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Abstract: As an extension of the intuitionistic fuzzy set (IFS), the recently proposed picture
fuzzy set (PFS) is more suitable to describe decision-makers’ evaluation information in
decision-making problems. Picture fuzzy aggregation operators are of high importance in
multi-attribute decision-making (MADM) within a picture fuzzy decision-making environment.
Hence, in this paper our main work is to introduce novel picture fuzzy aggregation operators.
Firstly, we propose new picture fuzzy operational rules based on Dombi t-conorm and t-norm (DTT).
Secondly, considering the existence of a broad and widespread correlation between attributes, we use
Heronian mean (HM) information aggregation technology to fuse picture fuzzy numbers (PFNs) and
propose new picture fuzzy aggregation operators. The proposed operators not only fuse individual
attribute values, but also have a good ability to model the widespread correlation among attributes,
making them more suitable for effectively solving increasingly complicated MADM problems. Hence,
we introduce a new algorithm to handle MADM based on the proposed operators. Finally, we apply
the newly developed method and algorithm in a supplier selection issue. The main novelties of this
work are three-fold. Firstly, new operational laws for PFSs are proposed. Secondly, novel picture
fuzzy aggregation operators are developed. Thirdly, a new approach for picture fuzzy MADM
is proposed.

Keywords: picture fuzzy set; Dombi t-conorm and t-norm; Heronian mean; picture fuzzy Dombi
Heronian mean; multi-attribute decision-making

1. Introduction

Decision-making science is an ancient and dynamic discipline. In daily life and the management
of companies, we often encounter decision-making problems. For example, an enterprise has to select
a most suitable supplier to gain a stable supply channel. Investment companies need to choose a
suitable investment project to achieve stable returns. An airline company needs to evaluate existing
routes to get the best one and calls others to learn about the route. In the past decades, research on
decision-making methods has attracted scholars’ interest in both theoretical and practical aspects [1–6].
Moreover, due to the complexity of decision-making problems, in most real-life decision-making issues
alternatives have to be evaluated from multiple perspectives instead of only one before determining the
most suitable alternative. Thus, multi-attribute decision-making (MADM) models have attracted the
attention of many scholars [7–15]. Nevertheless, expressing decision-makers’ decision information and
representing attribute values in MADM are always a huge challenge due to some reasons. The high
complexity of practical decision-making problems lead to the difficulties of representing attribute
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values properly. Secondly, influenced by subjective factors such as decision-makers’ own experience,
cognitive ability and intuition, it is often difficult for decision-makers to access all decision information.
Thus, representing attribute values appropriately and correctly is urgently required. Recently,
many scholars have been dedicated to investigating tools and methods that can describe uncertain
information and quite a few influential theories have been proposed. Zadeh [16] originally provided
an effective tool, called fuzzy set (FS), to deal with fuzziness and ambiguity. Since its introduction,
FS has received widespread attention in academia. Afterwards, Atanassov [17] pointed out the defects
of FSs and proposed an extension, called intuitionistic fuzzy set (IFS), which describes uncertain
phenomena and information from both membership and non-membership degrees. As IFSs have
obvious advantages in describing uncertain information and data, they have drawn much attention
among scholars. Xu [18] and Xu and Yager [19] introduced intuitionistic fuzzy simple weighted
average operators. Based on the Einstein t-conorm and t-norm, Wang and Liu [20] and Zhang [21]
proposed a series of intuitionistic fuzzy Einstein aggregation operators. To capture the interrelationship
between intuitionistic fuzzy numbers (IFNs), Xu and Yager [22] and Xia [23] proposed intuitionistic
fuzzy Bonferroni mean operators and their generalized forms, respectively. Qin and Li [24] proposed
intuitionistic fuzzy Maclaurin symmetric mean operators in order to reflect interrelationships among
multiple attributes. More work about IFSs in decision-making can be found in the literature [25–34].

IFSs have good ability to describe and express decision-makers’ fuzzy decision information in
MADM problems. Nevertheless, IFS still have drawbacks and there exist quite a few circumstances in
which it is improper to use IFS to express decision-makers’ preference information. The main reason is
that the indeterminacy degree is a default in IFSs, for example when a decision-maker uses an IFN
(0.3, 0.4) to denote his/her evaluation on a certain attribute. Then, the indeterminacy degree of the
decision-maker is 1 − 0.3 − 0.4 = 0.3. In other words, once the membership and non-membership
degrees are determined, the degree of indeterminacy is determined automatically. However, this is
quite different from actual MADM problems. In practical MADM, the indeterminacy degrees should
not be determined automatically and should be provided by decision-makers. For instance, if a
decision-maker thinks the membership degree is 0.2, the membership degree is 0.3, and the degree
that he/she is not sure about the result is 0.1, then the decision-maker’s evaluation value can be
denoted as (0.2, 0.1, 0.3), which cannot be represented by IFSs. In order to deal with this case,
Cuong [35] proposed the concept of picture fuzzy set (PFS), characterized by a positive membership
degree, a neutral membership degree, and a negative membership degree. Owing to their great
power to heal the inherent fuzziness of information, Le et al. [36] incorporated IFSs into fuzzy
inference systems to enhance their performance. Le [37] proposed generalized picture distance
measure and integrate it to a novel hierarchical picture fuzzy clustering method, called hierarchical
picture clustering. Owing to PFSs’ high capacity to model fuzziness, they also have been widely
applied in MADM [38–44]. Generally speaking, there are two types of MADM method. The first type
is based on traditional decision-making methods. In other words, the traditional methods are extended
to accommodate MADM with picture fuzzy information. Another type is from the aggregation
operators’ point of view. Aggregation operators can integrate attribute values into a collective values
and select the optimal alternative accordingly. To effectively aggregate picture fuzzy information,
a mass of picture fuzzy aggregation operators have been put forward for aggregating PFNs [45–48].
Although these operators have been successfully applied in picture fuzzy MADM, there are still
some limits. First of all, all the aforementioned picture fuzzy operators are based on algebraic
operational laws for PFNs. Thus, Wei [49] proposed some picture fuzzy Hamacher aggregation
operators based on Hamacher t-norm and t-conorm. The recently proposed Dombi t-conorm and
t-norm (DTT) [50] are powerful in information aggregation and, recently, have been applied to
the aggregation process of intuitionistic fuzzy information [51], hesitant fuzzy information [52],
and single-valued neutrosophic information [53]. However, Dombi t-conorm and t-norms have
not been applied to the aggregation of PFNs. Therefore, it is necessary to extend Dombi t-conorm
and t-norms to PFNs and propose new operational laws of PFNs. Secondly, all the picture fuzzy
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aggregation operators do not consider the interrelationship among PFNs. However, attributes in most
real MADM problems are correlated, meaning the interrelationship between attribute values should
be considered when aggregating them. Recently, a number of information aggregation tools that can
consider such interrelationships among aggregated variables have been raised to a model, such as
the Bonferroni mean (BM) [54] and Heronian mean (HM) [55]. In existing literature [56], scholars
have analyzed how HM has some meliority over BM. Hence, this paper uses HM as the essential
information aggregation method to fuse PFNs on the basis of DTT. Furthermore, we propose a new
method for MADM within the scope of PFSs.

The motivations and contributions of this paper are (1) to propose some new operations for PFNs
based on DTT; (2) to propose some picture fuzzy Dombi Heronian mean operators to aggregate PFNs;
and (3) to propose a novel approach to MADM. In order to do this, the remainder of this paper is
organized as follows. Section 2 briefly recalls some basic concepts of PFSs, DTT, and HM. Section 3
proposes a family of picture fuzzy Dombi Heronian mean operators. Section 4 proposes a novel
approach to MADM with picture fuzzy information. Section 5 provides an instance to verify the
proposed method and the last section summarizes the paper.

2. Preliminaries

2.1. Picture Fuzzy Sets

Definition 1 [35]. LetX be an ordinary fixed set, then a picture fuzzy set (PFS) A on the X is defined as:

A = {〈x, µA(x), ηA(x), νA(x)〉 |x ∈ X} (1)

where µA(x) ∈ [0, 1] is the degree of positive membership of A, ηA(x) ∈ [0, 1] is the degree of
neutral membership of A and νA(x) ∈ [0, 1] is the degree of negative membership of A, and µA(x),
ηA(x), νA(x) satisfy the following condition: 0 ≤ µA(x) + ηA(x) + νA(x) ≤ 1, ∀x ∈ X. Then for
x ∈ X, πA(x) = 1− (µA(x) + ηA(x) + νA(x)) could be called the degree of refusal membership of x in A.
For convenience, α = (µα, ηα, να) is called a PFN by Wei [45], which meets the condition µα ∈ [0, 1], ηα ∈ [0, 1],
να ∈ [0, 1] and 0 ≤ µα + ηα + να ≤ 1.

In addition, Wei [45] provided some operations for PFNs.

Definition 2 [45]. Let α = (µα, ηα, να), β =
(
µβ, ηβ, vβ

)
be any two PFNs and λ > 0, then the following

operational laws are defined:

1 α⊕ β =
(
µα + µβ − µαµβ, ηαηβ, νανβ

)
,

2 α⊗ β =
(
µαµβ, ηα + ηβ − ηαηβ, να + νβ − νανβ

)
,

3 λα =
(

1− (1− µα)
λ, ηα

λ, να
λ
)

,

4 αλ =
(

µα
λ, 1− (1− ηα)

λ, 1− (1− να)
λ
)

.

To compare any two PFNs, Wei [45] firstly introduced the concept score function and accuracy
function of PFNs.

Definition 3 [45]. Let α = (µα, ηα, να) be a PFN, then a score function S of α can be defined as:

S(α) = µα − να (2)

Definition 4 [45]. Let α = (µα, ηα, να) be a PFN, then an accuracy function Hof α can be defined as:
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H(α) = µα + ηα + να (3)

Based on the score function and accuracy function of PFNs, a comparison method of PFNs was
proposed by Wei [45].

Definition 5 [45]. Let α = (µα, ηα, να) and β =
(
µβ, ηβ, vβ

)
be any PFNs, S(α) and S(β) be the scores of α

and β, respectively, H(α) and H(β) be the accuracy of α and β, respectively. If S(α) > S(β), then α is larger
than β, denoted by α > β; if S(α) = S(β), then if H(α) = H(β), then α and β represent the same information,
denoted by α = β; if H(α) > H(β), then α is higher than β, denoted by α > β.

In the following, we introduce a new operational rule of PFNs on the basis of DTT Dombi [50] to
put forward a generator to produce Dombi t-norm and t-conorm, which are shown as follows:

Definition 6 [50]. Letλ be a positive real number and x, y ∈ [0, 1], the DTT are defined as follows:

TD,λ(x, y) =
1

1 +
((

1−x
x

)λ
+
(

1−y
y

)λ
)1/λ

(4)

T∗D,λ(x, y) = 1− 1

1 +
(( x

1−x
)λ

+
(

y
1−y

)λ
)1/λ

(5)

Based on the Dombi t-norm and t-conorm, we provide some new operations for PFNs.

Definition 7. Let α = (µα, ηα, να) and β =
(
µβ, ηβ, vβ

)
be any two PFNs, and λ, δ be two positive real

numbers, then:

(1) α⊕D β =

1− 1

1+

((
µα

1−µα

)λ
+

(
µβ

1−µβ

)λ
)1/λ , 1

1+

((
1−ηα

ηα

)λ
+

(
1−ηβ

ηβ

)λ
)1/λ , 1

1+
(
( 1−vα

vα )
λ
+( 1−vα

vα )
λ
)1/λ

;

(2) α⊗D β =

 1

1+
((

1−µα
µα

)λ
+
(

1−µα
µα

)λ
)1/λ , 1− 1

1+

((
ηα

1−ηα

)λ
+

(
ηβ

1−ηβ

)λ
)1/λ , 1− 1

1+

(
( vα

1−vα )
λ
+

(
vβ

1−vβ

)λ
)1/λ

;

(3) δα =

1− 1

1+
(

δ
(

µα
1−µα

)λ
)1/λ , 1

1+
(

δ
(

1−ηα
µα

)λ
)1/λ , 1

1+
(

δ( 1−vα
vα )

λ
)1/λ

;

(4) αδ =

 1

1+
(

δ
(

1−µα
µα

)λ
)1/λ , 1− 1

1+
(

δ
(

ηα
1−ηα

)λ
)1/λ , 1− 1

1+
(

δ( vα
1−vα )

λ
)1/λ

.

2.2. Heronian Mean

Definition 8 [55]. Letxi(i = 1, 2, . . . , n) be a series of crisp numbers. If,

HMp,q(x1, x2, . . . , xn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

xp
i xq

j

) 1
p+q

(6)
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where p, q ≥ 0, then HMp,q is called Heronian mean (HM) operator.

In addition, Yu [56] gave a definition of geometric Heronian mean (GHM):

Definition 9 [56]. Let xi(i = 1, 2, . . . , n) be a series of crisp numbers and p, q ≥ 0. If

GHMp,q(x1, x2, . . . , xn) =
1

p + q

n

∏
i=1

n

∏
j=i

(
pxi + qxj

) 2
n(n+1)

(7)

then GHMp,q is called the geometric Heronian mean (GHM) operator.

3. The Picture Fuzzy Dombi Heronian Mean Operators

In this section, we extend HM to the picture fuzzy environment and propose some novel picture
fuzzy aggregation operators.

3.1. The Picture Fuzzy Dombi Heronian Mean (PFDHM) Operator

Definition 10. Let p, q ≥ 0 and αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, and λ be a positive
real number. Then the picture fuzzy Dombi Heronian mean (PFDHM) operator is defined as follows:

PFDHMp,q(α1, α2, . . . , αn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

α
p
i ⊗D α

q
j

) 1
p+q

(8)

Theorem 1. Let p, q ≥ 0 and αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, and λ be a positive
real number. The aggregated value by PFDHM is still a PFN and,

PFDHMp,q(α1, α2, . . . , αn) =

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µi
µi

)λ
+q
(

1−µj
µj

)λ
)



1
λ

,

1−

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

ηi
1−ηi

)λ
+q
(

ηj
1−ηj

)λ
)



1
λ


,

1−

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

νi
1−νi

)λ
+q
(

νj
1−νj

)λ
)



1
λ




(9)

Proof. According to Definition 7, we have:

α
p
i =

 1

1+
(

p
(

1−µi
µi

)λ
) 1

λ

, 1− 1

1+
(

p
(

ηi
1−ηi

)λ
) 1

λ

, 1− 1

1+
(

p
(

νi
1−νi

)λ
) 1

λ

,

α
q
j =

 1

1+

(
q
(

1−µj
µj

)λ
) 1

λ

, 1− 1

1+

(
q
(

ηj
1−ηj

)λ
) 1

λ

, 1− 1

1+

(
q
(

νj
1−νj

)λ
) 1

λ

.

(10)
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Let 1−µi
µi

= Ai,
1−µj

µj
= Aj,

ηi
1−ηi

= Bi,
ηj

1−ηj
= Bj,

νi
1−νi

= Ci,
νj

1−νj
= Cj, then,

α
p
i =

(
1

1+q
1
λ Ai

, 1− 1

1+q
1
λ Bi

, 1− 1

1+q
1
λ Ci

)
,

α
q
j =

(
1

1+q
1
λ Aj

, 1− 1

1+q
1
λ Bj

, 1− 1

1+q
1
λ Cj

)
.

(11)

Thereafter,

α
p
i ⊗D α

q
j =

 1

1 +
(

pAi
λ + qAj

λ
) 1

λ

, 1− 1

1 +
(

pBi
λ + qBj

λ
) 1

λ

, 1− 1

1 +
(

pCi
λ + qCj

λ
) 1

λ

, (12)

n
∑
j=i

α
p
i ⊗D α

q
j =

1− 1/

1 +

(
n
∑
j=i

1
(pAi

λ+qAj
λ)

)1/λ
 , 1/

1 +

(
n
∑
j=i

1
(pBi

λ+qBj
λ)

)1/λ
 ,

1/

1 +

(
n
∑
j=i

1
(pCi

λ+qCj
λ)

)1/λ
 (13)

And,

n
∑

i=1

n
∑
j=i

α
p
i ⊗D α

q
j =

1− 1/

1 +

(
n
∑

i=1

n
∑
j=i

1
(pAi

λ+qAj
λ)

)1/λ
 , 1/

1 +

(
n
∑

i=1

n
∑
j=i

1
(pBi

λ+qBj
λ)

)1/λ
 ,

1/

1 +

(
n
∑

i=1

n
∑
j=i

1
(pCi

λ+qCj
λ)

)1/λ
 (14)

Then,

2
n(n+1)

n
∑

i=1

n
∑
j=i

α
p
i ⊗D α

q
j =

1− 1/

1 +

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

1
(pAi

λ+qAj
λ)

)1/λ
 ,

1/

1 +

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

1
(pBi

λ+qBj
λ)

)1/λ
 ,

1/

1 +

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

1
(pCi

λ+qCj
λ)

)1/λ


(15)

Furthermore,(
2

n(n+1)

n
∑

i=1

n
∑
j=i

α
p
i ⊗D α

q
j

) 1
p+q

=

1/

1 +

(
n(n+1)
2(p+q) × 1/

(
n
∑

i=1

n
∑
j=i

1
(pAi

λ+qAj
λ)

))1/λ
 ,

1− 1/

1 +

(
n(n+1)
2(p+q) × 1/

(
n
∑

i=1

n
∑
j=i

1
(pCi

λ+qCj
λ)

))1/λ
 (16)

We put 1−µi
µi

= Ai,
1−µj

µj
= Aj,

ηi
1−ηi

= Bi,
ηj

1−ηj
= Bj,

νi
1−νi

= Ci,
νj

1−νj
= Cj into (26), then we have:
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PFDHMp,q(α1, α2, . . . , αn) =

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µi
µi

)λ
+q
(

1−µj
µj

)λ
)



1
λ

,

1−

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

ηi
1−ηi

)λ
+q
(

ηj
1−ηj

)λ
)



1
λ


,

1−

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

νi
1−νi

)λ
+q
(

νj
1−νj

)λ
)



1
λ





(17)

Thereby completing the proof. �

Example 1. Suppose α1 = (0.5, 0.1, 0.3), α2 = (0.5, 0.2, 0.2), α3 = (0.2, 0.5, 0.2) are three PFNs, p = 1,
q = 2 and λ = 2, then we use the PFDHM to aggregate the three IFNs. The steps are as follows.

Since,

n
∑

i=1

n
∑
j=i

1(
p
(

1−µi
µi

)λ
+q
(

1−µj
µj

)λ
) =

3
∑

i=1

3
∑
j=i

1(
1×
(

1−µi
µi

)2
+2×

(
1−µj

µj

)2
) ,

= 1(
1×
(

1−µ1
µ1

)2
+2×

(
1−µ1

µ1

)2
) + 1(

1×
(

1−µ1
µ1

)2
+2×

(
1−µ2

µ2

)2
) + 1(

1×
(

1−µ1
µ1

)2
+2×

(
1−µ3

µ3

)2
) ,

+ 1(
1×
(

1−µ2
µ2

)2
+2×

(
1−µ2

µ2

)2
) + 1(

1×
(

1−µ2
µ2

)2
+2×

(
1−µ3

µ3

)2
)+ 1(

1×
(

1−µ3
µ3

)2
+2×

(
1−µ3

µ3

)2
)= 1.0814,

(18)

Then, we have,  n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µi
µi

)λ
+q
(

1−µj
µj

)λ
)



1
λ

=

 3×(3+1)
2×(1+2) × 1/

 3
∑

i=1

3
∑
j=i

1(
1×
(

1−µi
µi

)2
+2×

(
1−µj

µj

)2
)



1
2

= 1.3599.

(19)

Furthermore, we can have,

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µi
µi

)λ
+q
(

1−µj
µj

)λ
)



1
λ



= 1/

1 +

 3×(3+1)
2×(1+2) × 1/

 3
∑

i=1

3
∑
j=i

1(
1×
(

1−µi
µi

)2
+2×

(
1−µj

µj

)2
)



1
2
= 0.4237.

(20)
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Similarly, we have,

1−

1/

1 +

n(n + 1)
2(p + q)

× 1/

 n

∑
i=1

n

∑
j=i

1(
p
(

ηi
1−ηi

)λ
+ q
(

ηj
1−ηj

)λ
)



1
λ


= 0.1811 (21)

And,

1−

1/

1 +

n(n + 1)
2(p + q)

× 1/

 n

∑
i=1

n

∑
j=i

1(
p
(

νi
1−νi

)λ
+ q
(

νj
1−νj

)λ
)



1
λ


= 0.2229. (22)

Finally, we get PFDHMp,q(α1, α2, α3) = (0.4237, 0.1811, 0.2229).
Moreover, PFDHM has the following properties:

Theorem 2. (Idempotency) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, if αi(i = 1, 2, . . . , n)
are equal, that is, αi = α = (µ, η, ν), then,

PFDHMp,q(α1, α2, . . . , αn) = α (23)

Proof. Let PFDHMp,q(α1, α2, . . . , αn) = (µα, ηα, να), we will prove that PFDHMp,q(α1, α2, . . . , αn) =

(µ, η, ν).
Since αi = α = (µ, η, ν) and αj = α = (µ, η, ν), we have:

µα = 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µi
µi

)λ
+q
(

1−µj
µj

)λ
)



1
λ


= 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µ
µ

)λ
+q
(

1−µ
µ

)λ
)
 1

λ


= 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1((
1−µ

µ

)λ
(p+q)

)
 1

λ


= 1/

1 +

 n(n+1)
2(p+q) × 1/

 n(n+1)

2
((

1−µ
µ

)λ
(p+q)

)
 1

λ


= 1/

(
1 +

((
1−µ

µ

)λ
) 1

λ

)
= µ

(24)

Similarly, we can prove that ηα = η, να = ν, so we can have (µ, η, ν) = (µα, ηα, να). Thus,
Theorem 2 is proved. �

Theorem 3. (Monotonicity) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) and α′ i = (µ′ i, η′ i, ν′ i)(i = 1, 2, . . . , n) be
two collections of PFNs, if αi ≤ α′ i, for all i, then,

PFDHMp,q(α1, α2, . . . , αn) ≤ PFDHMp,q(α′1, α′2, . . . , α′n
)

(25)
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Proof. Let PFDHMp,q(α1, α2, . . . , αn) = (µα, ηα, να) and PFDHMp,q(α′1, α′2, . . . , α′n) = (µ′, η′, ν′).
Since µi ≤ µ′ i and µj ≤ µ′ j, then we have:

1− µi
µi

≥
1− µ′ i

µ′ i
,
1− µj

µj
≥

1− µ′ j
µ′ j

. (26)

Thereafter,  n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µi
µi

)λ
+q
(

1−µj
µj

)λ
)



1
λ

≥

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µ′ i
µ′ i

)λ

+q
(

1−µ′ j
µ′ j

)λ
)



1
λ

(27)

and,

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µi
µi

)λ
+q
(

1−µj
µj

)λ
)



1
λ

≥ 1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µ′ i
µ′ i

)λ

+q
(

1−µ′ j
µ′ j

)λ
)



1
λ

(28)

Thus,

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µi
µi

)λ
+q
(

1−µj
µj

)λ
)



1
λ



≤ 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−µ′ i
µ′ i

)λ

+q
(

1−µ′ j
µ′ j

)λ
)



1
λ

 ,

(29)

which means µ ≤ µ′, similarly, we can also prove that η ≤ η′ and ν ≤ ν′. Therefore, the proof of
Theorem 3 is completed. �

Theorem 4. (Boundedness) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, if α+ =(
max

i
(µi), min

i
(ηi), min

i
(νi)

)
and α− =

(
min

i
(µi), max

i
(ηi), max

i
(νi)

)
, then,

α− ≤ PFDHMp,q(α1, α2, . . . , αn) ≤ α+ (30)

Proof. From Theorem 2 we can have:

PFDHMp,q(α−, α−, . . . , α−
)
= α−,PFDHMp,q(α+, α+, . . . , α+

)
= α+. (31)

Thereafter,

PFDHMp,q(α−, α−, . . . , α−
)
≤ PFDHMp,q(α1, α2, . . . , αn) ≤ PFDHMp,q(α+, α+, . . . , α+

)
(32)
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Therefore, we can get α− ≤ PFDHMp,q(α1, α2, . . . , αn) ≤ α+. �

3.2. The Picture Fuzzy Dombi Weighted Heronian Mean (PFDWHM) Operator

Definition 13. Let p, q ≥ 0 and αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs. If,

PFDWHMp,q(α1, α2, . . . , αn) =

(
2

n(n + 1)

n

∑
i=1

n

∑
j=i

(ωiαi)
p ⊗D

(
ωjαj

)q
) 1

p+q

(33)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of αi(i = 1, 2, . . . , n), satisfying ωi ∈ [0, 1], ∑n

i=1 ωi = 1,
then PFDWHMp,q is called the picture fuzzy Dombi weighted Heronian mean (PFDWHM) operator.

Theorem 5. Let p, q ≥ 0, λ > 0 and αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs. The aggregated
value by PFDWHM is still a PFN and,

PFDWHMp,q(α1, α2, . . . , αn) =

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
µi

1−µi

)λ + q

ωj

(
µj

1−µj

)λ





1
λ

 ,

1− 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
1−ηi

ηi

)λ + q

ωj

(
1−ηj

ηj

)λ





1
λ

 ,

1− 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
1−νi

νi

)λ + q

ωj

(
1−νj

νj

)λ





1
λ




(34)

Proof. According to Definition 7, we have,

ωiαi =

1− 1

1+
(

ωi

(
µi

1−µi

)λ
)1/λ , 1

1+
(

ωi

(
1−ηi

ηi

)λ
)1/λ , 1

1+
(

ωi

(
1−νi

νi

)λ
)1/λ

,

ωjαj =

1− 1

1+

(
ωj

(
µj

1−µj

)λ
)1/λ , 1

1+

(
ωj

(
1−ηj

ηj

)λ
)1/λ , 1

1+

(
ωj

(
1−νj

νj

)λ
)1/λ


(35)

Let µi
1−µi

= Ai,
µj

1−µj
= Aj,

1−ηi
ηi

= Bi,
1−ηj

ηj
= Bj,

1−νi
νi

= Ci,
1−νj

νj
= Cj, then,

(ωiαi)
p =

(
1

1+
(

p/ωi Aλ
i

)1/λ , 1− 1

1+
(

p/ωi B
λ
i

)1/λ , 1− 1

1+
(

p/ωiC
λ
i

)1/λ

)
,

(
ωjαj

)q
=

(
1

1+
(

q/ωj A
λ
j

)1/λ , 1− 1

1+
(

q/ωjB
λ
j

)1/λ , 1− 1

1+
(

q/ωjC
λ
j

)1/λ

) (36)

Thereafter,

(ωiαi)
p ⊗D

(
ωjαj

)q
=

(
1

1+
(

p/ωi Aλ
i + q/ωj A

λ
j

)1/λ , 1− 1

1+
(

p/ωi B
λ
i + q/ωjB

λ
j

)1/λ ,

1− 1

1+
(

p/ωiC
λ
i + q/ωjC

λ
j

)1/λ

) (37)



Symmetry 2018, 10, 593 11 of 27

n
∑

i=1

n
∑
j=i

(ωiαi)
p ⊗D

(
ωjαj

)q
=

1− 1/

1 +

(
n
∑

i=1

n
∑
j=i

1(
p/ωi Aλ

i + q/ωj A
λ
j

)
)1/λ

 ,

1/

1 +

(
n
∑

i=1

n
∑
j=i

1(
p/ωi B

λ
i + q/ωjB

λ
j

)
)1/λ

 ,

1/

1 +

(
n
∑

i=1

n
∑
j=i

1(
p/ωiC

λ
i + q/ωjC

λ
j

)
)1/λ


(38)

and,

2
n(n+1)

n
∑

i=1

n
∑
j=i

(ωiαi)
p ⊗D

(
ωjαj

)q
=

1− 1/

1 +

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

1(
p/ωi Aλ

i + q/ωj A
λ
j

)
)1/λ

 ,

1/

1 +

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

1(
p/ωi B

λ
i + q/ωjB

λ
j

)
)1/λ

 ,

1/

1 +

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

1(
p/ωiC

λ
i + q/ωjC

λ
j

)
)1/λ


(39)

Furthermore, (
2

n(n+1)

n
∑

i=1

n
∑
j=i

(ωiαi)
p ⊗D

(
ωjαj

)q
) 1

p+q

=

1/

1 +

(
n(n+1)
2(p+q) × 1/

n
∑

i=1

n
∑
j=i

1(
p/ωi Aλ

i + q/ωj A
λ
j

)
)1/λ

 ,

1− 1/

1 +

(
n(n+1)
2(p+q) × 1/

n
∑

i=1

n
∑
j=i

1(
p/ωi B

λ
i + q/ωjB

λ
j

)
)1/λ

 ,

1− 1/

1 +

(
n(n+1)
2(p+q) × 1/

n
∑

i=1

n
∑
j=i

1(
p/ωiC

λ
i + q/ωjC

λ
j

)
)1/λ



(40)

We put µi
1−µi

= Ai,
µj

1−µj
= Aj,

1−ηi
ηi

= Bi,
1−ηj

ηj
= Bj,

1−νi
νi

= Ci,
1−νj

νj
= Cj into (45), then we have:

(
2

n(n+1)

n
∑

i=1

n
∑
j=i

(ωiαi)
p ⊗D

(
ωjαj

)q
) 1

p+q

=

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
µi

1−µi

)λ + q

ωj

(
µj

1−µj

)λ





1
λ

,

1− 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
1−ηi

ηi

)λ + q

ωj

(
1−ηj

ηj

)λ





1
λ

,

1− 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
1−νi

νi

)λ + q

ωj

(
1−νj

νj

)λ





1
λ




(41)

Thus, the proof of Theorem 5 is completed. �
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Example 2. Suppose α1 = (0.5, 0.1, 0.3), α2 = (0.5, 0.2, 0.2), α3 = (0.2, 0.5, 0.2) are three PFNs and
ω = (0.2, 0.3, 0.5)T is the weight vector of them. Suppose p = 1, q = 1 and λ = 2, then we use the PFDWHM
to aggregate the three IFNs. The steps are as follows.

Since,

n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
µi

1−µi

)λ + q

ωj

(
µj

1−µj

)λ

 =
3
∑

i=1

3
∑
j=i

1/

 1

ωi

(
µi

1−µi

)2 +
1

ωj

(
µj

1−µj

)2


= 1/

(
1

ω1

(
µ1

1−µ1

)2 +
1

ω1

(
µ1

1−µ1

)2

)
+ 1/

(
1

ω1

(
µ1

1−µ1

)2 +
1

ω2

(
µ2

1−µ2

)2

)
+ 1/

(
1

ω1

(
µ1

1−µ1

)2 +
1

ω3

(
µ3

1−µ3

)2

)

+1/

(
1

ω2

(
µ2

1−µ2

)2 +
1

ω2

(
µ2

1−µ2

)2

)
+ 1/

(
1

ω2

(
µ2

1−µ2

)2 +
1

ω3

(
µ3

1−µ3

)2

)

+1/

(
1

ω3

(
µ3

1−µ3

)2 +
1

ω3

(
µ3

1−µ3

)2

)
= 0.4410,

(42)
Then, we have:  n(n+1)

2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
µi

1−µi

)λ + q

ωj

(
µj

1−µj

)λ





1
λ

=

 3×(3+1)
2×(1+1) × 1/

 3
∑

i=1

3
∑
j=i

1/

 1

ωi

(
µi

1−µi

)2 +
1

ωj

(
µj

1−µj

)2





1
2

= 2.6082.

(43)

Furthermore, we can get:

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
µi

1−µi

)λ + q

ωj

(
µj

1−µj

)λ





1
λ


= 1/

1 +

 3×(3+1)
2×(1+1) × 1/

 3
∑

i=1

3
∑
j=i

1/

 1

ωi

(
µi

1−µi

)2 +
1

ωj

(
µj

1−µj

)2





1
2


= 0.2771.

(44)

Similarly, we have,

1− 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
1−ηi

ηi

)λ + q

ωj

(
1−ηj

ηj

)λ





1
λ

= 0.3063 (45)

and,

1− 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
1−νi

νi

)λ + q

ωj

(
1−νj

νj

)λ





1
λ

= 0.3352. (46)
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Finally we get PFDWHMp,q(α1, α2, α3) = (0.2771, 0.3063, 0.3352).
Moreover, PFDWHM has the following properties:

Theorem 6. (Monotonicity) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) and α′ i = (µ′ i, η′ i, ν′ i)(i = 1, 2, . . . , n) be
two collections of PFNs, if αi ≤ α′ i, for all i, then,

PFDWHMp,q(α1, α2, . . . , αn) ≤ PFDWHMp,q(α′1, α′2, . . . , α′n). (47)

Theorem 7. (Boundedness) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, if α+ =(
µ+

max, η+
min, ν+min

)
and α− =

(
µ−min, η−max, ν−max

)
, λ > 0 where,

µ+
max = 1/

1 +

(
n(n+1)
2(p+q) ×

( 1−max
i

(µi)

max
i

(µi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

))) 1
λ

 ,

η+
min = 1− 1/

1 +

 n(n+1)
2(p+q) ×

(
min

i
(ηi)

1−min
i

(ηi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

)) 1
λ

 ,

ν+min = 1− 1/

1 +

 n(n+1)
2(p+q) ×

(
min

i
(νi)

1−min
i

(νi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

)) 1
λ

 ,

µ−min = 1/

1 +

(
n(n+1)
2(p+q) ×

( 1−min
i
(µi)

min
i
(µi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

))) 1
λ

 ,

η−max = 1− 1/

1 +

 n(n+1)
2(p+q) ×

(
max

i
(ηi)

1−max
i

(ηi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

)) 1
λ

 ,

v−max = 1− 1/

1 +

 n(n+1)
2(p+q) ×

(
max

i
(νi)

1−max
i

(νi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

)) 1
λ



(48)

Then,
α− ≤ PFDWHMp,q(α1, α2, . . . , αn) ≤ α+. (49)

In what follows, we will propose some geometric aggregation operators based on Dombi
operations for PFNs.

3.3. The Picture Fuzzy Dombi Geometric Heronian Mean (PFDGHM) Operator

Definition 14. Let p, q ≥ 0 and αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, and λ be a positive
real number. If,

PFDGHMp,q(α1, α2, . . . , αn) =
1

p+q

n
∏
i=1

n
∏
j=i

(
pαi ⊕D qαj

) 2
n(n+1)

(50)

then PFDGHMp,q is called the picture fuzzy Dombi geometric Heronian mean (PFDGHM) operator.

Based on the operational laws of the PFNs described in Definition 7, we can obtain the aggregation
result shown as Theorem 8.
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Theorem 8. Let p, q ≥ 0 and αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, and λ be a positive real
number. The aggregated value by PFDGHM is still a PFN and,

PFDGHMp,q(α1, α2, . . . , αn) =

1−

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

µi
1−µi

)λ
+q
(

µj
1−µj

)λ
)



1
λ


 ,

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−ηi
ηi

)λ
+q
(

1−ηj
ηj

)λ
)



1
λ

,

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1(
p
(

1−νi
νi

)λ
+q
(

1−vj
νj

)λ
)



1
λ


.

(51)

The proof is similar to that of Theorem 1.
It is easy to prove that PFDGHM also has the following properties:

Theorem 9. (Idempotency) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, if αi(i = 1, 2, . . . , n)
are equal, that is, αi = α = (µ, η, ν), then,

PFDGHMp,q(α1, α2, . . . , αn) = α. (52)

Theorem 10. (Monotonicity) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) and α′ i = (µ′ i, η′ i, ν′ i)(i = 1, 2, . . . , n) be
two collections of PFNs, if αi ≤ α′ i, for all i, then,

PFDGHMp,q(α1, α2, . . . , αn) ≤ PFDGHMp,q(α′1, α′2, . . . , α′n) (53)

Theorem 11. (Boundedness) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, if α+ =(
max

i
(µi), min

i
(ηi), min

i
(νi)

)
and α− =

(
min =

i
(µi), max

i
(ηi), max

i
(νi)

)
, then,

α− ≤ PFDGHMp,q(α1, α2, . . . , αn) ≤ α+ (54)

3.4. The Picture Fuzzy Dombi Weighted Geometric Heronian Mean (PFDWGHM) Operator

Definition 15. Let p, q ≥ 0 and αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs. If,

PFDWGHMp,q(α1, α2, . . . , αn) =
1

p+q

n
∏
i=1

n
∏
j=i

(
(pxi)

ωi ⊕D
(
qxj
)ωj
) 2

n(n+1)
(55)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of αi(i = 1, 2, . . . , n), satisfying ωi ∈ [0, 1], ∑n

i=1 ωi = 1,
then PFDWGHMp,q is called the picture fuzzy Dombi weighted Heronian mean (PFDWGHM) operator.

Based on the operational laws of the PFNs described in Definition 7, we can obtain the aggregation
result shown as Theorem 12:
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Theorem 12. Let p, q ≥ 0, λ > 0 and αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs. The aggregated
value by PFDWGHM is still a PFN and,

PFDWGHMp,q(α1, α2, . . . , αn) =

1− 1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
1−µi

µi

)λ + q

ωj

(
1−µj

µj

)λ





1
λ

,

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
ηi

1−ηi

)λ + q

ωj

(
ηj

1−ηj

)λ





1
λ

,

1/

1 +

 n(n+1)
2(p+q) × 1/

 n
∑

i=1

n
∑
j=i

1/

 p

ωi

(
νi

1−νi

)λ + q

ωj

(
νj

1−νj

)λ





1
λ




(56)

Moreover, similar to PFDWHM, the PFDWGHM has the same properties.

Theorem 13. (Monotonicity) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) and α′ i = (µi, ηi, νi)(i = 1, 2, . . . , n) be
two collections of PFNs, if αi ≤ α′ i, for all i, then,

PFDWGHMp,q(α1, α2, . . . , αn) ≤ PFDWGHMp,q(α′1, α′2, . . . , α′n) (57)

Theorem 14. (Boundedness) Let αi = (µi, ηi, νi)(i = 1, 2, . . . , n) be a collection of PFNs, if α+ =(
µ+

max, η+
min, ν+min

)
and α− =

(
µ−min, η−max, ν−max

)
, λ > 0 where,

µ+
max = 1− 1/

1 +

(
n(n+1)
2(p+q) ×

( max
i

(µi)

1−max
i

(µi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

))) 1
λ

 ,

η+
min = 1/

1 +

 n(n+1)
2(p+q) ×

(
1−min

i
(ηi)

min
i
(ηi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

)) 1
λ

 ,

ν+min = 1/

1 +

 n(n+1)
2(p+q) ×

(
1−min

i
(νi)

min
i
(νi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

)) 1
λ

 ,

µ−min = 1− 1/

1 +

(
n(n+1)
2(p+q) ×

( min
i
(µi)

1−min
i
(µi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

))) 1
λ

 ,

η−max = 1/

1 +

 n(n+1)
2(p+q) ×

(
1−max

i
(ηi)

max
i

(ηi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

)) 1
λ

 ,

ν−max = 1/

1 +

 n(n+1)
2(p+q) ×

(
1−max

i
(νi)

max
i

(νi)

)λ

× 1/

(
n
∑

i=1

n
∑
j=i

1/
(

p
ωi

+ q
ωj

)) 1
λ



(58)

Then,
α− ≤ PFDWGHMp,q(α1, α2, . . . , αn) ≤ α+ (59)
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4. A Novel Approach to Multi-Attribute Decision-Making (MADM) Based on the Proposed
Operators

4.1. Description of Atypical MADM Problem with Picture Fuzzy Information

A typical MADM problem with the picture fuzzy information can be described as follows. Let X =

{X1,X2, . . . , Xm} be a set of alternatives and C = {C1,C2, . . . , Cn} be a set of attributes with the weight
vector being ω = (ω1, ω2, . . . , ωn)

T be the weight vector of αi(i = 1, 2, . . . , n), satisfying ωi ∈ [0, 1],
∑n

i=1 ωi = 1. Several decision-makers are organized to decide over alternatives. For the attribute C of
alternative X, the decision-makers are required to use PFNs to express their preference information,
which can be denoted to express as αij =

(
µij, ηij, νij

)
(i = 1, 2, . . . , m; j = 1, 2, . . . , n). Therefore,

A =
(
αij
)

m×n is the decision matrix. In the following, we present a new algorithm to solve such
an MADM problem.

4.2. An Algorithm for the Picture Fuzzy MADM Problem

Step 1. Normalize the decision-making matrix. It is necessary to normalize the decision-making
matrix A =

(
αij
)

m×n to remove the impact of different attribute types. Therefore, the decision should
be normalized by:

αij =

{ (
µij, ηij, νij

)
, Cj ∈ I1(

νij, ηij, µij
)
, Cj ∈ I2

(60)

where I1 represents the benefit attribute and I2 represents the cost attribute.
Step 2. Utilize the PFDWHM operator:

αi = PFDWHM(αi1, αi2, . . . , αin) (61)

or the PFDWGHM operator:

αi = PFDWGHM(αi1, αi2, . . . , αin) (62)

to aggregate all the attribute values. Then the overall values αi(i = 1, 2, ..., m) of alternatives can
be obtained.

Step 3. Rank the overall values according to Definition 5.
Step 4. Rank the alternatives based on the rank of overall values αi(i = 1, 2, .., m) and select the

best one.
To better illustrate the above algorithm, we provided a flowchart, which is shown as Figure 1.
In order to express the logic of the algorithm more clearly, we use the form of pseudo code to

demonstrate the algorithm, which is convenient for the implementation of different programming
languages. Here is the pseudo code.

Begin
Normalize the decision-making matrix A
Select an operator Op from PFDWHM and PFDWGHM
For each alternative N in set X

Utilize Op to aggregate the attribute values of N
Add the overall value P to overall value series V

End
For each P in overall value series V

Calculate the score S of P
End
Rank V based on S
Rank X based on the rank of V

End



Symmetry 2018, 10, 593 17 of 27

Symmetry 2018, 10, x FOR PEER REVIEW  19 of 30 

 

where 
1

I  represents the benefit attribute and 
2

I  represents the cost attribute. 

Step 2. Utilize the PFDWHM operator: 

1 2
,( ),...,

i i i in
PFDWHM     (61) 

or the PFDWGHM operator: 

1 2
, ,...,( )

i i i in
PFDWGHM     (62) 

to aggregate all the attribute values. Then the overall values  1,2,..,
i

i m   of alternatives can be 

obtained. 

Step 3. Rank the overall values according to Definition 5.  

Step 4. Rank the alternatives based on the rank of overall values  1,2,..,
i

i m   and select the 

best one. 

To better illustrate the above algorithm, we provided a flowchart, which is shown as Figure 1. 

Normalize the decision making matrix. 

Aggregate all the attribute values utilizing the 
PFDWHM or PFDWGHM operator. 

Rank the overall values by calculating the score 
function.

Rank the alternatives based on the rank of overall 
values.

Start

End

 

Figure 1. The algorithm flow of picture MADM problems. 

In order to express the logic of the algorithm more clearly, we use the form of pseudo code to 

demonstrate the algorithm, which is convenient for the implementation of different programming 

languages. Here is the pseudo code. 

Begin 

Normalize the decision-making matrix A 

Select an operator Op from PFDWHM and PFDWGHM 

For each alternative N in set X 

Utilize Op to aggregate the attribute values of N 

Add the overall value P to overall value series V 

End 

For each P in overall value series V 

 Calculate the score S of P 

Figure 1. The algorithm flow of picture MADM problems.

5. Application Instance

In this section, we provide a numerical example adopted from [45] to demonstrate the validity of
the proposed method. A company wants to implement an enterprise resource planning (ERP) system.
A set of decision-makers are organized to be the decision-making committee and after primary
evaluation, five ERP vendors and systems (Ai(i = 1, 2, 3, 4, 5)) remain on the candidate list. In order to
select the best vendor and system, all the candidates are assessed under four attributes and they are
(1) function and technology G1; (2) strategic fitness G2; (3) vendors ability G3; (4) vendors reputation G4.
The weight of attribute is w = (0.2, 0.1, 0.3, 0.4)T . The decision-making committee is required to utilize
PFNs to express its assessment and so that the original decision matrix R =

(
αij
)

5×4 is shown in
Table 1.

Table 1. The picture fuzzy decision matrix.

G1 G2 G3 G4

A1 (0.53,0.33,0.09) (0.89,0.08,0.03) (0.42,0.35,0.18) (0.08,0.89,0.02)
A2 (0.73,0.12,0.08) (0.13,0.64,0.21) (0.03,0.82,0.13) (0.73,0.15,0.08)
A3 (0.91,0.03,0.02) (0.07,0.09,0.05) (0.04,0.85,0.10) (0.68,0.26,0.06)
A4 (0.85,0.09,0.05) (0.74,0.16,0.10) (0.02,0.89,0.05) (0.08,0.84,0.06)
A5 (0.90,0.05,0.02) (0.68,0.08,0.21) (0.05,0.87,0.06) (0.13,0.75,0.09)

5.1. The Decision-Making Process

(1) Rank the alternatives based on the PFDWHM operator
Step 1. As all the attributes are benefit, the original decision matrix does not need to be normalized.
Step 2. Utilize the PFDWHM to compute the comprehensive attribute value αi(i = 1, 2, 3, 4, 5) of

each alternative (suppose λ = 2, p = q = 1). Hence, we can obtain:
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α1 = (0.5498, 0.3550, 0.0853) α2 = (0.4040, 0.3798, 0.2121) α3 = (0.6080, 0.1575, 0.0904)
α4 = (0.5128, 0.3447, 0.1244) α5 = (0.5835, 0.2090, 0.1032)

Step 3. Compute the score function s(αi) of αi(i = 1, 2, 3, 4, 5), so that we can obtain:

S(α1) = 0.4645 S(α2) = 0.1918 S(α3) = 0.5176 S(α4) = 0.3885 S(α5) = 0.4803

Step 4. Rank the alternatives according to the scores, and we can get A3 > A5 > A4 > A1 > A2.
Thus, A3 is the best ERP system.

(2) Rank the alternatives based on the PFDWGHM operator
Step 1. The original decision matrix does not need to be normalized.
Step 2. Calculate the comprehensive attribute value αi(i = 1, 2, 3, 4, 5) of each alternative by using

the PFDWGHM operator. Thus, we can obtain:

α1 = (0.3471, 0.5648, 0.0432) α2 = (0.1556, 0.4627, 0.0660) α3 = (0.1650, 0.4742, 0.0291)
α4 = (0.1070, 0.6450, 0.0330) α5 = (0.2228, 0.5674, 0.0515)

Step 3. Compute the score function S(αi) of αi(i = 1, 2, 3, 4, 5), and we can obtain:

S(α1) = 0.3040

Step 4. Rank the alternatives according to their score functions and we can obtain A1 > A5 >

A3 > A2 > A4. Thus, A1 is the best ERP system.

5.2. Sensitivity Analysis

The flexibilities of the proposed method are reflected in two aspects. Firstly, it is based on DTT so
that the information aggregation process is also flexible. Secondly, it is based on HM which has two
important parameters, playing crucial role in the decision results. Hence, different scores of alternatives
and ranking orders may be obtained with respect to the parameters p and q. In the following, we shall
investigate the influence of the parameters on the results. Firstly, we assign different values to p and q
and scores of alternatives are presented as Figures 2–6. In addition, we let p (or q) be a fixed set, and we
investigate the influence of q (or p) on the scores’ functions and ranking results. Details can be found
in Figures 7 and 8.
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Form Figures 2–6, we can find out that different scores of alternatives can be derived with
respect to different parameters p and q. This characteristic illustrates the flexibility of the proposed
method and operators. In real MADM problems, the values of p and q can be determined by
decision-makers according to actual needs. In Figures 7 and 8, we investigate the individual effect
of the parameters p and q on the score function and ranking results, i.e., we let p or q be a fixed
value and investigate the influence of another parameter on the ranking results. As we can see
from the Figures 7 and 8, different scores and ranking results can be obtained with the change
of p or q. This characteristics also reflects the flexibility of the proposed PFDWHM operator as
well as the corresponding MADM method. Additionally, it can be noticed that no matter what the
values of p and q are, the best alternatives are always A3, and the worst alternatives are always A2.
This feature demonstrates the robustness of the proposed method. It is worth pointing out that
in the above discussion, we used the proposed PFDWHM operator to aggregate decision-makers’
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preference information. In the following, we investigate the influence of parameters p and q on the
scores and ranking orders in the PFDWGHM operators. Analogously, we assign the different values to
the parameters p and q and the corresponding scores of alternatives and ranking orders are derived.
Details can be found in Figures 9–15.
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In this section, we investigate the influence of the parameters on the scores and ranking orders.
Results illustrate the flexibility and powerfulness of the proposed method. Moreover, the proposed
method exhibit high robustness in the process of information aggregation and MADM.
Thus, the proposed method is sufficient to deal with practical MADM problems.

5.3. Comparative Analysis

The main contribution of this paper is that we proposed a powerful MADM method with picture
fuzzy information. In Section 5.1, we illustrated the performance of the proposed method by solving a
real decision-making problem. In the following, we compare the newly proposed method with exiting
picture fuzzy MADM methods. We utilize the method introduced by Wei [45] based on the picture
fuzzy weighted average (PFWA) operator, the method put forward by Wei [49] based on the picture
fuzzy Hamacher weighted average operator (PFHWA), and our method based on PFDWHM operator
to solve the above example, and present the score function and ranking orders in Table 2.

Table 2. Score function and ranking results by different results.

Method Score Function of S(αi)(i=1,2,3,4,5) Ranking Results

Wei’s [45] method based on
picture fuzzy weighted average

(PFWA) operator

S(α1) = 0.3792 S(α2) = 0.4526
S(α3) = 0.5608

S(α4) = 0.3674 S(α5) = 0.4114
A3 > A2 > A5 > A1 > A4

Wei’s [49] method based on
picture fuzzy Hamacher weighted

average operator (PFHWA)
operator (λ = 2)

S(α1) = 0.3473 S(α2) = 0.4119
S(α3) = 0.5205

S(α4) = 0.3088 S(α5) = 0.3528
A3 > A2 > A5 > A1 > A4

The proposed method based on
PFDWHM operator
(λ = 2, p, q = 1 )

S(α1) = 0.4645 S(α2) = 0.1918
S(α3) = 0.5176

S(α4) = 0.3885 S(α5) = 0.4803
A3 > A5 > A4 > A1 > A2

From Table 2, it is easy to find out that the ranking result derived by Wei’s [45] method is different
from that obtained by the proposed method. The reasons are two-fold. Firstly, Wei’s [49] method
is based on simple algebraic operations, whereas the operational laws of our method are based on
the DTT. Obviously, operations of PFNs based on DTT are more flexible than algebraic operations.
Thus, our method makes the information aggregation process more flexible. Additionally, our method
is based on the HM operator so that the interrelationship between attributes can be reflected. Wei’s [45]
method is based on the simple weighted average operator and the interrelationship between attributes
is ignored. Thus, our method is more powerful, flexible and suitable than that proposed by Wei [45]
for dealing with MADM problems.

The method based on the PFHWA operator proposed by Wei [49] is based on Hamacher t-norm
and t-conorm. Thus, it is more flexible than Wei’s [45] method based on the PFWA operator. However,
Wei’s [49] method is based on the simple weighted average operator which is the same as that proposed
by Wei [45]. Thus, Wei’s [49] method based on the PFHWA do not consider the interrelationships
among attribute values either. Our method based on the PFDWHM has the capability of capturing the
interrelationship between attributes. Thus, our method is more powerful than Wei’s [49] method.

To sum up, the novelties and powerfulness of the proposed method are two-fold. Firstly,
our method is based on the DTT, which makes the information aggregation flexible as there is
a parameter λ. Secondly, the proposed method is based on the PFDWHM operator so that the
interrelationship between attributes is captured. This characteristic makes it more suitable for dealing
with practical MADM problems. Thus, our method is more powerful and flexible than existing picture
fuzzy MADM methods.
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6. Conclusions

Recently, PFS has become more powerful than IFS as it takes decision-makers’ neutrality
degree into consideration. This paper proposed some novel picture fuzzy aggregation operators
based on DTT. Firstly, we introduced novel operational rules of PFNs on the basis of DTT. Then,
we extended HM to PFSs based on the newly proposed picture fuzzy operations and proposed the
PFDHM, PFDWHM, PFDGHM, and PFDWGHM operators. The proposed picture fuzzy aggregation
operators not only capture the interrelationship among PFNs, but also make the information
aggregation process more flexible. We further introduced a novel approach for MADM with picture
fuzzy information. An ERP provider selection illustrated the validity of the proposed method. We also
investigated influence of the parameters on the decision results in the newly developed picture
fuzzy aggregation operators. We also compared the proposed method with others to demonstrate
its superiorities and advantages In future work, we shall continue to investigate picture fuzzy
aggregation operators, such as picture fuzzy Hamy mean operators and generalized picture fuzzy
Hamy mean operators.
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