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Abstract: This paper concerns three relationship between the recently proposed cubic sets and finite
state machines. The notions of cubic finite state machine (cubic FSM), a subsystem of cubic FSM and
cartesian composition (direct product, P-(R-) union, and P-(R-) intersection) of two subsystems of
cubic FSMs are introduced. We study the cartesian composition, direct product and union of two
subsystems of cubic FSMs is a subsystem of a cubic FSM. We provide many examples on each case.
We consider conditions for subsystem of cubic FSM to be both an internal cubic subsystem of cubic
FSM and an external cubic subsystem of cubic FSM.
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1. Introduction

Zadeh presented the idea of fuzzy subset of a set [1]. Fuzzy sets have been applied in disciplines
including social sciences, automata theory, medical sciences, pattern recognition, engineering, robotics,
statistics, artificial intelligence and decision making.

The authors introduced cubic fsm, cubic successor, cubic transformation semigroups and cubic
subsystems in their work [2]. Dorfler [3] introduced new type of product which is called the “Cartesian
composition” in his work. The concept of soft finite state machine is introduced in [4], in which
the authors applied soft set theory to fsms. Recently, Jun introduced “intuitionistic ffsms” and
“intuitionistic ftss”, as well as produced some interesting results (see [5-8]).

Jun, Kim and Yang introduced P-union and the P-intersection of internal cubic sets [9] and prove
that the “P-union and the P-intersection of external cubic sets need not be external cubic sets, and the
R-union and the R-intersection of internal (resp. external) cubic sets need not be internal (resp. external)
cubic sets”. Jun, Lee and Kang studied Relations between cubic p-ideals (respectively, a-ideals and
g-ideals) [10].

Hwang presented the concepts of fuzzy submachine, which are the generalized form of crisp
submachine of a fuzzy finite state machine [11]. Finite state machines are also studied in terms of some
generalized fuzzy sets, for instance bipolar fuzzy sets [12], N-fuzzy sets [13] and interval neutrosophic
sets [14]. Kumbhojkar and Chaudhari [15] gave different ways of the construction of products of ffsms.
The authors in [16] studied the concept of the “Cartesian composition of fuzzy finite state machines”
and showed that fuzzyfinite state machines and their Cartesian composition share many structural
properties. Algebraic techniques are very significant in the study of ffsms. Malik et al. [17-19] applied
algebraic techniques to fuzzy automata based on Wee’s concept.

Symmetry 2018, 10, 598; d0i:10.3390/sym10110598 www.mdpi.com/journal /symmetry


http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/10/11/598?type=check_update&version=1
http://dx.doi.org/10.3390/sym10110598
http://www.mdpi.com/journal/symmetry

Symmetry 2018, 10, 598 2 of 22

Liu, Mo, Qiu and Wang introduced seven ways of construction of products for “Mealy-type fuzzy
finite state machines” [20]. The authors proved that the covering relationship is held in the product of
factor machines.

In Section 2, we discuss basic definitions and results. In Section 3, we provide proofs of some
results on cubic subsystem of finite state machines. In Section 4, we define some operations on
subsystems of cubic finite state machines and some related results are provided. Finally, in Section 5,
we discuss some results related with external cubic subsystems of cubic finite state machines.

2. Preliminaries
Definition 1. [1] “A map Amap A : X — [0,1] is called a fuzzy set of X.”

An interval numberis 7 = [u~,u"], where 0 < u~ < u' < 1. Let D[0, 1] denote the family of all
closed subintervals of [0,1], i.e.,

Do) ={u=[u",ut]:u” <ut, foru,ut €l}.

/i

We define the operations ” = ”,” < ”,” =", ”“rmin” and "rmax” in case of two elements in
DJ0,1]. We consider two elements ## = [u~,u"] and o = [v~,v"] in D0, 1]. Then,

i) uwrvovifandonlyifu” >v andut > ot
ii) #<vifandonlyifu” <ov~ andu™ <o,

(
(
(iii) U =7vifand onlyifu~ = v~ andu™ = o™,
(iv) rmin{i, 0} = [min{u~, v}, min{u™, 0" }],
(

v) rmax{w,0} = [max{u~, v}, max{u’, v }].
It is obvious that (D[0,1], %, V, A) is a complete lattice with 0 = [0,0] as its least element and
1 = [1,1] as its greatest element. Let if; € D[0,1] where i € A. We define

rinfu; = {inf u;, inf ul’"] and rsupi; = |supu;, supu; |."
en ien ien ieA i€A ieA

Definition 2. [1] “An interval valued fuzzy set (briefly, IVF-set) 5 A on X is defined as
5a = {(x, 165 (x), 64 (x)]) 1 x € X},

where 5, (x) < 67 (x), forall x € X. Then, the ordinary fuzzy sets 5, : X — [0,1] and 57 : X — [0,1] are
called a lower fuzzy set and an upper fuzzy set of 5, respectively. Let 64(x) = [0, (x), 6 (x)]. Then,

A= {<x,gA(x)> tx € X},
where 64 : X —» D[0,1].”
Definition 3. [12] “Let X be a non-empty set. By a cubic set in X we mean a structure
A={{x8a(x), walx)x € X}
in which & 4 is an IVF set in X and w 4 is a fuzzy set in X.”

Definition 4. [12] “Let X be a non-empty set. A cubic set A = (6 4,w 1) in X is said to be an internal cubic
set (briefly, ICS) if
653(x) Swgy(x) < éj(x)

forallx € X.”
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Definition 5. [12] “Let X be a non-empty set. A cubic set A = (6 4,w 1) in X is said to be an external cubic
set (briefly, ECS) if

wa(x) & (34(x),85(x))
forallx € X.”

g {((5) ) )] e
o= {{e (g5 ) ] o

(c) QiA, = {<x (iQASA,) (x), <ieAwA’> (x)> |x € X} (R-intersection)
(d) QKAI- = {<x, <z’QAgAi> (x), <ié\AWAi> (x)> |x € X} (P-intersection)”

Definition 7. [2] “A cubic finite state machine (cubic FSM, shortly) is a triple F = (S, X, A), where S and
X are finite non-empty sets, called the set of states and the set of input symbols, respectively, and A = (d 4, w 4)
is a cubic setin S x X x 8.”

“Let X* denote the set of all words of elements of X of finite length. Let A denote the empty word
in X* and |x| denote the length of x for every x € X*.”

Definition 8. [2] “Let F = (S, X, A) be a cubic FSM. Define a cubic set A* = (6%, w*) in S x X* x S by
= L1 ifp=gq " { 0 ifp=q
Fp =4 PUIPET pag = )
Alp A1) { 00 prq 0 CAPMDEUT sy

and

oy (p.xa,q) =\/ [521(;9, X, 1) No4(r,a, q)}
reS

wy(p,xa,q) = N\ [wi(px,71)Vwal(raqg)
reS

forallp,ge S,x € X anda € X.”

Lemma 1. [2] “Let F = (S, X, A) be a cubic FSM. Then,
Falpxyq) =\ [Sa(pxr) A4 y,0)]
resS

wa(pxy,q) = N [wi(p.x,r)Vwar,yq)
reS

forallp,qg € Sand x,y € X*.”

3. Subsystems of Cubic Finite State Machines

Definition 9. [2] “Let F = (S, X, A) be a cubic FSM. Let A = <3j, w 7) be a cubic subset in S. Then,
(S, A, X, A) is called a cubic subsystem of F if and only if

6 1(q2) = rmin{é 3(q1),0.4(q1,4,q2)},

w 7(q2) < max{w z(q1), wa(q1,4,92)}-
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forallqy,qo € Sanda € X.”
If the cubic subsystem of F is (S, A X, A), then we simply write A for (S, A X, A).

Example 1. Let S = {qo,q1,92} and X = {a,b}. Let A = (6 4,w 1) be a cubic subset in S x X x S defined
by the table

SXXXxS oA wA

(q0,4,91)  [0.3,0.6] 0.7
(q1,4,92)  [0.1,05] 09
(92,a,90)  [0.2,04] 07
(40,b,92)  [0.1,0.6] 0.5
(q2,b,91)  [03,05] 0.7
(q1,b,91)  [03,04] 08

Thus, F = (S, X, A) is a cubic FSM. Let A = (3:2, w 7) be a cubic subset in S defined by the table

S 5.2 wﬁ
q0 [03,07] 03

¢ [04,07] 05
g2 [05,08 03

Then, the transition diagram is shown in Figure 1 as follows:

a([0.3,0.6],0.7)

q0
([0.3,0.7],0.3)

n
([0.4,0.7],0.5)

start —» b([0.3,0.4],0.8)

0
([0.5,0.8],0.3)

Figure 1. Cubic subsystem A.

Theorem 1. [2] “Let F = (S, X, A) be a cubic FSM. Let A = <5j, w 3) be a cubic subset in S. Then,
(S, A, X, A) is a cubic subsystem of F if and only if

0 7(q2) = rmin{é 3(q1), 8% (q1,x,92) },

w 3(q2) < max{w z(41), wa(q1, %, 42) }-
forallq,q2 € Sand x € X*.”
Definition 10. “Let F = (S, X, A) be a cubic FSM. Let p,q € S. Then, the immediate successor p of q is

defined as, if 3a € X such that 8 4(q,a, p) > [0,0] and w 4(q,a, p) < 1. p is called a successor of q if Ix € X*
such that 6% (q,x,p) > [0,0] and w*(q,x,p) <1.”
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Let g € S. Then, the set of successors of g is denoted by S(¢). If T is contained in S, then we define
S(T) = U{S(q)lg € T}.

Definition 11. “Let F = (S, X, A) be a cubic FSM and let ij = <3,7, wy) be a cubic subset of S. For all
x € X*, define the cubic subset ijx of S by

(05%)(q) = rs%p{rmin{gﬁ(p),&(n x,q)}}
pe

and
(wzx)(q) = ;relf{max{w (p),walp,x,q)}}”

Proposition 1. Let F = (S, X, A) be a cubic FSM. Then, for all cubic subsets ij = <gﬁ, wg) of S and for all
x,y € X*,
(5,7x)y = (5,7(xy) and (wﬁx)y = wﬁ(xy).

Proof. Consider a cubic subset 77 = <gﬁ, wy) of S. Letx,y € X*.Ifn =0, theny = A. Let g € S. Now,

(GA)(q) = 7 S‘fsp{r min{(35%)(p), 554 (p, A, 9)}}
pe

and

(wp)r)(g) = inf{max{(wyx)(p), 4(p. A q) 1}
= (wjx)(9)-
Hence, (gﬁx)/\ = gﬁx = gﬁ(x)t) and (wzx)A = wix = wj(xA). Assume that the result is true
Vu € X* such that [u| =n—1,n > Oandforalln Lety = ua, wherea eX,ue X and |u|=n—-1.
Letq € S. Then,

(G5(xy))(q) = (&5(xua) )a))(q)

= I’rsel,‘lsp {rmm r),64(r,a, q)}}

= rsup

{
suj rmm{rssetgp rmin &(x))(s),gjzl(s,u,r)}},gjl(r,a,q)}}
{6

= rsup {rmm ), sup {rmm{‘sA(S u,r),84(r,, q)}}}}
{

seS res
= rsup r min 5),0% (s, ua, q)}}
= ((65x)ua)(q)
= (( X)y) (),

and
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{max{
= inf {max {Sinf {max {(wﬁ(x))(s),wj(s, u,?)}},wj}(r,a,q)}}
{eed

reS cS
= inf {max {3 (9),inf fmax (5,0, w0 )} |

= inf {max {(wﬁ(x))(s),w;(s,ua,q)}}

= ((wjx)y)(q)-

Hence, (gﬁx)y = 3,7(xy) and (wpx)y = w

=)
—
=
<
\._/
O

Theorem 2. Let F = (S, X, A) be a cubic FSM and let i] = <gﬁ, wy) be a cubic subset of S. Then, 1] is
subsystem of F if and only gﬁx Cc gﬁ and wzx 2 wy forall x € X*.

Proof. Let 7] be a subsystem of F. Let x € X* and g € S. Then,

(65%)(q) = rsup{rmin{d;(p), % (p,x,4)}}

peS
< 5(q),
and
(wyx)(q) = ;gg{max{wry(r’)r%(nx,q)}}
= wi(q).

Hence, gﬁx C 5,7 and wzx 2 wy. Conversely, suppose gﬁx - 5,7 and wzx 2 wy for all x € X*.
Letg € S and x € X*. Now,

(05%)(q) = rs%p{rmin{gﬁ(r’),gi(n x,q)}}
pe

>,
=)
—
o
=
Y

> rmin{gﬁ(p),g;\(}?rxﬂ)}f

and

IN

(wyx)(q) = inf {max{w;(p), wi(p,x,9)}}

w5 (q) inf

< max{wg(p), wi(p,x,9)}.

Hence, 7] is a subsystem of F. [J

Definition 12. Let F = (S, X, A) be a cubic FSM. Let m = ([s, t],w) € D(0,1] x (0,1] and q € S. Define
the cubic subset g, X = (q(s 1 X, gwX) of S by

(950X)(p) = rs;(p{rmin{[sf t,04(q,a,p)}},

and
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(7 X)(p) = inf {max{w, wa(q,a,p)}},
forallp € S.

Definition 13. Let F = (S, X, A) be a cubic FSM. Let m = ([s, t],w) € D(0,1] x (0,1] and q € S. Define
the cubic subset q;u X* = (qs 1 X", qwX*) of S by

(44 X*) (p) = rsup{rmin{[s, ], 5%(q,a,p)}},

aeX*
and
(X) (p) = inf {max{w,ws(q,0,p)}),
forallp € S.

Theorem 3. Let F = (S,X, A) be a cubic FSM. Let m = ([s,t],w) € D(0,1] x (0,1] and q € S.
The following assertions hold.

(i) quX* = (g1 X", quX*) is a subsystem of F.
(i)  Supp(qgmX*) = S(q).

Proof. (i) Leth € S and x € X*. Now,

(qenX")x)(r) = rsup {rmin {(qeyX")(p), Ta(p,x.1) } }

peS
= rsup{rmin{rsup{rmin{[s,t},gj(q,y,p)}},gjl(p,x,h)}}
peS yeX*
= rsup {rmin{[s,t]rgil(q,yrP),gil(nx,h)}}
peS, yeX*
= rsup{rmin{[s,t],6%(q,yx, h)
s i s L35}
< rsupJrminil[s,t],6%(q,u,h
rsup {rmin {ls, 1,3 (g,,1) §
= (q49X")(h),

and

(X)) () = inf (max {(guX")(p), w4(p,x,1)})

;28 {max {ylenx*{max{m wA(q/y,p)}},wA(p, X, )}}

peanf g (max{w, wa(q.y,p), walp,x 1)1}

= inf {max{w,wi(q,yx,h)}}
yeX*

= inf {max{w,w’(q,uh)}}
ueX*

= (quX*)(h).

Hence, (g5 X")x C q(s 4 X* and (g X*)x 2 goX*. Thus, g, X* = (q[s 1 X, g0 X") is a subsystem
of F by Theorem 2.
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(ii) p € S(g) < Jx € X* such that

04(q,%,p) = [0,0]

& rsup{rmin{[s, t],85(4,%,p)}} = [0,0]

(9,0 X*)(p) = [0,0]
p € Supp(qnX*),

t ¢

and

(szl(q/ X, P) <1

xlen>g*{maX{w’ wi(gx,p)tr <1
(qqu*)(P) <1

p € Supp(gopX*).

o ¢te ¢

Thus, Supp(qgmX*) = S(q).
Theorem 4. Let F = (S, X, A) be a cubic FSM and let i = <§,7, wg) be a cubic subset of S. The following
assertions are equivalent.

(i) 7 is a subsystem of F.
(ii) quX* C 17, forall gy, Cij,9g€ S, m=([st],w) € D(0,1] x (0,1].
(iii) qmX C 7, forall g,y C 77,9 € S, m = ([s,t],w) € D(0,1] x (0,1].

Proof. (i) = (ii) : Letqu C 77,9 € S, m= ([s,t],w) € D(0,1] x (0,1]. Let p € S and y € X*. Then,
rmin{[s,1,33(q,y.p)} = rmin{q.q().5(a.y.p)}

=< rmin {&(9), 54(a,v,p) }
&5(p),

PN

and

max {w, wi(q,y,p)} = max{qu(q), wi(qy p)}
max {wﬁ(q), W (4,9, P)}
wi(p)-

v

v

Since 7 is a subsystem. Hence, 4, X* C 7.
(ii) = (iii) : This is Obvious.
(iii) = (i) : Let p,q € Sand a € X.1f 55(q) = [0,0] and wz(q) = 1 or 64(q,4,p) = [0,0] and
wA(g,a,p) =1then
5(p) = [0,0] = rmin {3;(q), 5a(g,0,p) },
and
wi(p) <1 =max {wy(q),wa(q,0,p) }.

Suppose gﬁ(q) # [0,0] and wy(q) # 1and 64(q,a,p) #[0,0)and w4(q,a, p) # 1. Let ESVﬁ(q) = [s, ]
and wj(q) = w. Then, g,; C 7. Thus, by the hypothesis, g,,X C 7. Thus,

o(p) = (q[s,t]X)(p)=rsg(p{rmin{[s,t],&(q,y,p)}}
ye
= rmin{[s,#],04(q,4,p)}

= rmin{[s,t],04(q,a,p)},

and
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g
=y
=
Y

(7 X)(p) = inf {max{w, wa(q,y,p)}}
ye

Y

max{w,w4(q,a,p)}
= max{w,wy(q,a,p)}.

Hence, 7] is a subsystem of F. [J

4. Operations on Subsystems of Cubic FSMs

In this section, we define some operations on subsystems of cubic FSMs and some related results
are provided.

Definition 14. Let A; = (& 4, wg,) and Ay = (6 4,7 W 3,) be two cubic subsystems of cubic FSMs Fy =

(81, X1, A1) and Fp = (Sy, Xp, Ap), respectively, and let X1 N Xp = @. The Cartesian composition of Ay and
Ay is denoted by
Ao Ay = (81 x S, A1 o Ay, X1 U Xp, Aj o Ap)

and is defined as follows:
" { (64, 004,)(q1,92) = rmin{ 5 (1), 5 (q2)}
Tl )@

orall (q1, €S XS,
wz 0wz )(q1q2) = max{wA (g Az(‘h)} f (91,92) € S1 X S,

(ii) { ((5“41 ©04,)((p1,7),a, (q1,7) 5 1(P1a,01) forall p1,q1 € S1,v € Spanda € X1 U X;.

)
) ) =

w4, 0 wa,)((p1,7),a,(q1,7)) = AAPhQQO
(iii) (5:41 o gAz)((r/ 2)/ /( /’72))

( )( (r,q2)) =

(Pzrﬂ 72)
11 p,, S, Sy and X7 U Xo.
W, 0w, (r, p2)oa, (7, 02) forall pr,q2 € Sy, v € Syanda € Xy >

A, (p2,a,92)

Example 2. Let A; = (¢ A YA, Yand Ay = (& Ay W, ) be two cubic subsystems of cubic FSMs F; =
(S1,X3, Aq) and Fy = (S, Xz, A2> respectively, as shown in Figure 2:

a([0.3,0.7),0.4)

b([0.1,0.3],0.7)

q2
([0.1,0.6],0.4)

([0.4,0.8],0.2) ([0.1,0.4],0.6)

b([0.1,0.5],0.8)
b([0.1,0.5],0.4)

a([0.2,0.5,0.7)

q4
(10.3,0.7],0.4)

q3

([0.2,0.6],0.3) b([0.2,0.7],0.5)

a([0.1,0.5],0.9)

Figure 2. Cubic subsystems Ay and A;.
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Then, their corresponding Cartesian composition Ay o Ay is shown in Figure 3

b([0.1,0.3],0.7)

1193 q293

start = ([02/0-@ b([0.1,0.5],0.8) @'6]’0'4)

a([0.2,0.5,0.7) a([0.1,0.5,0.9)

a([0.1,0.5],0.9)
(c0ls0°z0))v

qlh b([0.1,0.3],0.7) c ”

b([0.1,0.5],0.8)

Figure 3. Cartesian composition Ay o A for Example 2.
Clearly, Ay o Aj is a cubic subsystem of F; o Fs.
Proposition 2. The Cartesian composition of two cubic subsystems is a cubic subsystem.

Proof. Condition (i) of Definition 14 is obvious, therefore, we verify only Conditions (ii) and (iii). Let
q1 € Sp and P2,92 € S,. Then,

rmin{(35 005 )(q1, p2), (34, ©0.4,)((q1,P2), 2, (q1,92)) }
rmin{rmin{d; (q1),6 4, (p2)}, 64, (p2,0,42)}
rmin{d (q1),rmin{6 5 (p2), 5.4, (p2, 2, 02)}}

< rmin{d; (q1),6 4 (42)}
= (gﬁlogﬁz)(%/‘h)r
and
max{(w 7 ©w 7 )(q1, p2), (W4, © wa,)((91,p2), 4, (q1,92)) }
= max{max{wz (91),w g (p2)}, w4, (P2,4,92)}
= max{wz (q1), max{w g (p2), wa,(p2,2,92) }}
>

max{wjl(ql),wjz(qﬂ}
(wg, 0w z,)(q1,92)-

Similarly, we can prove Condition (iii) for p1,41 € S1,and p, € S;. O
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Definition 15. Let A; = <gﬁ1'wﬁ1> and A, = (5132,ij> be two cubic subsystems of cubic FSMs F =
(81, X1, Ay) and Fy = (S, Xo, Ap), respectively, and let X1 N Xo = @. The direct product of Ay and A, is
denoted by

./Zl X ./Zl\z = <S1 X Sz,./zl\l X ./Zl\z,Xl X Xz,.Al X ./42>

and is defined as follows:

. (5,1 x gg )(91,q2) = rmin{gﬁ (ql),gj (32)}
() 1 2 1 ) I ’ s .
1 { (wjl X wjz)(th,lh) = max{wﬁ] (‘71)"”/?2(‘72)} forall (q1,92) 1 X Sy

(i1) { (0 % 04)((pr,p2), %1, (91,02)) = O, (P1, 21, 01) forall (p1, p2) and (q1,q2) € Sy X Sy and

(Wa, X Wa,)((p1,P2), %1, (91,92)) = w4, (P1,X1,91)
x1 € Xj.
(iii) (0.4, X 6.4,)((P1,P2), %2, (1, 92)) = d.4,(P2, X2, 92)
(wa, X wa,)((p1,p2), %2, (91,G2)) = WA, (P2, X2, 92)
xp € Xo.
(iv) (04, % 0.4,)((p1,p2), (x1,%2), (91, 42)) = rmin{d 4, (p1, %1, 1), 0.4, (P2, X2, 42) } for all
(wWa, X wa,)(( ), (x1,x2), ( )) = max{w4, (p1,%1,91), w4, (P2, %2,92) }
Ay Ay )\\P1,P2), (X1, X2), (g1, 92 A1 (P1,X1,491), WA, (P2, X2, 42
(p1, p2) and (q1,92) € S1 X Sy and (x1,x2) € X1 x Xo.

forall (p1,p2) and (q1,92) € S1 X Sp and

Example 3. Let A; = <gﬁ1’wﬁ1> and A, = <gﬁz’wﬁz> be two cubic subsystems of cubic FSMs Fy =
(S1, X1, Ar) and F = (Sy, Xa, Ay), respectively, as shown in Figure 4

a([0.2,0.6],0.7)

4([0.3,0.7],0.2)

b([0.2,0.5],09)

b([0.1,0.3],0.8)

Figure 4. Cubic subsystems Aj and A,.

Then, their corresponding direct product Ay x Ay is shown in Figure 5
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a([0.2,0.6],0.7)

4243
(10.3,0.5],0.7)

q1493
([0.3,0.5],0.7)

start —

b([0.1,0.3],0.8)
(60°['0°2°0]) (q?)

Figure 5. Direct product Ay x A, for Example 3.

Clearly, .%T1 X ﬁz is a cubic subsystem of F1 X F;.
Proposition 3. The direct product of two cubic subsystems is a cubic subsystem.
Proof. The proof is similar to the proof of Proposition 2. [

Definition 16. Let A; = <F5;T],wj]) and Ay = (E&Z,wﬁz) be two cubic subsystems of cubic FSMs F; =
(81, X, A1) and Fy = (S, X, A3), respectively. The restricted direct product of Ay and Aj is denoted by

.A\l A ./21\2 = (&1 % 82,.,21\1 A\ A\Q,X,Al A Az)

and is defined as follows:
0 (64, A4 (q1,92) = rmin{d 4 (q1),8 4 (92)}
(W g, Awz)(q1,42) = max{w g (q1), w 4, (42)

(ii) (25:41 A gAz)((plr p2),x,(q91,92)) = rmin{gAl (p1,x, ql)/gAz(pzl x,q2)}
(wa, Nwa,)((p1,p2), %, (q1,92)) = max{w 4, (p1, X, q1), w4, (P2, X, 92)
(q1,92) € S1 x Spand x € X.

) forall (q1,92) € S1 % So.

) for all (p1,p2) and

Proposition 4. The restricted direct product of two cubic subsystems is a cubic subsystem.
Proof. The proof is similar to the proof of the Proposition 2. [

Definition 17. Let A; = <F5:31,wj1> and Ay = (gﬁz,wj) be two cubic subsystems of cubic FSMs F =
(81, X, Ay) and Fp = (S, X, Ap), respectively. The R-union ofﬁl and A, is denoted by

Ay Ug Ay = (81U Sy, Ay Ug Ay, X, Ay Ug Az)

and is defined as follows:
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N B o2.(p) fpes—&
(i) (07, Urdg)(p) = sz(p)~ ~ fpesH—35
rmax{dz (p),0 7, (p)} fpeSinNSG
wz (p) fpedi—S
(i) (wz Urwg)(p) =19 @gz(p) ifp €S~
min{w 7 (p),wz (p)} fpe&S NS,
B B { 4, (p,%,9) ifpges —S
(iii) (04, UROA,)(P,%,9) = 64,(p.x,9) ifp,g €S~ 8 forallx € X,
rmax{(04,(p,%,9),04,(p,x,9)} fp.qgESINS
{ w4, (p,x,q) ifp,q €S8 —S
(iv) (wa, URwa,)(p,x,q) =< wa,(px,q) ifp, g€ S — S forallx € X.
min{(wa, (p, x,q), wa,(p,x,9)}  ifp,ge &SNS,

P-union, R-intersection and P-intersection can be defined in a similar way.

Example 4. Let A; = (Eﬁl,a@@) and A, = <gﬁ2’wﬁz> be two cubic subsystems of cubic FSMs Fy =
(81, X1, A1) and Fp = (Sa, X3, Ay), respectively, as shown in Figure 6

b([0.1,0.4],0.7)

a([0.2,0.4],0.9)

qo0

1
([0.3,0.7],0.8)

([0.2,0.5],0.6)

start —

b([0.1,0.4],0.8)

(£0’[€0'1°0))v

q2

([0.3,0.5],0.4) a([0.2,0.4],0.5)

Figure 6. Cont.
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14 of 22
a([0.1,0.6],0.8)
Figure 6. Cubic subsystems .4; and Aj.
Then, their corresponding R-union Ay Ug A, is shown in Figure 7
a([0.2,0.6],0.8)
start — 70 g b(]0.1,0.4],0.7)
— n
= =
S e
oy =
S o
— 2
=5 o
= )
a([0.2,0.4],0.5)

Figure 7. Union of two subsystems Aj and A; for Example 4.

Clearly, fﬂ URr sz is a cubic subsystem of F1 Ug F.

Proposition 5. The R-union (respectively, P-union, R-intersection and P-intersection) of two cubic subsystems
is a cubic subsystem.
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Proof. Conditions (i) and (ii) of Definition 17 are obvious, therefore, we verify only Conditions (iii)
and (iv). Let p,q € SN Sy and x € X. Then,

rmin{(65 Ur 5 )(p), (6.4, Ur 04,)(p,a,9)}

rmm{fmax{5 ()84, (P} rmax{éa, (p,a,9),84,(p,a,q)}}
rmax{rmin{é 4 (p),04,(p,a,4)}, rmin{3 4 (p),04,(p,a,9)}}

< rmax{dy (9),0,(9)}
= ((SAl Ur Az><)
and
max{(w 5 Ur w3 )(p), (wa, Ur w4,)(p,a,q)}
= max{min{w 3 (p),w 3 (p)}, min{wy, (p,a,q),wa,(p,a,q)}}
= min{max{w g (p), w4, (p,a,q)}, max{w z (p), wa,(p,a,9)}}
=

min{w 7 (9),w z,(9)}
= (wg Urwg,)(q),

Thus, R-union of two cubic subsystems is a cubic subsystem. Similarly, we can prove that the
P-union, R-intersection and P-intersection of two cubic subsystems are cubic subsystems. [

5. Internal and External Cubic Subsystems
In this section, we discuss some results related with internal and external cubic subsystems of

cubic FSMs.

Definition 18. A subsystem .AI ( Jw > of a cubic FSM F = (S, X, A) is said to be an internal cubic
subsystem (IC-subsystem) if

@) 05(q) < wz(q) <0%(a),
(ii) 5A(q,a p) < wy(q,a, p) <h(q,a,p), forallg,pe Sanda € X.

Definition 19. A subsystem AE = (5
subsystem (EC-subsystem) if

(i) wg(q) ¢ ( a\ )
(ii) wu(q,a,p) & (64 (q,a P) 5l

28 W k) of acubic FSM F = (S, X, A) is said to be an external cubic
W(q,a,p)), forallg,p e Sanda € X.

Example 5. The cubic FSMs F! = (S, AL X, A) and FF = (S, AE X, A) are internal and external cubic
subsystems, respectively, as shown in Figures 8 and 9



Symmetry 2018, 10, 598 16 of 22

b([0.3,0.5],0.4)

q0

q1
([0.4,0.7],0.5)

([0.4,0.7],0.5)

start —

b([0.1,0.7],0.6)

q2

([0.3,0.8],0.4) a([0.2,0.6],0.5)

Figure 8. IC-Subsystem for Example 5.

a([0.4,0.5],0.3)

b([0.1,0.3],0.9)

q0

1
([0.4,0.6],0.2)

(]0.4,0.7],0.8)

start —

a([0.3,0.5],0.8)

a([0.2,0.5],09)

(60°[9°0'70])4

qz
([0.5,0.8],0.3)

Figure 9. EC-Subsystem for Example 5.

Theorem 5. Let F = (S, X, A) be a cubic FSM. Then, Al = <gﬁ’wﬁ> is an internal cubic subsystem of F
if

05(0) < wzi(g) < 0% (q) and &7 (q,x,p) < wi(q,x,p) < 64" (9,%,p)
forallg,p € Sand x € X*.
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Proof. Asitis given that 5’ (9) Sw () < (Si () and &% (q,x,p) < w¥(q,x,p) < &% (q,x,p). This

implies that A and Al = < NG Al> are 1nternal cubic subsets of S x X x § and S, respectively. Thus,

by Theorem 1, Al = (6 Zi-@ 1) is cubic subsystem of 7. Thus, Al =
subsystem of F. This completes the proof. [

< i A1> is an internal cubic

Theorem 6. Let F = (S, X, A) be a cubic FSM. Then, AE
if

( g AE> is an external cubic subsystem of F

w (@) 2 (95,(9), 65 (0)) and wiy(a,0,p) & (375 (9,0,0),5% (9,,))
forallq,p € Sand x € X*.

Proof. The proof is similar to the proof of Theorem 5. [J

Theorem 7. Let {AI (6 a Z[> li € A} be a family of IC-subsystems of cubic FSMs F; = (S;, X;, A;).

Then, |J p;t\ll is an IC-subsystem of F.
i€A

Proof. Since .,/4\11 is an IC-subsystem, we have éil(q) < wy (q) < (5}[(17) and 0,(q,a,p) <
wa(g,a,p) < 6%(q,a,p) fori € A. This implies that

(st = (e = (Ui

(155) 0= (o) = () o
ieA ieA ieA

Hence, U pZ} is an IC-subsystem of 7. [J
ieA

and

The following Example shows that the R-union of IC-subsystems need not be an IC-subsystem
(EC-subsystem).

Example 6. We have the following two IC-Subsystems in Figure 10:
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a([0.1,0.7],0.6)

a([0.2,0.8],0.7)

a([0.4,0.8],0.8)

b([0.2,0.8],0.8)

Then, we have:

a([0.4,0.8],0.6)

n
([0.6,0.9],0.4)

q2

start — (0.5,0.9],0.6)

a([0.2,0.8],0.7)

b([0.2,0.8],0.8)

Figure 10. Union of two IC-Subsystems for Example 6.

We provide a condition for the R-union of two IC-subsystems to be an IC-subsystem.

Theorem 8. Let ;l\{ and ;lz be IC-subsystems of cubic FSMs F1 = (81, X1, A1) and Fp = (S, Xa, Az),
respectively, such that

max{{}{(m)/f@ (12)} < min{w;{ (111),60;{ (92)}
and
max{d (q1,a1,p1),64,(q2,a2, p2) } < min{w 4, (91,41, p1), w4, (92, 32, p2) }

forall q1,p1 € S1, 92,92 € Sp, a1 € Xy and ay € Xj. Then, the R-union of two IC-subsystems is an
IC-subsystem.

Proof. ;q and .;lz be IC-subsystems which satisfy the conditions

rnax{5Z (q1),0

{0,575 ()} < minfe g (g2), w0 (2))

and
max{d (q1,a1,p1),04,(q2,02, p2) } < min{w,, (91,81, p1), w4, (G2, 82, P2) }
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for all g1, p1 € S1, g2, p2 € S, a1 € Xp and a, € X;. Since wz{(ql) € [(5;71(171),5}(171)},
1 1
wa,(q1,a1,p1) € [0, (q1,a1,p1), 07 (91,41, p1)] and wzi(92) € 0%, (42),0%,(92)}, w4, (92,32, p2) €
2

2
074,(92,82, 2), 64 (42, a2, p2)]-
This implies that

min{w;{(m)/w@(qz)} < max{fsi(ql)ﬁj@(%)}

IN

and min{w_Al (171/ ai, Pl)/ (,UAZ (‘72/ ap, PZ)} max{ézl (171/ ai, Pl)/ 522 (‘72/ an, PZ)}

Thus, from the given condition we get

IN

max{5ﬁ(ﬂl1)/5i§(qz)} min{w;{(ﬁh)/w;é (72)}

IN

max{f{}{ (91), 555 (92)}

max{d (91,81, p1),0 4, (92,02, p2)} < min{ws, (91,01, 1), w4, (g2, 92, p2) }
S max{&jl (41/ ai, pl)r 5:52 (QZ/ az, PZ)}

This shows that ;l\{ Ur ,/42 is an IC-subsystem. [

With the help of an example, it is easy to show that the P-union and R-union of EC-subsystems
need not be an EC-subsystem (IC-subsystem). We provide a condition for the P-union and R-union of
two EC-subsystems to be an EC-subsystem.

Theorem 9. Let ;l\f and ;l\f be EC-subsystems of cubic FSMs F1 = (S1, X1, A1) and Fp = (S, X3, Az),
respectively, such that

. max{(Sij (m)ﬁ;@ (92)},
i max{(S;T‘lE (ql)’(sj@f (32)} > max{w 7 (q1), @ 7 (92)}
>

- { min{%(ql)ré;@(qz)}, }

in{d—. L0
min{o (1), 0%,

+ —
min{ max{dy, (71,1, P1), 04, (92,02, p2) }, } > max{wy, (91,41, p1),w4,(q2,82,p2) }

max{éj1 (91,81, p1),6 4, (92,82, p2) }
> max mi.n{éjil (91,41, pl),éjiz(ch, a,p2)},
mm{&Al (91,21, p1), (5A2 (92,42, p2) }

forall g1, p1 € S1, q2,p2 € Sz, a1 € Xq and ay € Xp. Then, the P-union of two EC-subsystems is an
EC-subsystem.
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Theorem 10. Let ;l\f and .;l\f be EC-subsystems of cubic FSMs F1 = (S1, X1, A1) and Fp = (Sp, Xo, Az),
respectively, such that

. { max{éj@;(m),é;@(qz)}, }

max{éb5 (q1),6%.(q2)}

> min{w;f (q1), @ (q2)}
b AL

max{ min{(%(ql)ﬁé(%)}/ }

rr1ir1{(5;lAiE (q1), 5}@ (92)}

Y

+ —_
min{ max{‘sfh(ql’al’pl)"SAz(qz’@’PZ)}’} > min{wa, (71,01, p1), W A, (92,82, p2) }

max {0 (q1,a1,P1),6 4, (92,82, p2) }

> max mi'n{fsi:\rl(6111611,P1)15,712(42,ﬂ21792)},
min{d} (91,41, p1),04,(92, a2, p2) }

forall g1,p1 € S1,92,p2 € S2, a1 € Xy and ay € Xy. Then, the R-union of two EC-subsystems is an
EC-subsystem.

Theorem 11. Let A = (& 1w 1) be a subsystem of cubic FSM F = (S, X, A). If A is both an IC-subsystem
and an EC-subsystem, then

w 1(pi) € U(6 1) UL(S 3) and w 4(qi, xi, pi) € U(5.4) UL(34)
forall p;,q; € S and x; € X. Where

U(34) = {675 (pi)lpi € S}, L(6z) = {61 (pi)lpi € S}

and
U(d4) = {0750 xi, pi) (g0, X1, pi) € S x X x S}, L(6.4) = {64(qi,xi, i) (i, %1, pi) € S x X x S}.

Proof. Assume that A = (& 1w 7) is both an IC-subsystem and an EC-subsystem. Then, by definition,
we have

w 1(pi) € 16 1(pi), 6 (i)l wa(qi xi, pi) € [64(qi,xi, pi), 64 (a1 xi, pi)]
and
w1(pi) & (07(pi), 6 3 (pi), walai,xi, pi) & (84(qi, xi, pi), 04 (qi, X1, pi))-
Thus, w z(pi) = 0 4(pi) or wz(pi) = 6 1 (pi) and walqi, xi, pi) = 6,4(qi, i, pi) or wa(qi, Xi, pi) =
64(qi, xi, p;)- Hence,
w 7(pi) € U(6 1) UL(S 3) and w 4 (qy, xi, pi) € U(d4) UL(d4)
forall p;,q; € Sand x; € X. O

6. Conclusions

There are some generalizations in the concept of fuzzy sets, for example: vague sets, i.v fuzzy
sets, bipolar fuzzy set, intuitionistic fuzzy sets, etc. Fuzzy sets deal with the positive characteristics of
a problem while intuitionistic fuzzy sets deal with both the positive and negative characteristics of
a problem. In addition, it is not possible in many problems to give a certain fix membership grade
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to a certain thing on the basis of its positive characteristics so we use cubic sets, which generalize
the fuzzy sets and intutionistic fuzzy sets. Cubic sets are used for handling uncertainty if fuzzy sets,
intuitionistic fuzzy sets and i.v fuzzy sets fails in dealing with uncertainty. The main advantage of the
cubic set is that it contains more knowledge than the fuzzy set and the i.v fuzzy set. By using this idea,
we can deal with different problems occur in several areas and can take the finest choice by means of
cubic sets in different decision making problems.

A relationship between cubic sets and finite state machines was considered. We showed that
the cartesian composition, direct product and union of two subsystems of cubic FSMs is a subsystem
of a cubic FSM. Many Examples have been provided on each case. We considered conditions for
subsystem of cubic FSM to be both an internal cubic subsystem of cubic FSM and an external cubic
subsystem of cubic FSM.

Questions on the construction of “P-union, P-intersection, R-union, and R-intersection of cubic
subsystems of cubic FSMs” is still open. In addition, applying the concept of cubic set theory to the
switchboard state machines, which is a restricted and interesting class of FSMs, is still open.
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