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Abstract: The geodetic number of a graph is an important graph invariant. In 2002, Atici showed
the geodetic set determination of a graph is an NP-Complete problem. In this paper, we compute
the geodetic set and geodetic number of an important class of graphs called the k-th power of a
cycle. This class of graphs has various applications in Computer Networks design and Distributed
computing. The k-th power of a cycle is the graph that has the same set of vertices as the cycle and
two different vertices in the k-th power of this cycle are adjacent if the distance between them is at
most k.
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1. Introduction

In this paper, all graphs are simple (finite, loopless, undirected, and without multiple edges),
the vertex set and edge set of such graphs are denoted by V(G) and E(G), respectively. The path
Pn and cycle Cn graphs are the graphs with V(Pn) = V(Cn) = {v0, v1, v2, . . . , vn−1} and edge sets
E(Pn) = {v0v1, v1v2, . . . , vn−2vn−1} and E(Cn) = E(Pn) ∪ {v0vn−1}. For a positive integer n and
a set of integers J = {u1, u2, . . . , uk}, the Circulant graph Cn(J) is defined to be the graph with
vertex set of V(Cn(J)) = V(Cn) = {v0, v1, . . . , vn−1} and edge set E(Cn(J)) = {vivj : i − j ≡ r
mod n for some r ∈ J}.

For two different vertices u and v of a graph G, the distance between u and v in G (denoted by
dG(u, v)) is defined to be the length of the shortest path between u and v. The shortest path between
two vertices u and v in V(G) is called u − v geodesic. For a vertex u of the graph G, we define
the eccentricity of u in G (denoted by e(u)) to be the maximum of the distances between u and all
other vertices of G [1]. The radius of a graph G (denoted by rad(G)) is the minimum of eccentricities
among all vertices of G, while the diameter of a graph G (denoted by diam(G)) is the maximum
distance between any two vertices in G. Two vertices u, v of a graph G are called antipodal in G if
dG(u, v) = diam(G).

The closed interval IG[u, v] of a graph G consists of the vertices u, v, and all vertices lying in
some u− v geodesic in G. If the set S is a subset of V(G), then IG[S] is defined to be the union of all
sets IG[u, v] where u, v ∈ S. The set S is called a geodetic set of G if IG[S] = V(G). The minimum
cardinality of a geodetic sets is called the geodetic number of G (denoted by g(G)).

A graph G is called symmetric if, for every two pairs of adjacent vertices u1, v1 ∈ V(G) and
u2, v2 ∈ V(G), there is an automorphism σ such that σ(u1) = u2 and σ(v1) = v2. Examples of
symmetric graphs are cycles, power of cycles, and Circulant graphs [2].

The geodetic number of a graph is an important graph invariant, it was investigated for several
classes of graphs by Chartrand et al. [3,4], and Chartrand and Zhang [5]. Graph theory studies
have always been motivated by other fields of Science and Technology such as Computer Networks
and Social Transport Network. For example, in 2017 and 2018, Paul et al. [6,7] have studied how
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geodetic problems are involved in Social Transport Network, Zhang and Chartrand [8] took that
further and extended their study of geodetic number to oriented graphs. Furthermore, the geodetic,
hull, and Steiner numbers of powers of paths were investigated by AbuGhneim et al. [9]. Additionally,
for connected graphs, the closed intervals IG[u, v] were studied extensively by Nebesky [10], as well
as Mulder [11] who investigated the value of these closed intervals in studying metric properties of
connected graphs. Power graphs also have applications in quantum random walks in physics and
routing in networks and thus have generated interest in past and current research [12–14]. For example,
every power of cycle is Circulant graph, and Circulant graphs play a very important and crucial role in
Networks design [2].

Atici showed the geodetic set determination of a graph is an NP-Complete problem [15]. In this
paper, we find the geodetic number of the k-th power of a cycle where the k-th power of a graph
G is defined by the graph that has the same set of vertices as G and two different vertices in the
k-th power of G are adjacent if the distance between them is at most k. Therefore, for any simple
graph G = (V(G), E(G)) and positive integer k, the k-th power of G (denoted by Gk) is the simple
graph with vertex set V(Gk) = V(G) and edge set E(Gk) = {uv : u, v ∈ E(G) and 0 < dG(u, v) ≤ k},
obviously G1 = G. The geodetic number for a wide range of classes of graphs such as cycles, paths,
wheels, hypercubes, trees, and complete graphs has already been determined and its calculation is
rather simple for these kinds of graphs [16].

This research starts with preliminary lemmas in Section 2. Then, in Section 3, the geodetic number
of the power of cycle is determined in steps depending on the relationship of n and k, where n is the
number of vertices of the cycle Cn and k is the power of this cycle. In the first two lemmas of Section 3,
we discuss all possible scenarios where the geodetic number of Ck

n is 2 and 3, respectively; then, we
discuss the cases when the geodetic number of Ck

n is 4, and, lastly, when the geodetic number of Ck
n

is 5. Note that there exists no power graph Ck
n with a geodetic number greater than 5. Finally, in the

Conclusions section 4, we summarize all the scenarios in one main result to find the geodetic number
of Ck

n.

2. Preliminary Lemmas

In this section, we prove the necessary results as tools to compute the geodetic number of power
of cycles Ck

n for the next section. To illustrate the idea of the following lemma, consider the graph of
P3

12 shown in Figure 1. Any path from vertex 0 to vertex 11 in P3
12 that visits vertices 1, 4, 7, or 10 has a

length greater than or equal to 5, while the shortest path from vertex 0 to vertex 11 is 4. In fact, any path
from vertex 0 to vertex 11 that visits the vertices 1, 4, 7, or 10 will not be a shortest path. This means
that the vertices 1, 4, 7, or 10 are not in the closed interval IP3

12
[0, 11]. The following lemma generalizes

the above example and describes the closed interval IPk
n+1

[v0, vn] for positive integers n and k.

Figure 1. Graph of P3
12.
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Lemma 1. Suppose that n ≡ r mod k where r and k are positive integers and 0 < r ≤ k; then, IPk
n+1

[v0, vn] =

V(Pn+1) \ {vi : i ≡ j mod k, 0 < j < r}.

Proof. Suppose that n ≡ r mod k for some 0 < r < k and i ≡ j mod k f orsome 0 < j < r;
then, n + 1 = r + qk for some positive integer q. Hence, dPk

n+1
(v0, vn) = q + 1. Since i = j + mk,

for some positive integer m, and 0 < j < r, we have dPk
n+1

(v0, vi) = m + 1 and dPk
n+1

(vi, vn) =

d r+qk−j−mk
k e = d (q−m)k+r−j

k e = q−m + 1. Therefore, dPk
n+1

(v0, vn) = q + 2. This contradicts the fact

that dPk
n+1

(v0, vn) = q + 1.

Using the above lemma, we can characterize when a power of path has geodetic number 2:

Corollary 1. g(Pk
n+1) = 2 if and only if n = qk for some positive integer q.

The following lemma clarifies when a closed interval of two vertices of Ck
n intersects both sides of

the vertices of the cycle Cn (the side of {v0, v1, . . . , vb n
2 c} and the side of {vn−1, vn−2, . . . , vb n

2 c+1}).

Lemma 2. For positive integers n and k, if ICk
n
[v0, va] ∩ {v0, v1, . . . , vb n

2 c} 6= ∅ and ICk
n
[v0, va] ∩

{vn−1, vn−2, . . . , vb n
2 c+1} 6= ∅. Then, b n

2 c − r < a ≤ b n
2 c − r + k, where d n

2 e ≡ r mod k and 0 < r < k.

Proof. Suppose that ICk
n
[v0, va] ∩ {v0, v1, . . . , vb n

2 c} 6= ∅. Since b n
2 c = qk + r for some positive integer

q, we have dCk
n
(v0, vb n

2 c) = q + 1.

Since the diam(Ck
n) = q + 1, ICk

n
[v0, va] ∩ {v0, v1, . . . , vb n

2 c} 6= ∅ and ICk
n
[v0, va] ∩

{vn−1, vn−2, . . . , vb n
2 c+1} 6= ∅, we have dCk

n
(v0, va) = q+ 1. Therefore, d a

k e = q+ 1 and q < b a
k c ≤ q+ 1

or qk < a ≤ qk + k. Hence, b n
2 c − r < a ≤ b n

2 c+ k− r.

3. The Geodetic Number of Power of Cycles

For positive integers n and k, two different vertices vi and vj in V(Ck
n) are adjacent in Ck

n if
0 < dCn(vi, vj) ≤ k, that is,

E(Ck
n) = {vivj : i− j ≡ ±r mod n, 1 ≤ r ≤ k}.

However, when k ≥ n
2 , we have

E(Ck
n) = {vivj : i− j ≡ ±r mod n, 1 ≤ r ≤ n

2
+ 1} = E(Kn),

where Kn is the complete graph with n vertices. Figures 2–4 show the cycle C7, C2
7 and C3

7 , respectively.
It is obvious that the geodetic number of the complete graph with n vertices is n. In other words,

if k ≥ b n
2 c, then g(Ck

n) = n as shown in Figure 4 for n = 7 and k = 3. Hence, we will consider the
geodetic number of Ck

n only when k < b n
2 c.

For any n and k positive integers, n can be written in the form n = ck + r, 0 < r ≤ k. We will
consider all possible positive integer values of r and c in calculating the geodetic set and geodetic
number of Ck

n. It should be mentioned that we provide the geodetic set in each lemma. Then, using the
symmetry of power of cycles, the geodetic set is invariant under shifting its vertices to the left or to
the right.

Before we start computing the geodetic number of power of cycles, let’s consider this illustrative
example to compute the geodetic number of C3

14 shown in Figure 5. The distance between vertex 0 and
vertex 7 in C14 is dC14(0, 7) = 7 (the length of the shortest path in C7 from 0 to 7) while the distance
between vertex 0 and vertex 7 in C3

14 is dC3
14
(0, 7) = 3. Now, the shortest paths from vertex 0 to vertex 7

in C3
14 that visit the vertices 0, 1, . . . , 7 are listed in Table 1.
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Figure 2. C7 = C7(1).

Figure 3. C2
7 = C7(1, 2).

Figure 4. C3
7 = C7(1, 2, 3) = K7.

Table 1. Shortest paths from vertex 0 to vertex 7 in C3
14.

Type 1: 7 = 3 + 3 + 1 Type 2: 7 = 2 + 2 + 3

0− 1− 4− 7 0− 2− 5− 7
0− 3− 4− 7 0− 3− 5− 7
0− 3− 6− 7 0− 2− 4− 7

Figure 2. C7 = C7(1).
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Figure 5. Graph of C3
14.

Using symmetry of C3
14, one can extend the paths shown in Table 1 to the paths that visit the

vertices 8, 9, 10, 11, 12 and 13. As we can see, the set of all possible shortest paths from 0 to 7 covers all
vertices of C3

14 and hence the geodetic number g(C3
14) = 2.

Lemma 3. If n = 2qk + r for some positive integers q and r where 0 < r < k, then g(Ck
n) = 2 if and only if

r = 2.

Proof. Suppose that n = 2qk + 2, then d(v0, vqk+1) = q + 1. For each i with 1 ≤ i ≤ k, the path
v0, vi, vi+k, vi+2k, . . . , vi+(q−1)k, v1+qk is of length q + 1 and so it is v0 − v1+qk geodesic over all values
of i. These paths cover the vertices v0, v1, . . . , v1+qk. Since v0 and v1+qk are antipodal points in Cn,
we have S = {v0, v1+qk} is geodetic set of Ck

n.
Now, suppose that n = 2qk + r and g(Ck

n) = 2. Let S = {v0, va} be a minimal geodetic set of Ck
n.

Then, v0 − va geodesic covers all vertices v0, v1, v2, . . . , va and va, va+1, . . . , v0 .
Using Corollary 1, a = qmk + 1 for some positive integer m and n− a = jk + 1 for some positive

integer j.
On the other hand, since v0 − va geodesic covers all vertices v0, v1, v2, . . . , va and va, va+1, . . . , v0,

we conclude that dmk+1
k e = d

jk+1
k e, so m = j, and hence n = 2mk + 2.

In the above lemma, we found the geodetic number of Ck
n when n = ck + 2 where c is an even

number. The case when c is odd and r = 2 will be addressed in a separate lemma later in this paper.

Lemma 4. For the graph Ck
n, suppose that n = ck + r for some positive integers c ≥ 2 and 0 < r < k,

then g(Ck
n) = 3 if and only if r = 3.

Proof. Suppose that n = ck + 3 for some positive integer c ≥ 2, then:

Case 1. Let c = 2q for some positive integer q. Consider S = {v0, vqk+1, vqk+2}. Using Corollary 1, S is a
geodetic set.

Case 2. Let c = 2q + 1 for some positive integer q. Consider S = {v0, vqk+1, v2qk+2}. Using Corollary 1, S is
a geodetic set.

On the other hand, suppose that n = ck+ r, where q is a positive integer and S = {v0, vm, vl}. m <

l is a minimal geodetic set of Ck
n. Then, using Corollary 1, m = ak+ 1, l−m = bk+ 1 and n− l = ck+ 1
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for some positive integers a, b and c. This means that 3− r is multiple of k; therefore, 3− r = 0 and
hence r = 3.

Now, we turn our discussion to study the cases for when the geodetic number is 4. We have
already addressed the case when r = 3. Next, we will discuss the case where 4 ≤ r ≤ k, but c 6= 3.
The case when c = 3 will be discussed after.

Lemma 5. For the graph Ck
n, suppose that n = ck + r for some positive integers c and r where c > 1, c 6= 3

and 4 ≤ r < k, then g(Ck
n) = 4.

Proof. Suppose that n = ck + r for some positive integer c, c > 1, c 6= 3 and 4 ≤ r < k , then:

Case 1. for c = 2q for some positive integer q ≥ 1, consider S = {v0, vqk+1, v2qk+2, v(2q−1)k+r−1},
using Corollary 1:

(a) ICk
n
[v0, vqk+1] covers all vertices that lie on the shortest path from v0 to vqk+1 in Cn.

(b) ICk
n
[vqk+1, v2qk+2] covers all vertices that lie on the shortest path from vqk+1 to v2qk+2 in Cn.

(c) ICk
n
[v(2q−1)k+r−1, v0] covers all vertices that lie on the shortest path from v0 to v(2q−1)k+r−1 in Cn.

Now, since 4 ≤ r ≤ k and q > 1, it is obvious that n
2 = qk + r

2 < (2q− 1)k + r− 1 < 2qk + 2, that is,
S is geodetic set of Ck

n. Therefore, S is a minimal geodetic set:

Case 2. For c = 2q + 1, for some positive integer q, then, for q > 1: similar to Case1, consider
S = {v0, vqk+1, v2qk+2, v(2q−1)k+r−1}. Since n

2 < (2q − 1)k + r − 1 < 2qk + 2, we conclude that S is
geodetic set of Ck

n.

Lemma 6. If n = 3k + 4, then g(Ck
n) = 4.

Proof. Consider the set S = {v0, vk+1, v2k+2, v3k+3}. Since dCn(v0, vk+1) = k + 1 > k and dCn(v0, vi) ≤
k for all 1 ≤ i ≤ k, we have v0vk+1 /∈ E(Ck

n) and v0vi ∈ E(Ck
n). Therefore, dCk

n
(v0, vk+1) = 2.

Moreover, for any 0 < i ≤ k, v0 − vi − vk+1 is the shortest path from v0 to vk+1 in Ck
n; this means

ICk
n
[v0, vk+1] = {v0, v1, . . . , vk+1}.

Using the same technique as above, we can show that ICk
n
[vk+1, v2k+2] = {vk+1, vk+2, . . . , v2k+2}

and ICk
n
[v2k+2, v0] = {v2k+2, v2k+3, . . . , v3k+3, v0}. Therefore, S is geodetic set of Ck

n.

Lemma 7. For the graph Ck
n, if n = ck + 1 for some positive integer c, where c ≥ 3 and c 6= 4, then g(Ck

n) = 4.

Proof. If n = 3k + 1, then consider the geodetic set S = {v0, vk+1, v2k+2, v2k}.
If n = 2ck + 1, c ≥ 3, then consider the geodetic set S = {v0, v(c−1)k+1, v2(c−1)k+2, v2(c−1)k}.
If n = (2c + 1)k + 1, c ≥ 2; then, consider the geodetic set S = {v0, vck+1, v2ck+2, v2ck}.

For r = 2, it is obvious that we are still missing the case when c is odd. The following lemma will
address this case:

Lemma 8. For the graph Ck
n, if n = (2c + 1)k + 2 for some positive integer c, then g(Ck

n) = 4.

Proof. Consider the set S = {v0, vck+1, v2ck+2, v2ck+1}. Since dCn(v0, vck+1) = ck + 1 > ck and
dCn(v0, vi) ≤ ck for all 0 < i ≤ ck, we have dCk

n
(v0, vck+1) = c + 1; therefore, for every 0 ≤ i ≤ k,

and 0 ≤ m ≤ c, the path

v0 − vk − v2k − · · · − vmk − vmk+i − v(m+1)k+i · · · − v(c−1)k+i − vck+1
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is shortest path from v0 to vck+1. This means ICk
n
[v0, vck+1] = {v0, v1, v2, . . . , vck+1}. Using the same

technique, we can prove that

ICk
n
[vck+1, v2ck+2] = {vck+1, vck+2, vck+3, . . . , v2ck+2},

and
ICk

n
[v2ck+1, v0] = {v2ck+1, v2ck+2, v2ck+3, . . . , v0},

Therefore, S is geodetic set of Ck
n.

Finally, we discuss the cases for when the geodetic number is 5.

Lemma 9. For the graph Ck
n, suppose that n = 3k + r for some positive integer r where 5 ≤ r < k. Then,

g(Ck
n) = 5.

Proof. Suppose that n = 3k + r, 5 ≤ r ≤ k, g(Ck
n) = 5 and that S = {v0, va, vb, vc} is a minimal

geodetic set of Ck
n.

If dCn(vi, vj) > k for all i, j ∈ {a, b, c, d}; then, n > 4k; therefore, we may assume that S =

{v0, va, vk+b, v2k+d}, where a ≤ k, then v1 will either be covered by some v0 − vk+b geodesic or
v2k+d − va geodesic.

Case 1. First, we consider the scenario where v1 is covered by v0 − vk+b geodesic. Using Lemma 1, we have
b = 1.

Now, vk+2 may be covered by some va − v2k+d geodesic or some vk+1 − v2k+d geodesic; in the latter case,
d must be equal to 2 using Lemma 1. In the former case, since diam(Ck

n) = 2, we have dCn(va, vk+2) ≤ k and
dCn(vk+2, v2k+d) ≤ k, so a ≥ 2 and d ≤ 2, if d = 1. Then, dCn(vk+1, v2k+1) = k, so v2k+d − vk+b geodesic
will only cover v2k+2 and vk+1, which is impossible, so d = 2.

Now, d(v2k+2, v0) = k + r− 2, since r ≥ 5, then v2k+3 can be covered by neither v2k+2 − v0 geodesic nor
by v2k+2 − va geodesic.

Case 2. If v1 is covered by some v2k+d− va geodesic and b 6= 1, then, dCn(v2k+d, v1) ≤ k and dCn(v1, va) ≤ k;
this means that v2k+d+1 could not be covered by any of the v2k+d − v0 geodesic, thus, v2k+d+1 will be covered
by v2k+d − va geodesic, and so, k + r− d + a = k + 1 by Corollary 1; therefore, d = r + a− 1. Since v1 is
not in any of the v0 − vk+b geodesic, we have vk+b−1 will only be covered by some va − vk+b geodesic, and so,
b = a + 1. From Case1 and Case2 above, S can not be a geodesic set for Ck

n, hence, g(Ck
n) > 4.

Now, it is obvious that va − v2k+d geodesic can not cover any of the vertices va+1, va+2, . . . , v2k+1,
and so, vk+a+2 can only be covered by some vk+b − v2k+d geodesic, d = a + 2, therefore, a + 2 =

r + a− 1, and thus, r = 3, which is a contradiction. Hence, g(Ck
n) > 4.

Now, take S = {v0, vk+1, v2k+2, v3k+3, v2k+r−1}; this is a minimal geodetic set of Ck
n.

Lemma 10. For the graph Ck
n, if n = 4k + 1, k ≥ 4, then g(Ck

n) = 5.

Proof. Using Lemmas 3 and 4, g(Ck
n) can not be 2 or 3. Assume that g(Ck

n) = 4 and
S = {v0, va, vb, vc} be a geodetic set of Ck

n, if d(vi, vj) > k for all i 6= j, where i, j ∈ {0, a, b, c};
then, n > 4k + 4, without loss of generality, we may assume that S = {v0, va, vk+b, v2k+d} for some
positive integer d and 1 < a ≤ k. Then, v1 can either be covered by some v0 − vk+b geodesic or
v2k+d − va geodesic.

Case 1. If v1 is covered by some v0 − vk+b geodesic, using Lemma 1, we conclude that b = 1. vk+1 may be
covered by some vk+1 − v2k+d geodesic or some va − v2k+d geodesic. In the former case, d must be equal to
2, in the latter case, since diam(Ck

n) = 2, we have dCn(va, vk+2) ≤ k and dCn(vk+2, v2k+d) < k; therefore,
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a ≥ 2 and d ≤ 2. If d = 1. Then, dCn(v0, v2k+1) = 2k; this means that v0 − v2k+1 geodesic will only cover
v2k+1, v3k+1 and v0, which is impossible since a ≥ 2. Hence, d = 2.

Now, dCn(v2k+2, v0) = 2k− 1. Then, v2k+3 can be covered by neither v2k+2− v0 geodesic nor by v2k+2,va

geodesic. Therefore, v1 can not be covered by v0 − vk+1 geodesic.

Case 2. If v1 is covered by some v2k+d − va geodesic and b 6= 1, then dCn(v2k+d, v1) ≤ k. This means
that v2k+d+1 could not be covered by any of the v2k+d − v0 geodesic. Thus, v2k+d+1 will be covered by some
v2k+d − va geodesic. Using Lemma 1, we conclude that d = k + a, since v1 is not in any of the v0 − vk+b
geodesic. Then, vk+b−1 can only be covered by some va − vk+b geodesic and hence b = a + 1.

Since va − v3k+a geodesic can not cover any of the vertices va+1, va+2, . . . , v3k+a−1, we conclude that
vk+a+2 can only be covered by some vk+a+1− v3k+a geodesic. This gives k = 2. This contradicts the assumption
k ≥ 4. Therefore, S can not be geodetic set of Ck

n. Hence, g(Ck
n) > 4.

Now, let S = {v0, vk+1, v2k+2, v3k+3, v3k}. Then, S is geodetic set of Ck
n.

In the above lemmas, we covered the calculation of the geodetic number of Ck
n for all the scenarios

of n = ck + r. We summarize our calculations in Theorem 1 in the Conclusions section.

4. Conclusions

Even though the determination of the geodetic number of graphs is an NP-Complete problem,
in this paper, we were able to compute the geodetic number of power of cycles g(Ck

n) and we summarize
our calculations in the following main theorem.

Theorem 1. For positive integers n and k, we have:

g(Ck
n) =



2 if n = 2ck + 2 for some positive integer c.

3 if n = ck + 3 for some positive integer c.

4 if n = ck + 1 for some positive integer c 6= 4.

4 if n = (2c + 1)k + 2 for some positive integer c.

4 if n = ck + r for some positive integers r and c where 5 ≤ r ≤ k and c 6= 3.

5 if n = 3k + r for some positive integer r where 5 ≤ r ≤ k.

5 if n = 4k + 1 where k ≥ 4.

As previously mentioned in the Introduction, geodetic number of a graphs has many applications
in Computer Networks, Social Networks and Social Transport Networks. Steiner number and hull
number are two other important graph theoretic parameters that have important applications in
network theory. It would be interesting for further research to calculate those numbers for power of
cycles as well as calculating the geodetic number of Circulant graphs.
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