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Abstract: In this paper, we study the way the symmetries of a given graph are reflected in its
characteristic polynomials. Our aim is not only to find obstructions for graph symmetries in terms
of its polynomials but also to measure how faithful these algebraic invariants are with respect to
symmetry. Let p be an odd prime and Γ be a finite graph whose automorphism group contains an
element h of order p. Assume that the finite cyclic group generated by h acts semi-freely on the set of
vertices of Γ with fixed set F. We prove that the characteristic polynomial of Γ, with coefficients in the
finite field of p elements, is the product of the characteristic polynomial of the induced subgraph Γ[F]
by one of Γ \ F. A similar congruence holds for the characteristic polynomial of the Laplacian matrix
of Γ.
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1. Introduction

The purpose of this paper is to address the question of how the symmetries of a graph are reflected
in its algebraic invariants. In other words, we study the interaction between the algebraic invariants
of a graph and its automorphism group. Indeed, our study will be limited to discussing how the
information about graph periodicity is carried by its characteristic polynomials. This question is
primarily motivated by the results about knots and spatial graph periodicity obtained in terms of
their quantum invariants. We shall start by fixing some notation. Let n be a positive integer and
V = {v1, . . . , vn} be a finite set. A weight on V is a symmetric function w: V × V → Z+ ∪ {0}.
The pair Γ = (V, w) is called a weighted graph. Indeed, a weighted graph can be seen as a finite graph
possibly with multiple edges and loops. In particular, if the graph Γ is simple, then the corresponding
symmetric function w is defined by w(u, v) = 1 if u and v are adjacent and 0 otherwise. Throughout
this paper, wherever no confusion may arise, we will simplify notation and use the term graph instead
of weighted graph. Given a graph Γ with vertex set V = {v1, . . . , vn}, the adjacency matrix of Γ is
the n-square matrix A(Γ) = [wij] where wij = w(vi, vj). Since the weight function w is symmetric,
so is the matrix A(Γ). It is worth mentioning here that while the matrix A(Γ) depends on the ordering
of the vertices, its characteristic polynomial, defined as det(xIn − A(Γ)), is known to be independent
of that order. It is denoted hereafter by ϕΓ(x). On the other hand, if D(Γ) = [dij] is the degree matrix
of Γ, which is the diagonal n-square matrix defined by dii = deg(vi), then the Laplacian matrix of Γ
is defined by L(Γ) = D(Γ)− A(Γ). The characteristic polynomial of L(Γ) is also independent of the
ordering of the vertices and is denoted hereafter by ψΓ(x). Both polynomials ϕΓ(x) and ψΓ(x) are
well-known graph invariants which carry important information about the graph.

An automorphism of a weighted graph Γ is a permutation σ of the set of vertices V such that for
any pair of vertices u and v, we have w(σ(u), σ(v)) = w(u, v). The set of all automorphisms of Γ forms
a group denoted here by Aut(Γ).
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Let p ≥ 2 be an integer. A graph Γ is said to be p-periodic if its automorphism group Aut(Γ)
contains an element h such that hp = Id and for any vertex v, we have hi(v) 6= v for all 1 ≤ i ≤ p− 1.
In other words, the finite cyclic group Zp acts freely on the set of vertices of the graph. A graph Γ is said
to be semi-free p-periodic if Aut(Γ) contains an element h such that hp = Id and the set of fixed vertices
by h is non empty. This set of fixed vertices will be denoted hereafter by F. It is worth mentioning here
that for simplicity we will sometimes abuse notation and denote by F the induced subgraph Γ[F] as
well. Notice that if Γ is semi-free p-periodic then Γ \ F is p-periodic.

Let r and s be two positive integers. The complete 4-partite graph Kr,s,p,p is semi-free p-periodic
with fixed subgraph F the complete bipartite graph Kr,s. The graph Γ \ F is the complete bipartite
graph Kp,p.

Given a p-periodic weighted graph Γ, we define its quotient graph Γ as the weighted graph (V, w),
where V is the quotient set of V under the action of h and w is the weight function on V defined by

w(u, v) =
p−1

∑
i=0

w(u, hi(v)), see [1].

The natural question of how the information about symmetries of graphs are carried by their
algebraic invariants has been subject to relatively extensive study. In particular, several results
about the characteristic polynomial of periodic graphs and graph coverings in general have been
obtained, see [2–4] for instance. In [1], the first author suggested a more elementary approach
by considering these polynomials with coefficients in the finite field of p elements Fp. Actually,
he studied the characteristic polynomial of p-periodic graphs and proved that ϕΓ(x) is determined
by the characteristic polynomial of the quotient graph Γ. More precisely, ϕΓ(x) ≡ ϕΓ(xp) in Fp[x].
Furthermore, the polynomial ψΓ(x) is divisible by xp in Fp[x]. Other necessary conditions for a graph
to be p-periodic have been also obtained in terms of the Tutte polynomial and its generalizations [1,5].
In this paper, we discuss the case of semi-free actions and show that some similar congruences hold.

Theorem 1. Let p be an odd prime and Γ be a semi-free p-periodic graph with a fixed subgraph F. Then the
following congruences hold in Fp[x].

ϕΓ(x) ≡ ϕF(x)ϕΓ\F(x) ≡ ϕF(x)ϕΓ\F(xp).

Example 1. The complete 4-partite graph K2,2,3,3 admits a semi-free action of Z3, with the 4 vertices of
degree 8 fixed. Hence F = K2,2 and Γ \ F = K3,3. Computations of the characteristic polynomials show
that ϕK2,2,3,3(x) = −108x6 − 120x7 − 37x8 + x10, ϕK2,2(x) = −4x2 + x4 and ϕK3,3(x) = −9x4 + x6.
Thus, the congruences given in Theorem 1 hold modulo 3.

Theorem 2. Let p be an odd prime and Γ be a semi-free p-periodic graph with a fixed subgraph F. Then ψΓ(x)
is divisible by ψF(x) with quotient in Fp[xp].

Example 2. For the complete 4-partite graph K2,2,3,3, we have modulo 3: ψK2,2,3,3(x) ≡ 2x + 2x2 + x3 +

2x5 + x6 + 2x8 + x9 + x10; ψK2,2(x) ≡ 2x + 2x2 + x3 + x4 and ψK3,3(x) ≡ x6. It can be easily checked that
ψK2,2,3,3(x) ≡ ψK2,2(x)ψK3,3(x− 1) modulo 3. Hence, the condition given by Theorem 2 is satisfied.

2. Block Circulant Matrices

In this section we will introduce block circulant matrices and briefly explain how to compute
their characteristic polynomials. More details can be found in [6]. Let p and s be two positive integers.
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For 0 ≤ i ≤ p− 1, let Ai be a s-square matrix. The block circulant matrix C = C(A0, . . . , Ap−1) is the
ps-square matrix of the form: 

A0 A1 A2 . . . Ap−1

Ap−1 A0 A1 . . . Ap−2
...

...
...

...
...

A1 A2 A3 . . . A0

 .

The characteristic polynomial of the circulant matrix C, with coefficients in the finite filed Fp,
satisfies the following property.

Lemma 1. Let p be an odd prime and C = C(A0, . . . , Ap−1) be a block circulant matrix. Then,
ϕC(x) ∈ Fp[xp].

Proof. Let ζ be a pth primitive root of unity. For 0 ≤ k ≤ p − 1, we define the s-square matrix

Tk =
p−1

∑
j=0

ζkj Aj. Let ϕTk (x) denotes the characteristic polynomial of the matrix Tk. The characteristic

polynomial of the circulant matrix C is ϕC(x) =
p−1

∏
k=0

ϕTk (x), see [6]. Since p is prime, the following

homomorphism is well defined:
fp : Z[ζ] −→ Zp

∑ niζ
i 7−→ ∑ ni.

Furthermore, it extends to a homomorphism of rings fp : Z[ζ][x] −→ Zp[x]. Notice that for all
0 ≤ k ≤ p− 1 we have fp(ϕTk (x)) = fp(ϕT0(x)). Thus fp(ϕC(x)) = fp(ϕT0(x))p. In conclusion, ϕC(x)
is congruent to ϕT0(xp) modulo p. This completes the proof of the lemma.

Let Γ be a semi-free p-periodic graph with fixed set of vertices F. Assume that F is made up of r
vertices u1, u2, . . . , ur. Since p is prime and Γ \ F is p-periodic, the finite cyclic group Zp =< h > acts
freely on the set of vertices of Γ \ F. This set splits into a partition made up of s orbits, where s is the
number of vertices of the quotient graph Γ \ F. Since the action is free and p is prime, each orbit is
made up of exactly p elements. Let us label the vertices of Γ \ F as v1, . . . , vs. Let π be the canonical
surjection from V \ F to V \ F. We label the elements of π−1(vi) as v0

i , . . . , vp−1
i , so that h(vk

i ) = vk+1
i

if 0 ≤ k < p− 1 and h(vp−1
i ) = v0

i . The order of the vertices of Γ \ F extends to a natural order of

the vertices of Γ \ F, namely, v0
1, v0

2, . . . , v0
s , v1

1, v1
2, . . . , v1

s , v2
1, . . . , vp−1

s . Notice that for all 1 ≤ i ≤ r,
1 ≤ k, k′ ≤ s and 0 ≤ j ≤ p− 1, we have :

1. w(ui, hm(vj
k)) = w(ui, vj

k),
2. w(hm(v0

k′), hm(vj
k)) = w(v0

k′ , vj
k).

Consequently, if we consider the order of the vertices of Γ obtained by placing the vertices of F first
then those of Γ \ F in the order described above, then the adjacency matrix of Γ is of the following form:

A(Γ) =


A(F) R R . . . R

Rt A0 A1 . . . Ap−1

Rt Ap−1 A0 . . . Ap−2
...

...
...

...
...

Rt A1 A2 . . . A0

 ,

where A(F) denotes the adjacency matrix of the subgraph F, R is an r× s-matrix and for 0 ≤ i ≤ p− 1,
Ai is a s-square matrix. Notice that the block circulant sub-matrix (A0, A1, . . . , Ap−1) is indeed the
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adjacency matrix of the periodic graph Γ \ F. For instance the adjacency matrix of the semi-free
3-periodic graph displayed in Figure 1 is of the form.

0 1 0 1 0 1 0
1 0 2 0 0 0 1
0 2 0 1 1 0 1
1 0 1 0 2 0 0
0 0 1 2 0 1 1
1 0 0 0 1 0 2
0 1 1 0 1 2 0


.

The adjacency matrix of the semi-free 3-periodic graph K2,2,3,3, see Figure 2, can be written in
the form: 

0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 1 1 0 1 0 1 0 1
1 1 1 1 1 0 1 0 1 0
1 1 1 1 0 1 0 1 0 1
1 1 1 1 1 0 1 0 1 0
1 1 1 1 0 1 0 1 0 1
1 1 1 1 1 0 1 0 1 0


.

Figure 1. A 3-periodic graph (left) and a semi-free 3-periodic graph with a fixed vertex (right).

Figure 2. The complete 4-partite graph K2,2,3,3.

3. Proofs

We will first prove Theorem 1. The proof of Theorem 2 will be based on similar arguments.
Let us compute the characteristic polynomial of Γ, det(A(Γ) − xIn) by expanding with respect to
the first row. The basic observation here is that since w(u1, hm(vj

k)) = w(u1, vj
k) for 1 ≤ m ≤ p,

the co-factors corresponding to each of these p entries are equal. Hence their contribution to
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the value of det(A(Γ)− xIn) will add to zero modulo p. We will prove that for the co-factors
which correspond to deleting the first row of A(Γ) and the columns r + 1, r + s + 1, . . . , r + (p −
1)s + 1 of A(Γ). The sub-matrices obtained by such operations will be denoted hereafter by
∆r+1, ∆r+s+1, . . . , ∆r+(p−1)s+1, respectively. These sub-matrices are displayed below.

∆r+1 =



A(F) S′ S . . . S
Rt A′0 A1 . . . Ap−1
Rt A′p−1 A0 . . . Ap−2
...

...
...

...
...

Rt A′1 A2 . . . A0


, ∆r+s+1 =



A(F) S S′ . . . S
Rt A0 A′1 . . . Ap−1
Rt Ap−1 A′0 . . . Ap−2
...

...
...

...
...

Rt A1 A′2 . . . A0

,

..., ∆r+(p−1)s+1 =



A(F) S S . . . S′

Rt A0 A1 . . . A′p−1
Rt Ap−1 A0 . . . A′p−2
...

...
...

...
...

Rt A1 A2 . . . A′0


where, S is the matrix obtained from R by deletion of the first row. Moreover, if M is a matrix, then we
denote by M′ the matrix obtained from M by deletion of the first column.

Let us explain how to transform the first matrix ∆r+1 into ∆r+s+1 using elementary operations
on rows and columns. These operations are known to keep the determinant unchanged up to a sign.
First, we interchange column r + i and r + s + i for all 1 ≤ i ≤ s− 1, then we apply s− 1 column
interchanges to move column r + 2s− 1 to column r + s, our matrix is then transformed into:



A(F) S S′ . . . S
Rt A1 A′0 . . . Ap−1
Rt A0 A′p−1 . . . Ap−2
...

...
...

...
...

Rt A2 A′1 . . . A0


.

Now, we shall rearrange rows using elementary row operations. Indeed, using (p − 1)s
interchanges of rows we will be able to transform our matrix into:



A(F) S S′ . . . S
Rt A2 A′1 . . . A0

Rt A1 A′0 . . . Ap−1
Rt A0 A′p−1 . . . Ap−2
...

...
...

...
...

Γ


.

By interchanging column r + i and column r + p(s− 1) + i− 1, for 1 ≤ i ≤ s, we obtain:



A(F) S S′ . . . S
Rt A0 A′1 . . . A2

Rt Ap−1 A′0 . . . A1
Rt Ap−2 A′p−1 . . . A0
...

...
...

...
...


Finally, we can perform (p− 3)s column operations to rearrange the matrix into the desired form:
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
A(F) S S′ . . . S

Rt A0 A′1 . . . Ap−1

Rt Ap−1 A′0 . . . Ap−2
...

...
...

...
...

Rt A1 A′2 . . . A0

.

Notice that the total number of rows and columns interchanges performed to transform ∆r+1

into ∆r+s+1 is 2(s− 1) + (p− 1)s + s + (p− 3)s = 2(s− 1) + (2p− 3)s. Thus |∆r+1| = (−1)s|∆r+s+1|.
Similarly, one can show that |∆r+1| = (−1)ms|∆r+ms+1|, for 1 ≤ m ≤ p− 1. It can be easily checked that

(−1)r+1w1r+1|∆r+1| = (−1)r+1+sw1r+s+1|∆r+s+1| = · · · = (−1)r+(p−1)s+1w1r+s+1|∆r+(p−1)s+1|.

Hence, the contributions of these p sub-matrices to the value of the determinant add to zero
modulo p. Consequently, to compute the ϕΓ(x) modulo p, one may consider only the co-factors
corresponding to entries in the first row of F. With an elementary induction argument on the size of
F, we can prove that ϕΓ(x) ≡ ϕF(x)ϕΓ\F(x) modulo p. Notice that since Γ \ F is a p-periodic graph,
we have ϕΓ\F(x) ≡ ϕΓ\F(xp) modulo p, as proven in [1]. This completes the proof of Theorem 1.

The proof of Theorem 2 is also based on the study of block circulant matrices. Using the order of
the vertices described above, the Laplacian matrix of Γ is of the form:

L(Γ) =


l(F) M M . . . M
Mt B0 B1 . . . Bp−1

Mt Bp−1 B0 . . . Bp−2
...

...
...

...
...

Mt B1 B2 . . . B0

 ,

where l(F) is an r-square matrix, M is an r × s-matrix and for 0 ≤ i ≤ p − 1, Bi is a s-square
matrix. In a similar way, we can prove that det(L(Γ) − xIn) is the product of det(l(F) − xIn) by
det(C(B0, . . . , Bp−1)− xIn). On the other hand, it can be easily seen that l(F) and L(F) coincide out of
the diagonal. Furthermore, for any i, the diagonal entries are congruent modulo p, dii(l(F)) ≡ dii(L(F))
modulo p. Thus, det(l(F)− xIn) ≡ det(L(F)− xIn) modulo p. Consequently, ψF(x) divides ψΓ(x)
in Fp[x].

Finally, by Lemma 1 det(C(B0, . . . , Bp−1) − xIn) is a polynomial on xp. This ends the proof
of Theorem 2.

4. Conclusions

By using elementary properties of block circulant matrices, we established two obstruction criteria
for a graph to be symmetric. More precisely, we proved that if a given graph Γ is semi-free p-periodic
with set of fixed vertices F, then its characteristic polynomial, with coefficients reduced modulo p, is the
product of the characteristic polynomial of the induced subgraph Γ[F] by the one of Γ \ F. We also
proved that the characteristic polynomial of the Laplacian matrix of a semi-free p-periodic graph
satisfies a similar necessary condition.
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