, taking into account the representations (70), one can
recast the flows (72) as

∂l/∂y = −
〈

∂/∂x, (l∇h(y)(l̃)+)
〉
En

+
〈

∂/∂x,∇h(y)(l̃)+
〉
En

l, (73)

∂l/∂t = −
〈

∂/∂x, (l∇h(t)(l̃)+)
〉
En

+
〈

∂/∂x,∇h(t)(l̃)+
〉
En

l.

Lemma 13. The compatibility of commuting flows (73) is equivalent to the Lax type vector fields relationship

∂

∂y
∇h(t)(l̃)+ −

∂

∂t
∇h(y)(l̃)+ + [∇h(y)(l̃)+,∇h(t)(l̃)+] = 0, (74)

which holds for all y, t ∈ R and arbitrary λ ∈ C.



Symmetry 2018, 10, 601 12 of 28

Proof. The compatibility of commuting flows (73) implies that ∂2l/∂t∂y− ∂2l/∂y∂t = 0 for all y, t ∈ R
and arbitrary λ ∈ C. Taking into account the expressions (72), one has for any A-valued vector field
Z̃ =< Z, ∂

∂x >∈ G̃

0 = (∂2 l̃/∂t∂y− ∂2 l̃/∂y∂t, Z̃) = − ∂
∂t (ad∗∇h(y)(l̃)+

l̃, Z̃) + ∂
∂y (ad∗∇h(t)(l̃)+

l̃, Z̃) =

= − ∂
∂t ( l̃, [∇h(y)(l̃)+, Z̃]) + ∂

∂y ( l̃, [∇h(y)(l̃)+, Z̃]) =

= −( ∂
∂t l̃, [∇h(y)(l̃)+, Z̃])− ( l̃, [ ∂

∂t∇h(y)(l̃)+, Z̃])+

+( ∂
∂y l̃, [∇h(t)(l̃)+, Z̃]) + ( l̃, [ ∂

∂y∇h(y)(l̃)+, Z̃]) =

= ( ad∗∇h(t)(l̃)+
l̃, [∇h(y)(l̃)+, Z̃])− ( l̃, [ ∂

∂t∇h(y)(l̃)+, Z̃])−

−( ad∗∇h(y)(l̃)+
l̃, [∇h(t)(l̃)+, Z̃]) + ( l̃, [ ∂

∂y∇h(y)(l̃)+, Z̃]) =

= ( l̃, [∇h(t)(l̃)+, [∇h(y)(l̃)+, Z̃]])− ( l̃, [ ∂
∂t∇h(y)(l̃)+, Z̃])−

−(l̃, [∇h(y)(l̃)+, [∇h(t)(l̃)+, Z̃]]) + ( l̃, [ ∂
∂y∇h(t)(l̃)+, Z̃]) =

(75)

= ( l̃, [∇h(t)(l̃)+, [∇h(y)(l̃)+, Z̃]]− [∇h(y)(l̃)+, [∇h(t)(l̃)+, Z̃]])+

+( l̃, [ ∂
∂y∇h(t)(l̃)+ − ∂

∂t∇h(y)(l̃)+, Z̃]) =

= ( l̃, [[∇h(y)(l̃)+,∇h(t)(l̃)+] + ∂
∂y∇h(t)(l̃)+ − ∂

∂t∇h(y)(l̃)+, Z̃]) = (ad∗
ϕ(l̃)

l̃, Z̃),

where we have denoted by

ϕ(l̃) := [∇h(y)(l̃)+,∇h(t)(l̃)+] +
∂

∂y
∇h(t)(l̃)+ −

∂

∂t
∇h(y)(l̃)+ (76)

From (75), we obtain that ad∗
ϕ(l̃)

l̃ = 0 for all y, t ∈ R, ϕ(l̃) ∈ G̃ and arbitrary λ ∈ C. Now, based on

the arbitrariness of Z̃ ∈ G̃ and analyticity of the A-valued vector field expression (76), one easily
shows [33] that ϕ(l̃) = 0, thus finishing the proof.

For the exact representatives of the functions h(y), h(t) ∈ I(G̃∗), it is necessary to solve the
determining equation (66), taking into account that if the chosen element l̃ ∈ G̃∗ is singular as |λ| → ∞,
the related expansion

∇h(p)(l) ' λp ∑
j∈Z+

∇h(l)jλ
−j, (77)

where the degree p ∈ Z+ can be taken as arbitrary. Upon substituting (77) into (66), one can find
recurrently all the coefficients ∇h(l)j, j ∈ Z+, and then construct gradients of the Casimir functions
h(y), h(t) ∈ I(G̃∗) reduced on G̃+ as

∇h(t)(l)+ = (λpt∇h(l))+, ∇h(y)(l)+ = (λpy∇h(l))+ (78)

for some positive integers py, pt ∈ Z+.
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Remark 14. As mentioned above, the expansion (77) is effective if a chosen seed element l̃ ∈ G̃∗ is singular as
|λ| → ∞. In the case when it is singular as |λ| → 0, the expression (77) should be replaced by the expansion

∇h(p)(l) ∼ λ−p ∑
j∈Z+

∇h(l)jλ
j (79)

for an arbitrary p ∈ Z+, and the reduced Casimir function gradients then are given by the expressions

∇h(y)(l)− = (λ−py−1∇h(l))−, ∇h(t)(l)− = (λ−pt−1∇h(l))− (80)

for some positive integers py, pt ∈ Z+. Then, the corresponding flows are, respectively, written as

∂l̃/∂t = ad∗
Oh(t)(l̃)−

l̃, ∂l̃/∂y = ad∗
Oh(y)(l̃)−

l̃. (81)

The above results, owing to Lemma 13, can be formulated as the following main proposition.

Proposition 15. Take an A-valued loop vector field l̃ ∈ G̃∗ and let h(y), h(t) ∈ I(G̃∗) be Casimir functions
subject to the metric (·, ·) on the A-valued loop Lie algebra G̃ and the natural coadjoint action on the A-valued
loop co-algebra G̃∗. Then, the following dynamical systems

∂l̃/∂y = −ad∗∇h(y)(l̃)+
l̃, ∂l̃/∂t = −ad∗∇h(t)(l̃)+

l̃ (82)

are commuting to each other Hamiltonian flows for all y, t ∈ R. Moreover, if H is a faithful representation
vector space for the weak Balinsky–Novikov algebra A, the compatibility condition of these flows is equivalent to
the vector fields representation

(∂/∂t +∇h(t)(l̃)+)ψ = 0, (∂/∂y +∇h(y)(l̃)+)ψ = 0, (83)

where ψ ∈ C2(R2 × Tn; H) and the A-valued loop vector fields ∇h(t)(l̃)+,∇h(y)(l̃)+ ∈ G̃+, given by the
expressions (73) and (78), satisfy the so called Lax–Sato compatible relationship (74) for any λ ∈ C.

3.2. A Weakly Deformed Balinsky–Novikov Type Symmetry Algebra

Consider a finite-dimensional noncommutative and non-associative algebra (A;+, ·) over C,
endowed additionally with a commutative family of automorphisms {∆x : A→ A : x ∈ R}, depending
smoothly on a real parameter x and satisfying the following weak continuity condition:

lim
ε→0

∆x+ε∆−1
x = I (84)

for any x, which makes it possible to construct a “current algebra”

A := {a(x) := ∆xa : a ∈ A, x ∈ R} (85)

with the naturally compatible pointwise multiplication:

a(x) · b(x) := ∆xa · ∆xb = ∆x(a · b) (86)

for any a(x), b(x) ∈ A, x ∈ R. A can be additionally rigged with the Lie structures:

[a, b]D := (Da) · b− (Db)·a (87)

and
[a, b]D := a · Db− b·Da (88)
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for arbitrary a := a(x), b := b(x) ∈ A for any x ∈ R, where the map

D := (∆h − 1)/h (89)

is an endomorphism A, specified by the parameter h ∈ R.

Remark 16. It is easy to see that the corresponding operator limit, limh→0 Da(x) = da(x)/dx for any
a(x) ∈ A and x.

Now, we pose a problem: what conditions should be imposed on A for A to become a Lie algebra?
For an answer it, is enough to check the Jacobi identity

[[a, b]D, c]D + [[b, c]D, a]D + [[c, a]D, b]D = 0 (90)

for any a, b and c ∈ A.
Observe that mapping (89) satisfies for any ã, b̃ ∈ A the property

D(a·b) = Da·b + a(h)·Db, (91)

where a(h) := ∆ha ∈ A. Having defined the usual right Ra and left La shifts on the algebra A as
Rab := b·a, Lab := a·b for arbitrary a, b ∈ A, respectively, one can easily prove the following result.

Proposition 17. The current algebra Ah is a Lie algebra LAh
iff the following conditions hold for all a, b ∈ Ah :

[La, Lb] = L(∆ha)·b − L(∆hb)·a [Ra, Rb] = 0 (92)

for the Lie bracket (87), and
[Ra, Rb] = R[a,b], LaL∆hb = LbL∆ha (93)

for the Lie bracket (88).

The constraints (92), (93) make it possible to describe Ah as a “deformed Balinsky–Novikov type
algebra”(dBNA), although it coincides [17,20] as h→ 0 with the classical Balinsky–Novikov algebra
A0, defined via

[La, Lb] = L[a,b], [Ra, Rb] = 0 (94)

and
[Ra, Rb] = R[a,b], [La, Lb] = 0, (95)

respectively, satisfied for any a, b ∈ A0.
As a dBNA Ah is assumed to be finite-dimensional, one can naturally determine [11,13,69] the

adjoint space L∗Ah
to the adjacent current Lie algebra LAh

as a set of linear continuous functionals
u : LAh

→ R on LAh
via the expression

u(a) := (u, a)s

for some symmetric bilinear form (·, ·)s on LAh
, and to construct on it the canonical Lie–Poisson structure

{u(a), u(b)} := u([a, b]D) (96)

for any linear functions u(a), u(b) ∈ D(L∗Ah
), a, b ∈ LAh

, with arbitrary u ∈ L∗Ah
, satisfying the Jacobi

identity owing to (92) and (93). As the expression (96) can be rewritten as

{u(a), u(b)} := (ϑ(u)a)(b) (97)
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for any u ∈ L∗Ah
and a, b ∈ LAh

, where the linear map ϑ(u) : LAh
→ L∗Ah

is called [11,13,14,17]
a Hamiltonian operator. This operator makes it possible to construct, for any smooth functional
γ ∈ D(A∗h), the Hamiltonian system

du/dt = −ϑ(u)gradγ(u) (98)

on L∗Ah
, where gradγ(u) ∈ LAh

is the standard gradient of this functional. Moreover, if LAh
allows the

central extension L̂Ah
:= (LAh

;C) by means of a Maurer–Cartan bilinear form

ω2(a, b) := (a, α(∆h)b)s, (99)

where (·, ·)s is a symmetric bilinear form on LAh
and

[(a; α), (b; β)]D := ([a, b]D; ω2(a, b))

for any (a; α), (b; β) ∈ L̂Ah
, and α(∆h) : Ah → Ah is some skew-symmetric constant map, then the

Hamiltonian operator
ϑ(u) + λα(∆h), (100)

where (a, α(∆h)b)s := (α(∆h)
∗a, b)s for any a, b ∈ LAh

, is compatible [14] for any λ ∈ C. This makes
it possible to generate [11,13,14] an infinite hierarchy of mutually commuting smooth independent
functionals γj ∈ D(L∗Ah

), j ∈ Z+, with respect to both ϑ(u) and α(∆h)
∗ : LAh

→ L∗Ah
, u ∈ L∗Ah

,
satisfying

ϑ(u)∇γj(u) = α(∆h)
∗∇γj+1(u) (101)

and giving rise to an infinite system of mutually commuting completely integrable Hamiltonian flows

du/dtj = −ϑ(u)gradγj(u) (102)

on L∗Ah
with respect to independent evolution parameters tj ∈ R, j ∈ Z+.

4. The Riemann Type Reduced Pre-Lie Algebra Isomorphism and Related Algebraic Properties

Observe that A with relationships (50), generated by the two-dimensional toroidal pre-Lie algebra
structure (48), is close to the Riemann type pre-Lie algebra structure (47), yet generated by the spatially
one-dimensional skew-symmetric structure (46). Moreover, the following result holds.

Theorem 18. The algebra A, generated by the relationships (50), is isomorphic to the reduced Riemann type
pre-Lie algebra (47).

Let A = (A,+, ·) be an algebra,

R(A) := {ra | a ∈ A} and L(A) := {la | a ∈ A},

[la, lb] = 0 = [ra, rb], (103)

lab = lalb (104)

and [la, rb] = 0.
Recall that an algebra A is called a Riemann algebra if

(xb)a = (xa)b (105)

and
x(ab) = (ab)x = (ba)x, (106)
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and a Balinsky–Novikov algebra if
(ab)c = (ac)b

and
(ab)c− a(bc) = (ba)c− b(ac)

for any a, b, x ∈ A.
In the sequel, we shall denote the center of A by Z(A), the commutator by [a, b] = ab− ba and

the commutator subgroup by [A, A].

Lemma 19. If A is an algebra, then the following statements hold:

(i) if A satisfies (104), it is associative,
(ii) if A satisfies (103) and (104), then [A, A] · A = 0 and A2 ⊆ Z(A) (and so A is at most 2-step Lie

nilpotent),
(iii) if A satisfies (104) and A 3 1 (respectively A does not contain zero-divisors), then A is commutative,
(iv) if A satisfies (103) and (104), then Equation (50) follows,
(v) if A satisfies (104), then it is a Riemann algebra (and consequently a Novikov–Balinsky algebra).

Proof. Assume that a, b, x ∈ A. For (i), we simply note that

(ab)x = lab(x) = lalb(x) = a(bx). (107)

To verify (ii), we compute that

a(bx) = lalb(x) = lbla(x) = b(ax), (108)

(xb)a = rarb(x) = rbra(x) = (xa)b,

and so
a(bx) = b(ax) = (ba)x = (bx)a, (109)

implying that A2 ⊆ Z(A). Moreover, (ab)x = a(bx) = b(ax) = (ba)x in view of (107) and (108).
Finally, [A, A] ⊆ A2 ⊆ Z(A), so [[A, A], A] = 0. For (iii), note that, if b = 1, then (109) implies that
ax = xa. Then, if A 6= 0 and A has no zero-divisors, (ii) implies that [A, A] = 0. Now, (iv) follows
from (103) and (104) and (v) follows from (ii), which completes the proof.

An additive mapping δ : A→ A is called a derivation of A if

δ(ab) = δ(a)b + aδ(b)

for all a, b ∈ A. Let DerA be the set of all derivations of A. Moreover,

AL = (A,+, [−,−])

is a Lie algebra, where [x, y] = xy− yx for any x, y ∈ A (the associated Lie algebra of a Balinsky–Novikov
algebra A). An additive map ϕ : A→ A is called a Lie derivation of A (or a derivation of AL) if

ϕ([a, b]) = [ϕ(a), b] + [a, ϕ(b)]

for all a, b ∈ A. Letting DerAL, we denote the set of derivations of AL. Then, DerA ⊆ DerAL. A
Novikov algebra A is called a derivation algebra if its left multiplications Lx or its right multiplication
Rx are derivations of AL ([28], p. 107).
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Lemma 20. If A satisfies (103) and (104), then: (i) DerA is a left A-module; (ii) L(A), R(A) ⊆ DerAL; and
(iii) A is a derivation algebra.

Proof. For (i), we note that Lemma 19(ii) implies that [A, A] · δ(A) = 0 for any δ ∈ DerA, so

(aδ)(xy) = aδ(x) + axδ(y) = aδ(x) + xaδ(y) + [a, x]δ(y) = (aδ)(x) + x(aδ)(y)

for any a, x, y ∈ A, so aδ ∈ DerA. Hence, (ii) follows as does (iii) in view of [28, Corollary 2.1] and
Lemma 19(ii).

4.1. A General Riemann Type Pre-Lie Algebra Structure

Let (A, A) be the additive subgroup of A generated by Jordan commutators (a, b) := ab + ba,
where a, b ∈ A. An associative algebra D is nilpotent if Dn = 0 for some positive integer n; the least
such n is called the nilpotency index (NI) of D.

Lemma 21. If A is a general Riemann type pre-Lie algebra over a field F satisfying

rarb = lab = lalb (110)

for any a, b ∈ A; then, the following statements hold:

(i) A is associative and (A, [A, A]) = 0,
(ii) a2 ∈ Z(A),
(iii) (A, A) ⊆ Z(A) (in particular, if A = (A, A), then A is commutative),
(iv) if A has unity, then 2[A, A] = 0 (in particular, in F 6= 2, then A is commutative),
(v) if F 6= 2, then u2 = 0 for any u ∈ [A, A].

Proof. Assume that a, b, x ∈ A; then, (i) follows from

(xa)b = ra(rb(x)) = lab(x) = (ab)x (111)

and (xb)a = ra(rb(x)) = la(rb(x)) = a(bx), which imply that (ab)x = a(bx), so A is associative.
Moreover,

x(ba) = (xb)a = (ab)x and x(ab) = (xa)b = (ba)x,

which implies that (x, [a, b]) = 0.
Property (ii) follows from (111) with b = a, so x(aa) = (xa)a = (aa)x and therefore a2 ∈ Z(A).
To prove (iii), we use

a2 + (a, b) + b2 = (a + b)2 ∈ Z(A),

to conclude that (a, b) is central.
Next, (iv) is a consequence of (i) gives that

2u2 = (u, u) ∈ ([A, A], [A, A]) = 0

for any u ∈ [A, A] and (v) follows directly from (iv).

Proposition 22. Let A be a non-commutative reduced Riemann type algebra over a field F satisfying (110)
and F 6= 2. Then, the following hold:

(i) if (A, A) = 0, then a2 = 0 for any a ∈ A (in particular, if A is finite-dimensional, then A is nilpotent),
(ii) if (A, A) is nonzero proper in A, then A is nilpotent with NI≤ 3 (and so A is at most 2-step Lie nilpotent).

Proof. If (A, A) = 0, then 2a2 = (a, a) = 0 for any a ∈ A, which proves (i).
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For (ii), Lemma 21(i) implies ([A, A], [A, A]) = 0 and so ab = −ba for any a, b ∈ [A, A]. Then,

[[A, A], [A, A]] 3 [a, b] = ab− ba = −2ba,

which implies
A2 ⊆ [[A, A], [A, A]] ⊆ [A, A] ⊆ A2.

Consequently, A2 = [A, A]. In view of Lemma 21(i), (A, A2) = 0, so

(xy)z = x(yz) = −(yz)x = −y(zx) = (zx)y = z(xy)

for any x, y, z ∈ A. Hence, A2 ⊆ Z(A). Since

[A, A2] = 0 and (A, A2) = 0,

we conclude that A3 = 0. Finally [[A, A], A] ⊆ A3 = 0.

It is evident that a general skew-symmetric integral-differential commutator expression [a, b]D
for any a, b ∈ Ã on the n-dimensional toroidal algebra Ã, (41), includes some new BNA-type pre-Lie
algebra structures on the basic nonassociative algebra A, which can be useful for applications in the
multi-dimensional integrability theory started in [32–42] and developed in [43,44]. They are strongly
based on differential-algebraic and related analytical techniques and make it possible to construct new
algebraic structures on the corresponding nonassociative algebras, within which the corresponding
Hamiltonian operators generate integrable multi-component and multidimensional dynamical systems.
In what follows, we investigate the underlying algebraic structures of non-associative BNA-type pre-Lie
algebras by focusing on the basic Balinsky–Novikov algebra and its fermionic modification.

5. The Balinsky–Novikov Algebra and Its Fermionic Modification

Recall that (N,+, ◦) is a left-symmetric algebra (LSA), i.e., (N,+) is an F-linear space with a
bilinear product (x, y) 7→ xy := x ◦ y satisfying (38) for all a, b, c ∈ N. Every BNA is an LSA. Moreover,

NL = (N,+, [−,−])

is a Lie algebra, where [x, y] = xy− yx for any x, y ∈ N ( the associated Lie algebra of an LSA N). LSAs
play a fundamental role in theory of affine manifolds (cf. [70]). Obviously, NL is abelian if and only if
N is abelian. An algebra N satisfying (38) and

(ab)c = −(ac)b, (112)

modifying (37) for all a, b, c ∈ N, is called a fermionic BNA. A (nonassociative or associative) algebra A
is called: semiprime if, for any ideal T of A, the condition T2 = 0 implies that T = 0; prime if, for any
ideals T, Q of A, the condition TQ = 0 implies that T = 0 or Q = 0; and simple if A2 6= 0 and its only
ideals are 0 and A.

It is easy to see that every simple BNA is prime and every prime BNA is semiprime. The theory
of BNA’s was started by Zelmanov [59]. He proved that a finite-dimensional simple BNA over an
algebraically closed field of characteristic 0 is one-dimensional. Osborn [71] proved that, for any
finite-dimensional simple BNA N over a perfect field of characteristic p > 2, the associated Lie
algebra NL is isomorphic to the rank-one Witt algebra. Simple BNA’s have also been investigated
by Zelmanov, Osborn and Xu [71–73]. Many authors have investigated the Lie structure of BNA’s.
BNA’s N with abelian (respectively nilpotent, solvable) associated Lie algebras NL have been studied
by Burde and de Graaf, Burde, Dekimpe and Vercammen, Burde and Dekimpe [74–76]. The class of
commutative associative algebras (CAA) equals the class of BNA’s with abelian associated Lie algebras.
CAA’s (real and complex) of dimension 3 were characterized in [76] (see, e.g., Baehr, Dimakis and
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Müller-Hoisson [77]) and Balinsky–Novikov C-algebras N of dimension 4 with the nilpotent associated
Lie algebras NL. In [70], it is proved that a complete LSA is always solvable. Recall that a BNA N is
complete (or transitive) if the right multiplication operator ra is a nilpotent linear map for any a ∈ N.
Burde [78] investigated a Lie algebra NL of a simple LSA N. We investigate properties of semiprime
BNA’s (see Proposition 36) leading to a proof of the following result.

Theorem 23. Let N be a BNA. Then, the following statements hold:

(1) Suppose that N is non-commutative and charF 6= 2. If N is simple (respectively prime), then it
contains a commutative Lie ideal A that contains every commutative Lie ideal of N and NL/A is a simple
(respectively prime) Lie algebra.

(2) If NL is a simple (respectively prime or semiprime) Lie algebra, then N is a simple (respectively prime or
semiprime) BNA.

Let
R(N) := {ra | a ∈ N} and L(N) := {la | a ∈ N}

andR(N) be the Lie algebra generated by R(N). If N is a fermionic BNA and R1 := R(N), Ri+1 :=
[R1, Ri], then

R(N) = R1 + · · ·+ Ri + · · · = R1 + R2 = R(N) + R(N)R(N) (113)

(see [28], Claim 1). Let L(N) be the Lie algebra generated by all rx and ly, where x, y ∈ N. By [28]
(Claim 2):

L(N) = L(N) + R(N) + R(N)R(N).

Let AR(N) denote an associative algebra generated by R(N) (with respect to two operations: addition
and composition of operators). Moreover, left multiplication operators of a BNA N forms a Lie algebra
L(N) with respect to the pointwise addition “+”and the pointwise Lie multiplication “[−,−]”given
by the rules

(la + lb)(x) = la(x) + lb(x) and [la, lb](x) = la(lb(x))− lb(la(x))

for all a, b, x ∈ N. A map δ : NL → NL is called a derivation of NL if

δ(a + b) = δ(a) + δ(b) and δ([a, b]) = [δ(a), b] + [a, δ(b)]

for all a, b ∈ NL. The set Der(NL) of all derivations of NL is a Lie algebra over F. An LSA N is a
derivation algebra if its left multiplications lx or its right multiplications rx are derivations [27] of the
associated Lie algebra NL. By [27] (Corollary 2.1), a BNA N is a derivation algebra if and only if
[N, N] ⊆ lann N (and so N is at most 2-step nilpotent). We have the following result.

Proposition 24. Let N be a fermionic BNA. Then, the following statements hold:

(i) the Lie algebra L(N) = L(N) + XN is a sum of a subalgebra L(N) and an ideal XN := R(N) +

R(N)R(N), where L(N) and NL/ lann N are isomorphic, where lann N := {x ∈ N | xN = 0} and
XN is at most 2-step Lie nilpotent,

(ii) if L(N) ⊆ Der(NL), then [N, N] ⊆ lann N and L(N) = L(N) + R(N) ⊆ Der(NL).

Jacobson [79] initiated an investigation of (associative) multiplicative algebras of nonassociative
finite-dimensional algebras A (see e.g., [80,81] and others). Bai and Meng [25] classified complete
Balinsky–Novikov C-algebras with nilpotent associated algebras. Recall that an LSA A is right-nilpotent
of length ≤ n, where n ≥ 1 is a fixed integer, if ra1 ra2 . . . ran−1(an) = 0 for all a1, a2, . . . , an−1, an ∈ A.
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By [82] (Theorem 2), a BNA N of bounded index over a field of characteristic 0 is nilpotent. It is also
known [28] (Corollary 1) that every fermionic BNA N is right-nilpotent because

r2
x = 0 and rxry = −ryrx (114)

for any x, y ∈ N. We shall prove that, in any finite-dimensional fermionic BNA N over F of characteristic
6= 2, AR(N) is a finite-dimensional nilpotent associative algebra of NI≤ 1+dimF N (see Proposition 31).

All other definitions and facts are can be found in [83–85].

6. Elementary Properties of Fermionic BNA’s

Here, (a, b) := ab + ba for any a, b ∈ N and (V, V) is an additive subgroup of N generated by the
set {(u, v) | u, v ∈ V}, where V ⊆ N. As usual, an additive subgroup A of an algebra N is called an
ideal if AN, NA ⊆ N. An additive subgroup U of a BNA N is a Lie ideal of N if [U, N] ⊆ U. Clearly,
U is a Lie ideal of N if and only if U is an ideal of the associated Lie algebra NL. We shall need the
following analogs of [75] (Lemmas 2.1,2.2,2.7).

Lemma 25. Let N be a fermionic BNA, with ideals I and J. Then: (i) Z(N) is an ideal of N; (ii) if U is a Lie
ideal of N, then Z(U) is the units; (iii) I J is an ideal of N; and (iv) if I is commutative, then I2 ⊆ Z(N).

Proof. Assume that x, y ∈ N, z ∈ Z(N), i, t ∈ I and j ∈ J.
Property (i) follows from

x(zy) = z(yx) + (yz)x− (zy)x = z(xy) =
= (xy)z = −(xz)y = −(zx)y = (zy)x

and x(yz) = x(zy) = (zy)x = (yz)x, which implies that yz, zy ∈ Z(N).
In fact, if u ∈ U, then [[z, x], u] = −[[x, u], z]− [[u, z], x] = 0 and so [z, x] ∈ Z(U), which proves (ii).
The proof of (iii) follows from x(ij) = (xi)j + i(xj)− (ix)j ∈ I J and (ij)x = −(ix)j ∈ I J, and (iv)

is a direct consequence of

0 = [i, xt] = i(xt)− (xt)i = x(it) + (ix)t− (xi)t− (xt)i =
= x(it) + (ix)t = x(it)− (it)x = [x, it].

Every ideal of a BNA N is a Lie ideal of N. An ideal B of N is called non-central if B * Z(N).

Lemma 26. If N is a fermionic BNA, with ideal A and Lie ideal U, then: (i) the left annihilator lann A :=
{n ∈ N | nA = 0} of A in N is an ideal of N; (ii) if charF 6= 2, then IN(U) := {u ∈ U | uN + Nu ⊆ U}
is an ideal of N and IN(U) ⊆ U; and (iii) the centralizer CN(U) := {z ∈ N | zu = uz for any u ∈ U} of U
in N is a Lie ideal of N.

Proof. Assume that n, t, x ∈ N. If a ∈ A and b ∈ lann A, then (bn)a = −(ba)n = 0 and

(nb)a = n(ba)− b(na) + (bn)a = (bn)a = −(ba)n = 0,

which proves (i).
To prove (ii), we note that if b ∈ IN(U) and N is a fermionic BNA, then bn, nb ∈ U and (nb)t =

−(nt)b, [t, nb] ∈ U and so t(nb) ∈ U. Hence, nb ∈ IN(U). Since x(bn)− (bn)x = [x, bn] ∈ U and
x(bn) + (bn)x = x(bn) + (bx)n = b(xn) + (xb)n− (bx)n + (bx)n = b(xn)− (xn)b ∈ U, we conclude
that x(bn), (bn)x ∈ U, so bn ∈ IN(U).

Finally, inasmuch as [[c, n], u] = −[[n, u], c]− [[u, c], n] = 0 for any c ∈ CN(U), u ∈ U, we deduce
that [c, n] ∈ CN(U), which proves (iii).
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Lemma 27. Let N be a fermionic BNA, U its Lie ideal and I, J its subsets. Then: (i) if [I, J] = 0, then
(I, I)J = 0 (and consequently (N, N)Z(N) = 0); (ii) if [I, I] = 0 and charF 6= 2, then (I2)I = 0; (iii) if
[I, I] = 0 and charF 6= 2, then (I2)Z(N) = 0; and (iv) (CN(U), CN(U))U = 0 and (U, U)CN(U) = 0.

Proof. Let x, y ∈ N, a, b ∈ I and c ∈ J. We have (ab)c = −(ac)b = −(ca)b = (cb)a = (bc)a = −(ba)c
and so (ab + ba)c = 0, which proves (i)

Next, (i) implies 2ab = [a, b] + (a, b) ∈ lann I for any a, b ∈ I, which verifies (ii).
For (iii), from (ab + ba)Z(N) = 0 and (ab− ba)Z(N) = 0, we obtain (2ab)Z(N) = 0 and the

result follows.
As [CN(U), U] = 0, (iv) follows in view of (i).

Corollary 28. Let N be a fermionic BNA and a ∈ N. Then: (i) every commutative subalgebra I of N is
nilpotent and I3 = 0 (and so Z(N)3 = 0); and (ii) Na is a commutative right ideal of N and (Na)3 = 0.

Proof. Property (i) follows from Lemma 27(ii), and (ii) is a direct consequence of (xa)(ya) =

y((xa)a) + ((xa)y)a− (y(xa))a = (ya)(xa) and (xa)y = −(xy)a ∈ Na for any x, y ∈ N.

Lemma 29. Let N be a LSA and a, b ∈ N. Then: (i) [la, lb] = l[a,b]; (ii) if B is a Lie ideal of N, then
LB(N) := {lb | b ∈ B} is an ideal of L(N) (in particular, L(N) = LN(N)); (iii) la = 0 iff a ∈ lann N;
(iv) if Φ is an ideal of the Lie ring L(N), then ∆Φ = {a ∈ N | la ∈ Φ} is a Lie ideal of N; (v) if Φ is an ideal
of L(N), Φ = L∆Φ(N); and (vi) there is a Lie algebra isomorphism

L(N) 3 lx 7→ x + lann N ∈ NL/ lann N.

Proof. Verification of (i), (iii), (v) and (vi) is straightforward.
If a, b ∈ B and r ∈ N, then a − b, [a, r] ∈ B and so la − lb = la−b, [la, lr] = l[a,r] ∈ LB(N),

which proves (ii)
Property (iv) follows from the fact that la, lb ∈ Φ and lr ∈ L(N), then la−b = la − lb, l[a,r] =

[la, lr] ∈ Φ and therefore a− b, [a, r] ∈ ∆Φ.

Lemma 30. If B is a left ideal of a fermionic BNA N, then

RB(N) + RB(N)R(N) := {rb + ∑
x,t

rtrx is a finite sum | b, t ∈ B, x ∈ N}

is an ideal of the Lie algebra L(N) at most 2-step Lie nilpotent.

Proof. Let N be a fermionic BNA and a, x, y ∈ N. Then, (see [28]),

[ra, ry] = 2rary, (115)

[ra, rxry] = 0, (116)

[lx, ra] = rxa − rarx, (117)

[lx, rary] = rarxy + rxary. (118)

If a ∈ B, then xa ∈ B and the assertion holds.

Proposition 31. If N is a finite-dimensional fermionic BNA over F, AR(N) is a finite-dimensional nilpotent
algebra of NI ≤ 1 + dimF N.



Symmetry 2018, 10, 601 22 of 28

Proof. Let (e1, . . . , em) be a basis of the F-linear space N and ri := rei (i = 1, . . . , m). Every b =

b1 + · · ·+ bq ∈ AR(N) is a finite sum of summands of the form

bl = αlra1 · · · ratl
=

tl

∏
j=1

m

∑
i=1

βijri (1 ≤ l ≤ q)

for some βij ∈ F, where αl ∈ F and aj ∈ N (j = 1, . . . , t). If s is a positive integer,

bs = ∑
s1 + · · ·+ sq = s
s1 ≥ 0, . . . , sq ≥ 0

± s!
s1! · · · sq!

bs1
1 · · · b

sq
q .

Moreover,
bsl

l = ±∏tl
j=1(∑

m
i=1 βijri)

sl =

= ±∏tl
j=1 ∑ k1 + · · ·+ km = sl

k1 ≥ 0, . . . , km ≥ 0

sl !
k1!···km ! (β1jr1)

k1 · · · (βmjrm)km .

If s > m, there exists an integer p (1 ≤ p ≤ q) such that sp > 1, so there is an integer h (1 ≤ h ≤ m)

such that
kh ≥ 2.

Thus, bs = 0. By [86, Theorem], AR(N) is a nilpotent algebra. Obviously, AR(N) is finite-dimensional.

Proof of Proposition 24. Let a, x, y, z, t ∈ N.
To prove (i), observing from (115)–(118), it follows that

[rarx, ryrz](t) = rarxryrz(t)− ryrzrarx(t) = 0

and so
[XN , XN ] = [R(N), R(N)] + [R(N)R(N), R(N)R(N)] ⊆ R(N)R(N),

implying [[XN , XN ], XN ] = 0. The rest holds in view of (113) and Lemmas 29 and 30.
For (ii), we see that if la ∈ Der(NL), then

(ax)y− y(ax) + x(ay)− (ay)x = [la(x), y] + [x, la(y)] = la([x, y]) =
= a(xy− yx) = a(xy)− a(yx) =

= x(ay) + (ax)y− (xa)y− y(ax)− (ay)x + (ya)x

and we have (ya)x = (xa)y. Hence, lya = ryra and, owing to [28] (Claim 2) L(N) = L(N) + R(N).
Since R(N) ⊆ Der(NL), the assertion follows.

7. Lie Structure of Semiprime BNA’s

Lemma 32. If N is a BNA and charF 6= 2, then Z(N), [N, N] are ideals of N and [N, N]Z(N) = 0.

Proof. For a proof, see [75] (Lemmas 2.3, 2.6, 2.7).

An additive subgroup U of a BNA N is a Lie ideal of N if [U, N] ⊆ U. Clearly, U is a Lie ideal of
N iff U is an ideal of NL. Every ideal of N is a Lie ideal of N. An ideal B of N is called non-central if
B * Z(N).

Lemma 33. Let N be a BNA, A its ideal and U its Lie ideal. Then:

(i) the left annihilator lann A := {n ∈ N | nA = 0} of A in N is an ideal of N,
(ii) if charF 6= 2, then IN(U) := {u ∈ U | uN + Nu ⊆ U} is an ideal of N and IN(U) ⊆ U,
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(iii) if charF 6= 2, then [U, U] = 0 or U contains a non-central ideal of N,
(iv) if z ∈ Z(N), then zN := {zn | n ∈ N} is an ideal of N,
(v) T(U) := {x ∈ N | [x, N] ⊆ U} is a Lie ideal of N and U ⊆ T(U),
(vi) Z(U) is a Lie ideal of N,
(vii) Z(A) is an ideal of N,
(viii) the centralizer CN(A) := {z ∈ N | za = az for any a ∈ A} of A is an ideal of N,
(ix) CN(U) is a Lie ideal of N,
(x) if N is prime, then Z(N) = 0 or it is an associative and commutative domain.

Proof. Assume that n, x, y ∈ N, u, v ∈ U, a ∈ A. Let b ∈ lann A. Then, (i) follows from (bn)a =

(ba)n = 0 and

(nb)a = n(ba)− b(na) + (bn)a = (bn)a = (ba)n = 0.

Since bn, nb ∈ U for any b ∈ IN(U) and (nb)x = (nx)b, [x, nb] ∈ U, we conclude that x(nb) ∈ U
what means that nb ∈ IN(U). Moreover,

x(bn) + (bn)x = x(bn) + (bx)n = b(xn) + (xb)n = b(xn) + x(nb) ∈ U (119)

and x(bn) = (bn)x = [x, bn] ∈ U and so 2x(bn) ∈ U. Thus, x(bn) ∈ U and (bn)x ∈ U by (119). Hence
bn ∈ IN(U), which proves (ii).

To prove (iii), assume that [u, v] 6= 0 for some u, v ∈ U. Then,

[u, vx] = u(vx)− (vx)u =

= v(ux) + (uv)x− (vu)x− (vx)u =

= [u, v]x + v(ux)− (vu)x− (ux)v + (ux)v =

= [u, v]x + [v, ux] + [u, v]x,

which implies that [u, v]x ∈ U. Inasmuch as [u, v]x− x[u, v] = [[u, v], x] ∈ U, it follows that x[u, v] ∈ U.
This yields 0 6= [u, v] ∈ IN(U).

Property (iv) follows from the fact, zn ∈ Z(N) for any z ∈ Z(N) by Lemma 32, so x(zn) =

(zn)x = (nz)x = (nx)z = z(nx) ∈ zN.
If t ∈ T(U), then [t, x] ∈ U ⊆ T(U), which proves (v).
To verify (vi), simply observe that [[z, n], a] = −[[n, a], z]− [[a, z], n] = 0 for any z ∈ Z(A) implies

that [z, n] ∈ Z(A).
For (vii), we see that

(zn)a = (za)n = (az)n = (an)z = z(an) = a(zn) + [z, a]n = a(zn)

for any z ∈ Z(A), so zn ∈ Z(A). Then, nz = [n, z] + zn ∈ Z(A) owing to (vi).
Property (viii) follows from the fact that, if c ∈ CN(A), then

(cx)a = (ca)x = (ac)x = (ax)c = c(ax) = a(cx) + [c, a]x = a(cx)

and
(xc)a = (xa)c = c(xa) = x(ca) + [c, x]a =

= x(ac) + [c, x]a = a(xc) + [x, a]c + [c, x]a = a(xc).

Then, we have that [[c, x], u] = −[[x, u], c]− [[u, c], x] = 0 for any c ∈ CN(U), which proves (ix).
The proof of (x) follows since Lemma 32 implies [N, N]Z(N) = 0. Consequently, if Z(N) 6= 0,

[N, N] = 0 and (xy)n = (yx)n = (yn)x = x(yn). Hence, N is associative.
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In [26] (p. 10056), lann N is called the kernel ideal of an LSA N.

Lemma 34. Let N be a BNA, I, J its nonzero ideals such that [I, J] = 0 and charF 6= 2. Then:
(i) ([N, N]J)I = 0; and (ii) if, moreover, N is prime, then it is commutative.

Proof. Assume that a, b ∈ N, i ∈ I and j ∈ J. Then,

(bi)(aj) + ([a, b]j)i = (b(aj))i + ([a, b]j)i = (a(bj))i = (ai)(bj) =
= (bj)(ai) = (b(ai))j = (a(bi))j + ([b, a]i)j = (aj)(bi) + ([b, a]i)j

(120)

implies that 2([a, b]j)i = 0 and therefore ([N, N]J)I = 0. If N is prime, then [N, N]J = 0, so [N, N] = 0.

Lemma 35. Let A, B be ideals of a semiprime BNA N. Then: (i) if AB = 0, BA = 0; (ii) lann A ⊆ rann A,
where rann N := {x ∈ N | Nx = 0}; (iii) A ∩ lann A = 0; and (iv) rann N = 0 = lann N.

Proof. If AB = 0, (BA)2 = (BA)(BA) ⊆ AB = 0 and, by the semiprimeness of N, BA = 0 and this
proves (i).

Property (ii) follows directly since lann A is an ideal of N by Lemma 26(ii) and (A · (lann A))2 =

0, so A · (lann A) = 0.
Properties (iii) and (vi) are self-evident.

Proposition 36. Let N be a semiprime BNA, I its ideal, A its Lie ideal. Then: (i) if [I, I] 6= 0, then
[I, I] ∩ Z(N) = 0; (ii) if [I, I] = 0, then I ⊆ Z(N); (iii) if [A, A] ⊆ Z(N), then A is commutative;
(iv) Z(N/Z(N)) = 0; (v) N/Z(N) is a semiprime BNA; and (vi) Z(I) ⊆ Z(N).

Proof. Property (i) is obvious in view of Lemma 32. For (ii), assume that a, b ∈ N and i, j ∈ I.
By Lemma 34, ([N, N]I)I = 0. This yields ([N, N]I)2 = 0 and therefore [N, N]I = 0. Consequently,
[I, N]2 = 0 and, by the semiprimeness, [I, N] = 0.

Assume that a, b ∈ A, m, n ∈ N and z ∈ [A, A]. Then, z2 = 0 by Lemma 32 and zN is an ideal of
N by Lemma 33(iv). Since zn ∈ Z(N) by Lemma 32 and

(zn)(zm) = z((zn)m) + ((zn)z)m− (z(zn))m =

= z((zn)m) = ((zn)m)z = ((zn)z)m = (z2n)m = 0,

we deduce that (zN)2 = 0. This yields that z ∈ ann N = 0. Consequently, [A, A] = 0, thus proving (iii).
If Z2 is an inverse image of Z(N/Z(N)) in N, [N, Z2] ⊆ Z(N). Then, Z2 is an ideal of N and

[N, Z2]
2 = 0 by Lemma 32. Hence, Z2 = Z(N), which proves (iv).

For (v), we note that, if A is an ideal of N/Z(N) such that A2
= 0 and A is its inverse image in

N, then A2 ⊆ Z(N). Hence, [A, A] ⊆ Z(N) and so A is central by (ii) and (iii).
Finally, (vi) follows from (ii) and (iii).

Proof of Theorem 23. To prove (1), we first note that the hypotheses imply that [N, N] is a nonzero
ideal of N.

(a) Assume that N is a simple BNA and U is a nonzero proper Lie ideal of N. Then, Z(N) = 0 by
Lemma 32 and N = [N, N]. By Lemma 26(v), [U, U] = 0 in view of Lemma 33(iii). Let C := CN(U).
Then, C is a proper Lie ideal of N.

(a1) If [C, C] = N, then C = N and so U is central, a contradiction. Hence, C is commutative.
(a2) Assume that V is a commutative Lie ideal of N. If V ∩U = 0, then V ⊆ C. Assume that

V ∩U is nonzero and C1 := CN(V ∩U). As in a1), C1 6= N and C1 is commutative by Lemma 33(iii).
Since U ⊆ C ⊆ C1, we deduce that C = C1. Then, V ⊆ C and consequently C contains all commutative
Lie ideals of N. Hence, NL/C is a simple Lie algebra.
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(b) Let N be a prime BNA and A, B be nonzero Lie ideals of N such that [A, B] = 0. If [A, A] 6= 0
and [B, B] 6= 0, then, by Lemma 33(iii), there exist non-central ideals A0 and B0 such that A0 ⊆ A and
B0 ⊆ B and [A0, B0] = 0, contradicting Lemma 34(i). Therefore, we assume that A is commutative.
Let C := CN(A). If T(C) = N, then [N, N] ⊆ C, which leads to a contradiction in view of Lemma 34.
Hence, T(C) is proper in N. If [T(C), T(C)] 6= 0, T(C) contains a non-central ideal I0 of N by
Lemma 34(iii) and so A ⊆ CN([I0, N]). Since CN([I0, N]) is an ideal of N by Lemmas 32 and 33(viii),
we obtain a contradiction in view of Lemma 34. Thus, T(C) is commutative and C = T(C).

Let K an arbitrary Lie ideal of N such that [K, K] = 0. If K ∩ A = 0, then K ⊆ C. Assume that
K ∩ A is nonzero and C1 := CN(K ∩ A). As above, C1 = T(C1) is commutative and therefore C1 = C.
Hence, NL/C is a prime Lie algebra.

We prove (2) as follows: (a) Assume that NL is a simple Lie algebra. Then, (2) follows because
every ideal of N is its Lie ideal.

(b) Let NL be a prime Lie algebra and A, B be ideals of N such that AB = 0. Since [A, B] ⊆ A ∩ B
and [A ∩ B, A ∩ B] ⊆ AB, [A, B] = 0, A = 0 or B = 0.

(c) If A is a nonzero ideal of N and NL is semiprime, then A2 6= 0 because [A, A] ⊆ A2. Thus, the
proof is complete.

8. Conclusions

We proved that an algorithm based on Lie–Poisson structure analysis on the adjoint space to
toroidal Lie algebras allows for constructing new algebraic structures within which the corresponding
Hamiltonian operators exist and generate integrable multi-component and multidimensional
dynamical systems. We also showed that the well-known Balinsky–Novikov algebraic structure,
obtained as a condition for a matrix differential expression to be Hamiltonian, arises in our approach
as a derivation on the Lie algebra, naturally associated with a differential loop algebra. Using the
theory of nonassociative and associative left-symmetric algebras, we described algebraic properties
of new Balinsky–Novikov type algebras, including their fermionic version and important related
multiplicative and Lie structures.
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