Article

Geodetic Number of Powers of Cycles

Mohammad Abudayah ${ }^{1}$, Omar Alomari ${ }^{1, *(D)}$ and Hassan Al Ezeh ${ }^{2}$
1 School of Basic Sciences and Humanities, German Jordanian University, Amman 11180, Jordan; mohammad.abudayah@gju.edu.jo
2 Department of Mathematics, The University of Jordan, Amman 11942, Jordan; alezehh@ju.edu.jo
* Correspondence: omar.alomari@gju.edu.jo

Received: 26 September 2018; Accepted: 2 November 2018; Published: 4 November 2018

Abstract

The geodetic number of a graph is an important graph invariant. In 2002, Atici showed the geodetic set determination of a graph is an NP-Complete problem. In this paper, we compute the geodetic set and geodetic number of an important class of graphs called the k-th power of a cycle. This class of graphs has various applications in Computer Networks design and Distributed computing. The k-th power of a cycle is the graph that has the same set of vertices as the cycle and two different vertices in the k-th power of this cycle are adjacent if the distance between them is at most k.

Keywords: geodetic set; geodetic number; power of graph

1. Introduction

In this paper, all graphs are simple (finite, loopless, undirected, and without multiple edges), the vertex set and edge set of such graphs are denoted by $V(G)$ and $E(G)$, respectively. The path P_{n} and cycle C_{n} graphs are the graphs with $V\left(P_{n}\right)=V\left(C_{n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and edge sets $E\left(P_{n}\right)=\left\{v_{0} v_{1}, v_{1} v_{2}, \ldots, v_{n-2} v_{n-1}\right\}$ and $E\left(C_{n}\right)=E\left(P_{n}\right) \cup\left\{v_{0} v_{n-1}\right\}$. For a positive integer n and a set of integers $J=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, the Circulant graph $C_{n}(J)$ is defined to be the graph with vertex set of $V\left(C_{n}(J)\right)=V\left(C_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $E\left(C_{n}(J)\right)=\left\{v_{i} v_{j}: i-j \equiv r\right.$ $\bmod n$ for some $r \in J\}$.

For two different vertices u and v of a graph G, the distance between u and v in G (denoted by $\left.d_{G}(u, v)\right)$ is defined to be the length of the shortest path between u and v. The shortest path between two vertices u and v in $V(G)$ is called $u-v$ geodesic. For a vertex u of the graph G, we define the eccentricity of u in G (denoted by $e(u)$) to be the maximum of the distances between u and all other vertices of G [1]. The radius of a graph G (denoted by $\operatorname{rad}(G))$ is the minimum of eccentricities among all vertices of G, while the diameter of a graph G (denoted by $\operatorname{diam}(G)$) is the maximum distance between any two vertices in G. Two vertices u, v of a graph G are called antipodal in G if $d_{G}(u, v)=\operatorname{diam}(G)$.

The closed interval $I_{G}[u, v]$ of a graph G consists of the vertices u, v, and all vertices lying in some $u-v$ geodesic in G. If the set S is a subset of $V(G)$, then $I_{G}[S]$ is defined to be the union of all sets $I_{G}[u, v]$ where $u, v \in S$. The set S is called a geodetic set of G if $I_{G}[S]=V(G)$. The minimum cardinality of a geodetic sets is called the geodetic number of G (denoted by $g(G)$).

A graph G is called symmetric if, for every two pairs of adjacent vertices $u_{1}, v_{1} \in V(G)$ and $u_{2}, v_{2} \in V(G)$, there is an automorphism σ such that $\sigma\left(u_{1}\right)=u_{2}$ and $\sigma\left(v_{1}\right)=v_{2}$. Examples of symmetric graphs are cycles, power of cycles, and Circulant graphs [2].

The geodetic number of a graph is an important graph invariant, it was investigated for several classes of graphs by Chartrand et al. [3,4], and Chartrand and Zhang [5]. Graph theory studies have always been motivated by other fields of Science and Technology such as Computer Networks and Social Transport Network. For example, in 2017 and 2018, Paul et al. [6,7] have studied how
geodetic problems are involved in Social Transport Network, Zhang and Chartrand [8] took that further and extended their study of geodetic number to oriented graphs. Furthermore, the geodetic, hull, and Steiner numbers of powers of paths were investigated by AbuGhneim et al. [9]. Additionally, for connected graphs, the closed intervals $I_{G}[u, v]$ were studied extensively by Nebesky [10], as well as Mulder [11] who investigated the value of these closed intervals in studying metric properties of connected graphs. Power graphs also have applications in quantum random walks in physics and routing in networks and thus have generated interest in past and current research [12-14]. For example, every power of cycle is Circulant graph, and Circulant graphs play a very important and crucial role in Networks design [2].

Atici showed the geodetic set determination of a graph is an NP-Complete problem [15]. In this paper, we find the geodetic number of the k-th power of a cycle where the k-th power of a graph G is defined by the graph that has the same set of vertices as G and two different vertices in the k-th power of G are adjacent if the distance between them is at most k. Therefore, for any simple graph $G=(V(G), E(G))$ and positive integer k, the k-th power of G (denoted by G^{k}) is the simple graph with vertex set $V\left(G^{k}\right)=V(G)$ and edge set $E\left(G^{k}\right)=\left\{u v: u, v \in E(G)\right.$ and $\left.0<d_{G}(u, v) \leq k\right\}$, obviously $G^{1}=G$. The geodetic number for a wide range of classes of graphs such as cycles, paths, wheels, hypercubes, trees, and complete graphs has already been determined and its calculation is rather simple for these kinds of graphs [16].

This research starts with preliminary lemmas in Section 2. Then, in Section 3, the geodetic number of the power of cycle is determined in steps depending on the relationship of n and k, where n is the number of vertices of the cycle C_{n} and k is the power of this cycle. In the first two lemmas of Section 3, we discuss all possible scenarios where the geodetic number of C_{n}^{k} is 2 and 3, respectively; then, we discuss the cases when the geodetic number of C_{n}^{k} is 4, and, lastly, when the geodetic number of C_{n}^{k} is 5 . Note that there exists no power graph C_{n}^{k} with a geodetic number greater than 5 . Finally, in the Conclusions section 4, we summarize all the scenarios in one main result to find the geodetic number of C_{n}^{k}.

2. Preliminary Lemmas

In this section, we prove the necessary results as tools to compute the geodetic number of power of cycles C_{n}^{k} for the next section. To illustrate the idea of the following lemma, consider the graph of P_{12}^{3} shown in Figure 1. Any path from vertex 0 to vertex 11 in P_{12}^{3} that visits vertices $1,4,7$, or 10 has a length greater than or equal to 5 , while the shortest path from vertex 0 to vertex 11 is 4 . In fact, any path from vertex 0 to vertex 11 that visits the vertices $1,4,7$, or 10 will not be a shortest path. This means that the vertices $1,4,7$, or 10 are not in the closed interval $I_{P_{12}^{3}}[0,11]$. The following lemma generalizes the above example and describes the closed interval $I_{P_{n+1}^{k}}\left[v_{0}, v_{n}\right]$ for positive integers n and k.

Figure 1. Graph of P_{12}^{3}.

Lemma 1. Suppose that $n \equiv r$ mod k where r and k are positive integers and $0<r \leq k$; then, $I_{P_{n+1}^{k}}\left[v_{0}, v_{n}\right]=$ $V\left(P_{n+1}\right) \backslash\left\{v_{i}: i \equiv j \bmod k, 0<j<r\right\}$.

Proof. Suppose that $n \equiv r \bmod k$ for some $0<r<k$ and $i \equiv j \bmod k$ forsome $0<j<r$; then, $n+1=r+q k$ for some positive integer q. Hence, $d_{P_{n+1}^{k}}\left(v_{0}, v_{n}\right)=q+1$. Since $i=j+m k$, for some positive integer m, and $0<j<r$, we have $d_{P_{n+1}^{k}}^{n+1}\left(v_{0}, v_{i}\right)=m+1$ and $d_{P_{n+1}^{k}}\left(v_{i}, v_{n}\right)=$ $\left\lceil\frac{r+q k-j-m k}{k}\right\rceil=\left\lceil\frac{(q-m) k+r-j}{k}\right\rceil=q-m+1$. Therefore, $d_{P_{n+1}^{k}}\left(v_{0}, v_{n}\right)=q+2$. This contradicts the fact that $d_{P_{n+1}^{k}}\left(v_{0}, v_{n}\right)=q+1$.

Using the above lemma, we can characterize when a power of path has geodetic number 2:
Corollary 1. $g\left(P_{n+1}^{k}\right)=2$ if and only if $n=q k$ for some positive integer q.
The following lemma clarifies when a closed interval of two vertices of C_{n}^{k} intersects both sides of the vertices of the cycle C_{n} (the side of $\left\{v_{0}, v_{1}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ and the side of $\left\{v_{n-1}, v_{n-2}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor+1}\right\}$).

Lemma 2. For positive integers n and k, if $I_{C_{n}^{k}}\left[v_{0}, v_{a}\right] \cap\left\{v_{0}, v_{1}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right\} \neq \varnothing$ and $I_{C_{n}^{k}}\left[v_{0}, v_{a}\right] \cap$ $\left\{v_{n-1}, v_{n-2}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor+1}\right\} \neq \varnothing$. Then, $\left\lfloor\frac{n}{2}\right\rfloor-r<a \leq\left\lfloor\frac{n}{2}\right\rfloor-r+k$, where $\left\lceil\frac{n}{2}\right\rceil \equiv r \bmod k$ and $0<r<k$.

Proof. Suppose that $I_{C_{n}^{k}}\left[v_{0}, v_{a}\right] \cap\left\{v_{0}, v_{1}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right\} \neq \varnothing$. Since $\left\lfloor\frac{n}{2}\right\rfloor=q k+r$ for some positive integer q, we have $d_{C_{n}^{k}}\left(v_{0}, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right)=q+1$.

Since the $\operatorname{diam}\left(C_{n}^{k}\right)=q+1, I_{C_{n}^{k}}\left[v_{0}, v_{a}\right] \cap\left\{v_{0}, v_{1}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor}\right\} \neq \varnothing$ and $I_{C_{n}^{k}}\left[v_{0}, v_{a}\right] \cap$ $\left\{v_{n-1}, v_{n-2}, \ldots, v_{\left\lfloor\frac{n}{2}\right\rfloor+1}\right\} \neq \varnothing$, we have $d_{C_{n}^{k}}\left(v_{0}, v_{a}\right)=q+1$. Therefore, $\left\lceil\frac{a}{k}\right\rceil=q+1$ and $q<\left\lfloor\frac{a}{k}\right\rfloor \leq q+1$ or $q k<a \leq q k+k$. Hence, $\left\lfloor\frac{n}{2}\right\rfloor-r<a \leq\left\lfloor\frac{n}{2}\right\rfloor+k-r$.

3. The Geodetic Number of Power of Cycles

For positive integers n and k, two different vertices v_{i} and v_{j} in $V\left(C_{n}^{k}\right)$ are adjacent in C_{n}^{k} if $0<d_{C_{n}}\left(v_{i}, v_{j}\right) \leq k$, that is,

$$
E\left(C_{n}^{k}\right)=\left\{v_{i} v_{j}: i-j \equiv \pm r \quad \bmod n, 1 \leq r \leq k\right\}
$$

However, when $k \geq \frac{n}{2}$, we have

$$
E\left(C_{n}^{k}\right)=\left\{v_{i} v_{j}: i-j \equiv \pm r \quad \bmod n, 1 \leq r \leq \frac{n}{2}+1\right\}=E\left(K_{n}\right)
$$

where K_{n} is the complete graph with n vertices. Figures $2-4$ show the cycle C_{7}, C_{7}^{2} and C_{7}^{3}, respectively.
It is obvious that the geodetic number of the complete graph with n vertices is n. In other words, if $k \geq\left\lfloor\frac{n}{2}\right\rfloor$, then $g\left(C_{n}^{k}\right)=n$ as shown in Figure 4 for $n=7$ and $k=3$. Hence, we will consider the geodetic number of C_{n}^{k} only when $k<\left\lfloor\frac{n}{2}\right\rfloor$.

For any n and k positive integers, n can be written in the form $n=c k+r, 0<r \leq k$. We will consider all possible positive integer values of r and c in calculating the geodetic set and geodetic number of C_{n}^{k}. It should be mentioned that we provide the geodetic set in each lemma. Then, using the symmetry of power of cycles, the geodetic set is invariant under shifting its vertices to the left or to the right.

Before we start computing the geodetic number of power of cycles, let's consider this illustrative example to compute the geodetic number of C_{14}^{3} shown in Figure 5. The distance between vertex 0 and vertex 7 in C_{14} is $d_{C_{14}}(0,7)=7$ (the length of the shortest path in C_{7} from 0 to 7) while the distance between vertex 0 and vertex 7 in C_{14}^{3} is $d_{C_{14}^{3}}(0,7)=3$. Now, the shortest paths from vertex 0 to vertex 7 in C_{14}^{3} that visit the vertices $0,1, \ldots, 7$ are listed in Table 1 .

Figure 2. $C_{7}=C_{7}(1)$.

Figure 3. $C_{7}^{2}=C_{7}(1,2)$.

Figure 4. $C_{7}^{3}=C_{7}(1,2,3)=K_{7}$.

Table 1. Shortest paths from vertex 0 to vertex 7 in C_{14}^{3}.

$$
\begin{array}{cc}
\text { Type 1: } 7=3+3+\mathbf{1} & \text { Type } 2: 7=2+2+3 \\
\hline 0-1-4-7 & 0-2-5-7 \\
0-3-4-7 & 0-3-5-7 \\
0-3-6-7 & 0-2-4-7 \\
\hline
\end{array}
$$

Figure 5. Graph of C_{14}^{3}.
Using symmetry of C_{14}^{3}, one can extend the paths shown in Table 1 to the paths that visit the vertices $8,9,10,11,12$ and 13 . As we can see, the set of all possible shortest paths from 0 to 7 covers all vertices of C_{14}^{3} and hence the geodetic number $g\left(C_{14}^{3}\right)=2$.

Lemma 3. If $n=2 q k+r$ for some positive integers q and r where $0<r<k$, then $g\left(C_{n}^{k}\right)=2$ if and only if $r=2$.

Proof. Suppose that $n=2 q k+2$, then $d\left(v_{0}, v_{q k+1}\right)=q+1$. For each i with $1 \leq i \leq k$, the path $v_{0}, v_{i}, v_{i+k}, v_{i+2 k}, \ldots, v_{i+(q-1) k}, v_{1+q k}$ is of length $q+1$ and so it is $v_{0}-v_{1+q k}$ geodesic over all values of i. These paths cover the vertices $v_{0}, v_{1}, \ldots, v_{1+q k}$. Since v_{0} and $v_{1+q k}$ are antipodal points in C_{n}, we have $S=\left\{v_{0}, v_{1+q k}\right\}$ is geodetic set of C_{n}^{k}.

Now, suppose that $n=2 q k+r$ and $g\left(C_{n}^{k}\right)=2$. Let $S=\left\{v_{0}, v_{a}\right\}$ be a minimal geodetic set of C_{n}^{k}. Then, $v_{0}-v_{a}$ geodesic covers all vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{a}$ and $v_{a}, v_{a+1}, \ldots, v_{0}$.

Using Corollary $1, a=q m k+1$ for some positive integer m and $n-a=j k+1$ for some positive integer j.

On the other hand, since $v_{0}-v_{a}$ geodesic covers all vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{a}$ and $v_{a}, v_{a+1}, \ldots, v_{0}$, we conclude that $\left\lceil\frac{m k+1}{k}\right\rceil=\left\lceil\frac{j k+1}{k}\right\rceil$, so $m=j$, and hence $n=2 m k+2$.

In the above lemma, we found the geodetic number of C_{n}^{k} when $n=c k+2$ where c is an even number. The case when c is odd and $r=2$ will be addressed in a separate lemma later in this paper.

Lemma 4. For the graph C_{n}^{k}, suppose that $n=c k+r$ for some positive integers $c \geq 2$ and $0<r<k$, then $g\left(C_{n}^{k}\right)=3$ if and only if $r=3$.

Proof. Suppose that $n=c k+3$ for some positive integer $c \geq 2$, then:
Case 1. Let $c=2 q$ for some positive integer q. Consider $S=\left\{v_{0}, v_{q k+1}, v_{q k+2}\right\}$. Using Corollary $1, S$ is a geodetic set.

Case 2. Let $c=2 q+1$ for some positive integer q. Consider $S=\left\{v_{0}, v_{q k+1}, v_{2 q k+2}\right\}$. Using Corollary $1, S$ is a geodetic set.

On the other hand, suppose that $n=c k+r$, where q is a positive integer and $S=\left\{v_{0}, v_{m}, v_{l}\right\} . m<$ l is a minimal geodetic set of C_{n}^{k}. Then, using Corollary $1, m=a k+1, l-m=b k+1$ and $n-l=c k+1$
for some positive integers a, b and c. This means that $3-r$ is multiple of k; therefore, $3-r=0$ and hence $r=3$.

Now, we turn our discussion to study the cases for when the geodetic number is 4 . We have already addressed the case when $r=3$. Next, we will discuss the case where $4 \leq r \leq k$, but $c \neq 3$. The case when $c=3$ will be discussed after.

Lemma 5. For the graph C_{n}^{k}, suppose that $n=c k+r$ for some positive integers c and r where $c>1, c \neq 3$ and $4 \leq r<k$, then $g\left(C_{n}^{k}\right)=4$.

Proof. Suppose that $n=c k+r$ for some positive integer $c, c>1, c \neq 3$ and $4 \leq r<k$, then:
Case 1. for $c=2 q$ for some positive integer $q \geq 1$, consider $S=\left\{v_{0}, v_{q k+1}, v_{2 q k+2}, v_{(2 q-1) k+r-1}\right\}$, using Corollary 1:
(a) $I_{C_{n}^{k}}\left[v_{0}, v_{q k+1}\right]$ covers all vertices that lie on the shortest path from v_{0} to $v_{q k+1}$ in C_{n}.
(b) $I_{C_{n}^{k}}\left[v_{q k+1}, v_{2 q k+2}\right]$ covers all vertices that lie on the shortest path from $v_{q k+1}$ to $v_{2 q k+2}$ in C_{n}.
(c) $I_{C_{n}^{k}}\left[v_{(2 q-1) k+r-1}, v_{0}\right]$ covers all vertices that lie on the shortest path from v_{0} to $v_{(2 q-1) k+r-1}$ in C_{n}.

Now, since $4 \leq r \leq k$ and $q>1$, it is obvious that $\frac{n}{2}=q k+\frac{r}{2}<(2 q-1) k+r-1<2 q k+2$, that is, S is geodetic set of C_{n}^{k}. Therefore, S is a minimal geodetic set:

Case 2. For $c=2 q+1$, for some positive integer q, then, for $q>1$: similar to Case1, consider $S=\left\{v_{0}, v_{q k+1}, v_{2 q k+2}, v_{(2 q-1) k+r-1}\right\}$. Since $\frac{n}{2}<(2 q-1) k+r-1<2 q k+2$, we conclude that S is geodetic set of C_{n}^{k}.

Lemma 6. If $n=3 k+4$, then $g\left(C_{n}^{k}\right)=4$.
Proof. Consider the set $S=\left\{v_{0}, v_{k+1}, v_{2 k+2}, v_{3 k+3}\right\}$. Since $d_{C_{n}}\left(v_{0}, v_{k+1}\right)=k+1>k$ and $d_{C_{n}}\left(v_{0}, v_{i}\right) \leq$ k for all $1 \leq i \leq k$, we have $v_{0} v_{k+1} \notin E\left(C_{n}^{k}\right)$ and $v_{0} v_{i} \in E\left(C_{n}^{k}\right)$. Therefore, $d_{C_{n}^{k}}\left(v_{0}, v_{k+1}\right)=2$. Moreover, for any $0<i \leq k, v_{0}-v_{i}-v_{k+1}$ is the shortest path from v_{0} to v_{k+1} in C_{n}^{k}; this means $I_{C_{n}^{k}}\left[v_{0}, v_{k+1}\right]=\left\{v_{0}, v_{1}, \ldots, v_{k+1}\right\}$.

Using the same technique as above, we can show that $I_{C_{n}^{k}}\left[v_{k+1}, v_{2 k+2}\right]=\left\{v_{k+1}, v_{k+2}, \ldots, v_{2 k+2}\right\}$ and $I_{C_{n}^{k}}\left[v_{2 k+2}, v_{0}\right]=\left\{v_{2 k+2}, v_{2 k+3}, \ldots, v_{3 k+3}, v_{0}\right\}$. Therefore, S is geodetic set of C_{n}^{k}.

Lemma 7. For the graph C_{n}^{k}, if $n=c k+1$ for some positive integer c, where $c \geq 3$ and $c \neq 4$, then $g\left(C_{n}^{k}\right)=4$.
Proof. If $n=3 k+1$, then consider the geodetic set $S=\left\{v_{0}, v_{k+1}, v_{2 k+2}, v_{2 k}\right\}$.
If $n=2 c k+1, c \geq 3$, then consider the geodetic set $S=\left\{v_{0}, v_{(c-1) k+1}, v_{2(c-1) k+2}, v_{2(c-1) k}\right\}$.
If $n=(2 c+1) k+1, c \geq 2$; then, consider the geodetic set $S=\left\{v_{0}, v_{c k+1}, v_{2 c k+2}, v_{2 c k}\right\}$.
For $r=2$, it is obvious that we are still missing the case when c is odd. The following lemma will address this case:

Lemma 8. For the graph C_{n}^{k}, if $n=(2 c+1) k+2$ for some positive integer c, then $g\left(C_{n}^{k}\right)=4$.
Proof. Consider the set $S=\left\{v_{0}, v_{c k+1}, v_{2 c k+2}, v_{2 c k+1}\right\}$. Since $d_{C_{n}}\left(v_{0}, v_{c k+1}\right)=c k+1>c k$ and $d_{C_{n}}\left(v_{0}, v_{i}\right) \leq c k$ for all $0<i \leq c k$, we have $d_{C_{n}^{k}}\left(v_{0}, v_{c k+1}\right)=c+1$; therefore, for every $0 \leq i \leq k$, and $0 \leq m \leq c$, the path

$$
v_{0}-v_{k}-v_{2 k}-\cdots-v_{m k}-v_{m k+i}-v_{(m+1) k+i} \cdots-v_{(c-1) k+i}-v_{c k+1}
$$

is shortest path from v_{0} to $v_{c k+1}$. This means $I_{C_{n}^{k}}\left[v_{0}, v_{c k+1}\right]=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{c k+1}\right\}$. Using the same technique, we can prove that

$$
I_{C_{n}^{k}}\left[v_{c k+1}, v_{2 c k+2}\right]=\left\{v_{c k+1}, v_{c k+2}, v_{c k+3}, \ldots, v_{2 c k+2}\right\}
$$

and

$$
I_{C_{n}^{k}}\left[v_{2 c k+1}, v_{0}\right]=\left\{v_{2 c k+1}, v_{2 c k+2}, v_{2 c k+3}, \ldots, v_{0}\right\}
$$

Therefore, S is geodetic set of C_{n}^{k}.
Finally, we discuss the cases for when the geodetic number is 5 .
Lemma 9. For the graph C_{n}^{k}, suppose that $n=3 k+r$ for some positive integer r where $5 \leq r<k$. Then, $g\left(C_{n}^{k}\right)=5$.

Proof. Suppose that $n=3 k+r, 5 \leq r \leq k, g\left(C_{n}^{k}\right)=5$ and that $S=\left\{v_{0}, v_{a}, v_{b}, v_{c}\right\}$ is a minimal geodetic set of C_{n}^{k}.

If $d_{C_{n}}\left(v_{i}, v_{j}\right)>k$ for all $i, j \in\{a, b, c, d\}$; then, $n>4 k$; therefore, we may assume that $S=$ $\left\{v_{0}, v_{a}, v_{k+b}, v_{2 k+d}\right\}$, where $a \leq k$, then v_{1} will either be covered by some $v_{0}-v_{k+b}$ geodesic or $v_{2 k+d}-v_{a}$ geodesic.

Case 1. First, we consider the scenario where v_{1} is covered by $v_{0}-v_{k+b}$ geodesic. Using Lemma 1, we have $b=1$.

Now, v_{k+2} may be covered by some $v_{a}-v_{2 k+d}$ geodesic or some $v_{k+1}-v_{2 k+d}$ geodesic; in the latter case, d must be equal to 2 using Lemma 1. In the former case, since diam $\left(C_{n}^{k}\right)=2$, we have $d_{C_{n}}\left(v_{a}, v_{k+2}\right) \leq k$ and $d_{C_{n}}\left(v_{k+2}, v_{2 k+d}\right) \leq k$, so $a \geq 2$ and $d \leq 2$, if $d=1$. Then, $d_{C_{n}}\left(v_{k+1}, v_{2 k+1}\right)=k$, so $v_{2 k+d}-v_{k+b}$ geodesic will only cover $v_{2 k+2}$ and v_{k+1}, which is impossible, so $d=2$.

Now, $d\left(v_{2 k+2}, v_{0}\right)=k+r-2$, since $r \geq 5$, then $v_{2 k+3}$ can be covered by neither $v_{2 k+2}-v_{0}$ geodesic nor by $v_{2 k+2}-v_{a}$ geodesic.

Case 2. If v_{1} is covered by some $v_{2 k+d}-v_{a}$ geodesic and $b \neq 1$, then, $d_{C_{n}}\left(v_{2 k+d}, v_{1}\right) \leq k$ and $d_{C_{n}}\left(v_{1}, v_{a}\right) \leq k$; this means that $v_{2 k+d+1}$ could not be covered by any of the $v_{2 k+d}-v_{0}$ geodesic, thus, $v_{2 k+d+1}$ will be covered by $v_{2 k+d}-v_{a}$ geodesic, and so, $k+r-d+a=k+1$ by Corollary 1 ; therefore, $d=r+a-1$. Since v_{1} is not in any of the $v_{0}-v_{k+b}$ geodesic, we have v_{k+b-1} will only be covered by some $v_{a}-v_{k+b}$ geodesic, and so, $b=a+1$. From Case1 and Case2 above, S can not be a geodesic set for C_{n}^{k}, hence, $g\left(C_{n}^{k}\right)>4$.

Now, it is obvious that $v_{a}-v_{2 k+d}$ geodesic can not cover any of the vertices $v_{a+1}, v_{a+2}, \ldots, v_{2 k+1}$, and so, v_{k+a+2} can only be covered by some $v_{k+b}-v_{2 k+d}$ geodesic, $d=a+2$, therefore, $a+2=$ $r+a-1$, and thus, $r=3$, which is a contradiction. Hence, $g\left(C_{n}^{k}\right)>4$.

Now, take $S=\left\{v_{0}, v_{k+1}, v_{2 k+2}, v_{3 k+3}, v_{2 k+r-1}\right\}$; this is a minimal geodetic set of C_{n}^{k}.
Lemma 10. For the graph C_{n}^{k}, if $n=4 k+1, k \geq 4$, then $g\left(C_{n}^{k}\right)=5$.
Proof. Using Lemmas 3 and $4, g\left(C_{n}^{k}\right)$ can not be 2 or 3 . Assume that $g\left(C_{n}^{k}\right)=4$ and $S=\left\{v_{0}, v_{a}, v_{b}, v_{c}\right\}$ be a geodetic set of C_{n}^{k}, if $d\left(v_{i}, v_{j}\right)>k$ for all $i \neq j$, where $i, j \in\{0, a, b, c\}$; then, $n>4 k+4$, without loss of generality, we may assume that $S=\left\{v_{0}, v_{a}, v_{k+b}, v_{2 k+d}\right\}$ for some positive integer d and $1<a \leq k$. Then, v_{1} can either be covered by some $v_{0}-v_{k+b}$ geodesic or $v_{2 k+d}-v_{a}$ geodesic.

Case 1. If v_{1} is covered by some $v_{0}-v_{k+b}$ geodesic, using Lemma 1, we conclude that $b=1 . v_{k+1}$ may be covered by some $v_{k+1}-v_{2 k+d}$ geodesic or some $v_{a}-v_{2 k+d}$ geodesic. In the former case, d must be equal to 2 , in the latter case, since diam $\left(C_{n}^{k}\right)=2$, we have $d_{C_{n}}\left(v_{a}, v_{k+2}\right) \leq k$ and $d_{C_{n}}\left(v_{k+2}, v_{2 k+d}\right)<k$; therefore,
$a \geq 2$ and $d \leq 2$. If $d=1$. Then, $d_{C_{n}}\left(v_{0}, v_{2 k+1}\right)=2 k$; this means that $v_{0}-v_{2 k+1}$ geodesic will only cover $v_{2 k+1}, v_{3 k+1}$ and v_{0}, which is impossible since $a \geq 2$. Hence, $d=2$.

Now, $d_{C_{n}}\left(v_{2 k+2}, v_{0}\right)=2 k-1$. Then, $v_{2 k+3}$ can be covered by neither $v_{2 k+2}-v_{0}$ geodesic nor by $v_{2 k+2, v_{a}}$ geodesic. Therefore, v_{1} can not be covered by $v_{0}-v_{k+1}$ geodesic.

Case 2. If v_{1} is covered by some $v_{2 k+d}-v_{a}$ geodesic and $b \neq 1$, then $d_{C_{n}}\left(v_{2 k+d}, v_{1}\right) \leq k$. This means that $v_{2 k+d+1}$ could not be covered by any of the $v_{2 k+d}-v_{0}$ geodesic. Thus, $v_{2 k+d+1}$ will be covered by some $v_{2 k+d}-v_{a}$ geodesic. Using Lemma 1, we conclude that $d=k+a$, since v_{1} is not in any of the $v_{0}-v_{k+b}$ geodesic. Then, v_{k+b-1} can only be covered by some $v_{a}-v_{k+b}$ geodesic and hence $b=a+1$.

Since $v_{a}-v_{3 k+a}$ geodesic can not cover any of the vertices $v_{a+1}, v_{a+2}, \ldots, v_{3 k+a-1}$, we conclude that v_{k+a+2} can only be covered by some $v_{k+a+1}-v_{3 k+a}$ geodesic. This gives $k=2$. This contradicts the assumption $k \geq 4$. Therefore, S can not be geodetic set of C_{n}^{k}. Hence, $g\left(C_{n}^{k}\right)>4$.

Now, let $S=\left\{v_{0}, v_{k+1}, v_{2 k+2}, v_{3 k+3}, v_{3 k}\right\}$. Then, S is geodetic set of C_{n}^{k}.

In the above lemmas, we covered the calculation of the geodetic number of C_{n}^{k} for all the scenarios of $n=c k+r$. We summarize our calculations in Theorem 1 in the Conclusions section.

4. Conclusions

Even though the determination of the geodetic number of graphs is an NP-Complete problem, in this paper, we were able to compute the geodetic number of power of cycles $g\left(C_{n}^{k}\right)$ and we summarize our calculations in the following main theorem.

Theorem 1. For positive integers n and k, we have:

$$
g\left(C_{n}^{k}\right)= \begin{cases}2 & \text { if } n=2 c k+2 \text { for some positive integer } c . \\ 3 & \text { if } n=c k+3 \text { for some positive integer } c . \\ 4 & \text { if } n=c k+1 \text { for some positive integer } c \neq 4 \\ 4 & \text { if } n=(2 c+1) k+2 \text { for some positive integer } c . \\ 4 & \text { if } n=c k+r \text { for some positive integers } r \text { and } c \text { where } 5 \leq r \leq k \text { and } c \neq 3 \\ 5 & \text { if } n=3 k+r \text { for some positive integer } r \text { where } 5 \leq r \leq k \\ 5 & \text { if } n=4 k+1 \text { where } k \geq 4\end{cases}
$$

As previously mentioned in the Introduction, geodetic number of a graphs has many applications in Computer Networks, Social Networks and Social Transport Networks. Steiner number and hull number are two other important graph theoretic parameters that have important applications in network theory. It would be interesting for further research to calculate those numbers for power of cycles as well as calculating the geodetic number of Circulant graphs.

Author Contributions: The authors contributed equally.
Funding: This research received no external funding
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, B.K. The geodetic number of a graph. J. Appl. Math. Comput. 2004, 16, 525-532.
2. Meijer, P.T. Connectivities and Diameters of Circulant Graphs. Ph.D. Thesis, Simon Fraser University, Burnaby, BC, Canada, 1991.
3. Chartrand, G.; Harary, F.; Zhang, P. Extremal problems in geodetic graph theory. In Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Boca Raton, FL, USA, 9-13 March 1998; pp. 157-168.
4. Chartrand, G.; Harary, F.; Zhang, P. On the geodetic number of a graph. Netw. Int. J. 2002, 39, 1-6. [CrossRef]
5. Chartrand, G.; Zhang, P. Realizable ratios in graph theory: geodesic parameters. Bull. Inst. Comb. Appl. 1999, 27, 69-80.
6. Manuel, P.; Klavžar, S.; Xavier, A.; Arokiaraj, A.; Thomas, E. Strong geodetic problem in networks. Discuss. Math. Graph Theory 2018. [CrossRef]
7. Manuel, P.; Klavžar, S.; Xavier, A.; Arokiaraj, A.; Thomas, E. Strong edge geodetic problem in networks. Open Math. 2017, 15, 1225-1235. [CrossRef]
8. Chartrand, G.; Zhang, P. The geodetic number of an oriented graph. Eur. J. Comb. 2000, 21, 181-189. [CrossRef]
9. AbuGhneim, O.A.; Al-Khamaiseh, B.; Al-Ezeh, H. The geodetic, hull, and Steiner numbers of powers of paths. Util. Math. 2014, 95, 289-294.
10. Nebeskỳ, L. A characterization of the interval function of a connected graph. Czech. Math. J. 1994, 44, 173-178.
11. Mulder, H.M. The Interval Function of a Graph; Centrum Voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1980.
12. Agnarsson, G.; Halldórsson, M.M. Coloring powers of planar graphs. SIAM J. Discret. Math. 2003, 16, 651-662. [CrossRef]
13. Brandstädt, A.; Chepoi, V.D.; Dragan, F.F. Perfect elimination orderings of chordal powers of graphs. Discret. Math. 1996, 158, 273-278. [CrossRef]
14. Effantin, B.; Kheddouci, H. The b-chromatic number of some power graphs. Discret. Math. Theor. Comput. Sci. 2003, 6, 45-54.
15. Atici, M. Computational complexity of geodetic set. Int. J. Comput. Math. 2002, 79, 587-591. [CrossRef]
16. Hernando, C.; Jiang, T.; Mora, M.; Pelayo, I.M.; Seara, C. On the Steiner, geodetic and hull numbers of graphs. Discret. Math. 2005, 293, 139-154. [CrossRef]
(c) 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
