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Abstract: In today’s world, millions of transactions are connected to online businesses, and the main
challenging task is ensuring the privacy of sensitive information. Sensitive association rules hiding
(SARH) is an important goal of privacy protection algorithms. Various approaches and algorithms
have been developed for sensitive association rules hiding, differentiated according to their hiding
performance through utility preservation, prevention of ghost rules, and computational complexity.
A meta-heuristic algorithm is a good candidate to solve the problem of SARH due to its selective
and parallel search behavior, avoiding local minima capability. This paper proposes simple genetic
encoding for SARH. The proposed algorithm formulates an objective function that estimates the effect
on nonsensitive rules and offers recursive computation to reduce them. Three benchmark datasets
were used for evaluation. The results show an improvement of 81% in execution time, 23% in utility,
and 5% in accuracy.

Keywords: meta-heuristic optimization; privacy-preserving data mining; data mining; association
rule mining; genetic algorithm; association rule hiding

1. Introduction

Data mining is considered an influential technique to enhance decision-making, with several
organizations and institutes using it to extract useful information and discover hidden patterns in
datasets. This has made data mining a promising functional trend. Association rule mining (ARM) is
an important data mining technique that extracts frequently co-occurring data items from transactional
and relational databases and reveals hidden correlations between them. In a set of transactions,
ARM focuses on finding associations between frequent items, enabling researchers to predict the
frequency of one itemset depending on the frequency of another item in a transaction. The ARM
technique has been extensively used in several applications, including privacy preservation [1],
market-basket transaction data analysis [2], recommendation [3], health care [4,5], prediction [6],
pattern finding in web browsing [7], ranking of text documents [8], and hazard identification [9],
among others. The extraction of association rules from transaction datasets was initiated in 1993 [10].
A transaction dataset consists of a series of n-transactions D = (t1, t2, . . . tn). Each transaction is a set of
items I = {i1, i2 . . . im}, while the transaction is a pair comprising of an itemset and a unique transaction
ID (TID, X). Itemset X is considered frequent if Supp (X)≥ Ts, where Ts is the support threshold defined
by the data miner. Supp (X) is the itemset support, which reflects the number of times itemset (X)
occurs in the dataset. An association rule is presented as X⇒ Y, where X and Y are two distinct sets of
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items. The rule X⇒ Y shows that the presence of X suggests the presence of another Y in an identical
transaction with certain confidence. To demonstrate this situation in a real-world scenario, we use the
transaction dataset of a supermarket as an example, where the customer’s shopping list is a transaction.
If a customer is buying “bread” and “butter,” then he will surely buy “milk”—the possible association
rule is {bread, butter} ⇒ milk. More precisely, X ⇒ Y is considered as an association rule only if
conf (X U Y) ≥ Tc and Supp (X U Y) ≥ Ts. We define conf (X U Y) as the confidence of X ⇒ Y,
which is the ratio of the rule support over the left-hand side conf (X U Y) = Supp (X U Y)/Supp (X).
Tc represents the confidence threshold determined by the data miner. The support and confidence
threshold values of Ts and Tc are usually related to the category of the transaction, the usage of mining
results, and the dataset size. Although ARM is the most effective data technique for mining the hidden
patterns and associations between items, extracting this information without a breach in privacy is
a challenging task. Private information, which is normally hidden in the dataset, can be disclosed on
conducting a cross-analysis of multiple related datasets [11]; a major side effect of this process is the
disclosure of sensitive information. Privacy has thus become a critical issue facing the data mining
research community.

Association rule hiding (ARH) is a data mining technique used to preserve sensitive association
rules. All ARH algorithms aim to minimally modify datasets such that no sensitive rule is extracted [12].
A hiding association rule can be regarded as a dataset inferential control, although it is concerned with
protecting sensitive rules, not sensitive data [13]; it is the sensitive rule that causes the privacy breach.

In ARH, the number of sensitive association rules is determined by the dataset provider. Thus,
when ARM algorithms are applied to that dataset, it can only extract nonsensitive rules. There have
been other efforts (techniques) to hide sensitive association by modifying the original dataset. However,
modifying the original dataset may have certain side effects, such as the loss of nonsensitive patterns
(lost rule) or the creation of new rules (ghost rules).

Another technique, privacy preservation data mining (PPDM), has also gained considerable
attention in transactional datasets [8]. PPDM maintains privacy by allowing the discovery of
nonsensitive information and protecting sensitive information from disclosure.

The remainder of the paper is organized as follows: Section 2 provides a review of the literature.
Section 3 describes the methodology used. Data description is provided in Section 4. Experimental
results and analysis are given in Section 5. Finally, a conclusion and future work recommendations are
given in Section 6.

2. Related Work

Association rule mining is the most extensively used (and promising) technique in the data
mining field [14]. Since its introduction, it has created several opportunities to mine high-utility
data [2]. It helps connect people with common interests [3] and provides new opportunities to improve
public health and medicine; the prediction of post–liver transplantation survival is one example [4,5].
This technique helps users find documents relevant to their search [8] and potentially leads to beneficial
services. However, privacy remains a critical issue [15].

Data sanitization strategies to preserve privacy are grouped into four categories: border-, exact-,
evolutionary-, and heuristic-based algorithms. The border-based strategy specifies the revised positive
and negative borders of all frequent itemsets. It focuses only on the weight of the maximin set [16]
or positive border [17] to minimize the support of the changed negative border. The efficiency of
the border-based algorithm was enhanced by formulating a hybrid algorithm called the decrease
the confidence rule (DCR) based on the maximin approach. As the name suggests, the maximin
approach uses two heuristics to hide the association rule [18], with the objective of controlling the
sanitizing procedure aftereffects on the resulting quality by finding the victim items that are associated
with the maximin solution. This is achieved by eliminating the victim item that has the shortest
length. The intersection lattice of a frequent item approach for hiding association rules was mainly
presented by Hai at el. [19,20]. These algorithms aim to conceal a specific set of sensitive rules in
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three steps. The first step specifies a set of itemsets satisfying three conditions: that they (i) contain
a right-hand side of the sensitive rule, (ii) are a maximal sub-itemset of a maximal itemset, and (iii)
have minimal support among those sub-itemsets specified in (ii). An item on the right-hand side of the
sensitive rule that is related to the specified maximal support itemset is identified as the victim item.
Second, the number of sensitive transactions is determined. Third, the victim items are deleted from
the determined transactions until the confidence of the rule decreases below a specified minimum
threshold. Finally, a number is assigned to all transactions to estimate the influence of the data hiding
process on the nonsensitive association rules (NSARs) [21].

The exact approach [9] is considered as a constraint satisfaction problem to determine the best
solution in the rule hiding process. It provides the least modification on the original dataset. Relatively,
the exact approach provides more undesirable side effects than other approaches, but it suffers from
high computational cost [9]. In recent years, many research studies have applied the evolutionary
approach to hiding the frequent itemset.

Evolutionary algorithms are essentially inspired by Darwin’s evolutionary theory. The algorithms
deal with populations of individuals in which all the individuals are possible candidate solutions
for a particular problem to produce a better solution to that problem. The fitness function is used
to measure the goodness of each solution. Some of the most interesting generic search algorithms
proposed PGA2DT [22] and PS02DT [23] to solve the data hiding problem. The PGA2DT and PS02DT
algorithms are based on the transaction deletion strategy, where a fitness function is designed to
determine the suitable chromosomes for the minimum data sanitization process side effects. While all
the chromosomes encode a solution consisting a number of transactions to be deleted, Lin et al. [24]
used the genetic algorithm (GA) concept to determine possible associations for data sanitization.
In chromosomes, all available genes represent potential candidates to be placed into a transaction.
Three user-specific weights are assigned to three factors—hiding failure-sensitive high-utility itemsets,
missing high-utility itemsets, and artificial high-utility itemsets—to evaluate the fitness values of
chromosomes. The use of this algorithm reduces the computational time required for rescanning
the original database compared to the simple GA-based algorithm. However, the authors used the
approach of inserting new transactions, which affects the reliability of the generated dataset and might
cause the generation of ghost rules.

The heuristic approach provides a useful and fast algorithm that chooses the suitable items in
a specific transaction for hiding sensitive association rules using a distortion or blocking technique.
The distortion technique inserts or deletes selected items of sensitive association rules from specified
transactions or adds illegitimate transactions [25], to reduce the support [26] or confidence [27] of
the rules under the given thresholds in order to hide single or multiple rules. Some research study
investigated only changing the position of sensitive items in original data reduce the risk of data
disclosure and balance the data confidentiality needs of the individual [28]. Chandra et al. [29] proposed
an approach to select and alter the optimal transactions of a dataset to maintain the privacy and utility
trade-off considering the Particle Swan Optimization (PSO) technique, which is a meta heuristic
technique for solving complex optimization problems. Paratha et al. [30] adopted the heuristic strategy
with an artificial bee colony algorithm to conceal the sensitive association rules. The experimental
results showed zero failure of hiding the sensitive rules, lost rules, and high accuracy, although the
work has some limitations, including the minimization of iterations. In this paper, we adopt the only
alteration of the transaction through deletion techniques in order to avoid the formation of ghost rules.
Furthermore, we formulate the approach in a simple genetic framework where each sensitive rule is
concealed by calling the genetic algorithm to alter the set of transactions that have sensitive items in
common with the rule. In this way, the genetic algorithm will be called only for the number of times
equal to the sensitive rules, which assures lower computational cost. Moreover, the calculation of
the objective function uses a recursive formula in order to guarantee low computational cost of the
genetic execution.
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In addition, artificial intelligence approaches were used to hide association rules. The research
shows a fuzzy association rules hiding algorithm that was introduced to prevent the extraction of
sensitive information from datasets while maintaining data utility [31]. In the algorithm, the support
value of the item is decreased on either side of the rule in order to hide the sensitive rule. Some researchers
investigated the up-to-date methodologies and compared the results. In their papers, the proposed
algorithms achieved much better results for hiding failures, false rules, and reduced misses cost.

The existing approaches imply many solutions for hiding the sensitive rule observing the
left-hand side (LHS) and right-hand side (RHS) of the rule as preserving the quality of the original
database. However, recent studies show that the algorithm for hiding sensitive association rules suffers
from high computational cost [18]; the problem arises when the transaction {g} ⇒ {e, c} supports
the sensitive rule and supports the selected minimum confidence rule (MCR) {c} ⇒ {e, g}. Also,
the border-based algorithm primarily focuses on privacy preservation, while the utility of the data
is compromised [16]. Furthermore, as the evolutionary algorithms employ two transaction selection
strategies—the transaction insertion [22] and insertion strategies [23,24]—these strategies revise the
number of transactions of the dataset; for this reason, it is hard to extract patterns with an earlier
minimum threshold.

3. Methodology

This section provides the developed methodology for sensitive association rule hiding (SARH).
It starts with presenting the terms and symbols in Section 3.1. The problem formulation is given
in Section 3.2. After that, we present efficient association rules hiding using a genetic algorithm
(EARH-GA) in Section 3.3.

3.1. Terms and Symbols

This subsection provides the mathematical and algorithmic terms used in this paper, presented in
Table 1.

Table 1. Other notations.

Term Meaning

AR Set of association rules
SAR Set of sensitive rules

NSAR Set of nonsensitive rules
MC or βmin Minimum confidence threshold for hiding a sensitive rule
MS or αmin Minimum support threshold for hiding a sensitive rule

δ
Number of transactions to be altered with the object to hide
the sensitive rule

VI Set of victim items

3.2. Problem Formulation

Suppose we have the same database D from the previous section. After mining this database,
we obtain the frequent itemsets and the association rules. We call the set of all association rules AR.
There are two subsets of AR: SAR and NSAR. We are required to alter the set of transactions inside
D called AT = {at1, at2, . . . , atk}, where AT ⊆ D, in order to conceal SAR. After this alteration,
D is transformed to D′. In D′, all SARs have support or confidence lower than minimum support
(MS) or minimum confidence (MC). Furthermore, we are required to conduct the alteration while
assuring a minimum reduction of NSAR in order to maximize the utility of D. Other considerations
are preventing ghost rules and assuring less computation time.

3.3. EARH-GA

Let us consider X ⊂ N k, where x ∈ X, x = (x1, x2, . . . xk), where k indicates the set of transactions
in D′ that contains the victim item. N refers the number of positive integers. The solution space is set
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as Y, where each element y ∈ Y, y = (y1, y2, . . . yδ), where Sy = {y1, y2, . . . yδ} ⊂ Sx = {x1, x2, . . . xk}.
δ is the number of transactions to be altered with the aim of hiding the sensitive rule. If we have a rule
X⇒ Y, then δ is calculated by Equation (1):

δ(X ⇒ Y) = α(X ⇒ Y)− floor(MC× α(X)) (1)

A Venn diagram that represents the relationship between X and Y is presented in Figure 1.
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Two approaches are mostly used to alter the transaction, with the purpose of minimizing the
confidence of sensitive rule X ⇒ Y below the MC. (1) Item deletion: this approach decreases the
support count by considering the right-hand side (RHS) of rule Y by eliminating certain items, while the
removed items from the sensitive transaction support both X and Y. (2) Item addition: this approach,
on the other hand, increases the support count of the itemset on the left-hand side (LHS) of rule X.
The support count is increased by adding items to the transactions containing X. In the first approach,
a few nonsensitive rules may be hidden while all others are authentic. On the contrary, the second
strategy may generate illegitimate rules in the sanitized database, and it may also fail to conceal the
sensitive rules. Therefore, the item deletion approach has more benefit than item addition. The data
sanitization process is aimed at protecting the sensitive knowledge against mining techniques, so in all
the side effects, the hiding failure is more essential. Thus, we adopt this approach.

Genetic optimization is proposed to convert D to D′. In order to achieve genetic optimization,
two things have to be defined: the solution encoding and the objective function. The solution is
encoded as a vector of indices that indicates the transactions that will be altered, while the objective
function represents the ratio of the frequency of lost NSAR over the number of NSARs. The genetic
algorithm will be called for the number of iterations of as many sensitive rules as we have. In each
iteration, the algorithm deals with one sensitive association rule. First, in this step, our approach is to
elect the victim item from the sensitive association rule. An item with minimum support of the RHS of
the association rule is determined as the victim item, as such items produce fewer frequent itemsets and
have minimum support. Therefore, the numbers of association rules containing the victim items have
less frequency than other items, so deleting these items has a minor effect on nonsensitive association
rules. Second, the algorithm will calculate δ, the number of transactions that need to be altered using
Equation (3). Third, it will select the transactions that contain the victim item as candidate transactions.
Fourth, the GA will be called, and it should return the selected transaction. These are the transactions
whose alteration will have the minimum impact on the nonsensitive rules, and their number is δ.
Finally, the algorithm will remove the victim item from the selected transaction according to the best
solution, the database will be updated, and the algorithm will move on to the next SAR. Optimization
association rule hiding using a genetic algorithm is presented in Algorithm 1. To elaborate on how the
genetic algorithm works, we present the pseudocode in Algorithm 2. The genetic algorithm receives
the DB′, which is the dataset that has to be altered. Also, it receives AR, SAR, CT, δ, VI, MS, and MC.
The result of the genetic algorithm is the selected transactions, which represent the algorithm’s global
best solution. The operation of the genetic algorithm is described as a sequence of steps after initializing
the population, which indicates the set of random vectors that belong to the set X ⊂ Nδ, and the fitness
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values of the solutions will be evaluated using the fitness function, which is the number of lost NSARs
over the number of NSARs when the solution is applied. Applying the solution means deleting the
victim items from the selected transactions by the solution. A set of iterative steps is performed, and in
each step, the elites are selected and used to produce offspring through two operations: crossover
and mutation. In each iteration, the objective function will be called to evaluate the whole solution in
the population.

Algorithm 1. Optimizing association rule hiding using a genetic algorithm.

Input: Database (DB), association rules (ARs), sensitive association rules (SARs), SARcounter = 0, minimum
support (MS), minimum confidence (MC)
Output: DB′

Start

1. DB′ = DB
2. While SARcounter < |SAR|
3. SARcounter = SARcounter + 1
4. for i = 1 to |items in the right-hand side of SAR|
5. itemSupport(i) = Support(DB′,item(i))
6. end
7. VI = the item with minimum itemSupport//VI indicates the victim item
8. δ = Support(DB′,SAR items) − floor (MC × Support (DB′, items in the left hand side of SAR))
9. candidateTransactions = transactions where victimItem belongs
10. selectedTransactions = GeneticAlgorithm(DB′, AR, SAR, NSAR, candidateTransactions, δ,

victimItem, MS, MC)
11. DB′ = Remove(selectedTransactions, victimItem, DB′)
12. EndWhile

End

Algorithm 2. The adopted genetic algorithm pseudocode.

Input: Database (DB′), association rules (ARs), sensitive association rule (SAR), nonsensitive association rules
(NSARs), candidate transactions (CTs), δ victimItem (VI), MS, MC
Output: Global best individual
Start

1. initialPopulation = initialize population randomly
2. FitnessValues = objectiveFunction (initialPopulation, DB′, CT, VI, AR, NSAR, MS, MC, δ)
3. while (!stopCondition)
4. bestFitIndividuals = selectElite (FitnessValues)
5. newIndividuals = crossover and mutation (bestFitIndividuals)
6. FitnessValues = objectiveFunction(newIndividuals, DB′, CT, VI, AR, NSAR, MS, MC, δ)
7. endwhile
8. globalBestIndividual = individual with min(FitnessValues)
9. FitnessValues = objectiveFunction (Population, DB′, CT, VI, AR, NSAR, MS, MC, δ)
10. For each solution from Population
11. NewDB′ = DeleteVictim(DB′, VI, solution)
12. LostRules = FindLostRules(NewDB′, DB′)
13. LNSAR = FindLostNonSensitive(LostRules, NSAR)
14. FitnessValues.Add(LNSAR/NSAR)
15. end

End
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3.4. Tracing Example

The goal of this example is to elaborate on the operation of the genetic algorithm. We present
an example of a small dataset in Table 2 and all the following steps in order to obtain a new dataset for
hiding a given sensitive rule.

Table 2. Transaction dataset.

ID Items

1 {l, m, n, r}
2 {m, o, p, q}
3 {l, m, n, t}
4 {l, o, p, q}
5 {l, m, n, t, r}
6 {m, p, r}
7 {l, m, n, o, p, q}
8 {n, o, q, t}

Table 2 provides an example of a transaction database. Each dataset transaction comprises a set of
items I = {a, b, c, d, e, f, g, h}, provided that the minimum support (MS) αmin = 37.5% and the minimum
confidence (MC) βmin = 75%. Twenty-four association rules are shown in Table 3. These rules are the
result of an a priori data mining algorithm [10]. Other popular ARM algorithms are FP-Growth [32]
and Eclat [33].

Table 3. Association rules.

Association Rule Confidence

{l}⇒ {m} 80%
{l}⇒ {n} 80%
{n}⇒ {l} 80%

{n}⇒ {m} 80%
{p}⇒ {m} 75%
{r}⇒ {m} 100%
{t}⇒ {n} 100%
{o}⇒ {p} 75%
{p}⇒ {o} 75%
{o}⇒ {q} 75%
{q}⇒ {o} 75%
{p}⇒ {q} 75%
{q}⇒ {p} 75%

{l}⇒ {m, n} 80%
{n}⇒ {l, m} 80%
{l, m}⇒ {n} 100%
{l, n}⇒ {m} 100%
{m, n}⇒ {l} 100%
{o}⇒ {p, q} 75%
{p}⇒ {o, q} 75%
{q}⇒ {o, p} 75%
{o, p}⇒ {q} 100%
{o, q}⇒ {p} 100%
{p, q}⇒ {o} 100%

If the rule {l}⇒ {m, n} was chosen as a sensitive rule, then the victim item would be (n) because it
has lower support compared to (m), where α(n) = 5 and α(m) = 6. Therefore, (n) should be removed
from a certain number of transactions; this number is δ, which can be computed using Equation (2).
So, altering one transaction is enough to hide the rule {l}⇒ {m, n} and this is due to the small size
of the dataset in our example. Let us suppose a dataset with 120 transactions whose support count
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of the rule is 98 (α (X⇒ Y) = 98), the support count of itemset LHS of the rule is 102 (α (X) = 102),
and the minimum confidence threshold is 0.75 (MC = 0.75), which can be formulated as Equation (3).
Twenty-two transactions are sanitized; therefore, that it is possible the support count of itemset Y is
reduced to 76, and thus the revised confidence of the rule would be 76/98 = 0.745.

δ (X ⇒ Y) = (α (X ⇒ Y)− floor [βmin× α (X)] (2)

δ = 4 − floor [0.75 × 5] = 4 − floor (3.75) = 1

δ = 98− floor(0.75× 102) = 22 (3)

Obtaining the best transactions is the result of applying a genetic algorithm, and the next section
will demonstrate how this works.

Let us get back to the previous example, but with βmin = 50%, and with the sensitive rules (SARs)
of {a}⇒ {b, c} and {d, f}⇒ {e}. First, we want to hide {a}⇒ {b, c}; the victim item is (c), and δ is now 2
as computed using Equations (4) and (5). The sensitive rules are shown in Table 4.

δ (X ⇒ Y) = (α (X ⇒ Y)− floor [βmin× α (X)] (4)

δ = 4− floor [0.5× 5], δ = 4− floor (2.5) = 4− 2 = 2 (5)

Table 4. Sensitive rules set.

Association Rule Confidence

{l}⇒ {m, n} 40%
{o, p}⇒ {q} 100%

Candidate transactions support the sensitive rule, so they are the transactions with the IDs {1, 3,
5, 7} in the transaction dataset in Table 2, and they also represent the solution space for the genetic
algorithm. The solution length (chromosome length) is 2 because δ = 2. If the population size is 4,
then the initial generation would be something like: {1, 3} {5, 7} {1, 5} {3, 7}.

Next, the objective function in the equation is applied to each of these solutions. For example,
for solution {1, 3}, if we delete (c) from transactions with IDs 1 and 3, the new dataset would be D′,
as shown in Table 5, and the new rules would be those shown in Table 6.

Table 5. Updated transaction dataset D′.

ID Items

1 {l, m, r}
2 {m, o, p, q}
3 {l, m, t}
4 {l, o, p, q}
5 {l, m, n, t, r}
6 {m, p, r}
7 {l, m, n, o, p, q}
8 {n, o, q, t}

Table 6. Nonsensitive rules set.

Association Rule Confidence

{l}⇒ {m} 80%
{l}⇒ {n} 40%
{n}⇒ {l} 66.66%

{n}⇒ {m} 66.66%
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Table 6. Cont.

Association Rule Confidence

{p}⇒ {m} 75%
{r}⇒ {m} 100%
{t}⇒ {n} 66.66%
{o}⇒ {p} 75%
{p}⇒ {o} 75%
{o}⇒ {q} 75%
{q}⇒ {o} 75%
{p}⇒ {q} 75%
{q}⇒ {p} 75%

{n}⇒ {l, m} 66.66%
{l, m}⇒ {n} 50%
{l, n}⇒ {m} 100%
{m, n}⇒ {l} 100%
{o}⇒ {p, q} 75%
{p}⇒ {o, q} 75%
{q}⇒ {o, p} 75%
{o, p}⇒ {q} 100%
{p, q}⇒ {o} 100%

The fitness value of this solution is #lost NSAR/#NSAR = 1/22. Let us say that the next solution
has a fitness of (2/22, 5/22, 4/22). The next step is to select the elite individuals; the elite are the most
important individuals to produce new individuals that are certain to survive to the next generation.
The elite count is ceil (0.05 × population size). In our example, the elite count is ceil (0.05 × 4) = 1,
and the elite individual is {1, 3} with a fitness of 1/22.

In order to elaborate the crossover and mutation, we assume two solutions—SA = (1, 2, 6, 4)
and SB = (1, 8, 6, 9)—that contain the transactions that have to be altered. The crossover is done
by generating one random vector with the same length as the parents; for example, R = (1, 0, 1, 0).
Then the child will inherit its genes from A in the case of 1 and from B in the case of 0: Child = (1, 8, 6, 9).
Following the crossover, mutation is performed, which provides a minor tweak to a chromosome to
obtain diverse solutions. In this operation, first a ratio is chosen from the vector entries of an individual.
All the entries of an individual have a probability rate of being mutated with a value of 0.01. In the
next step, the selected entry of the individual is revised by a random number depending on the upper
and lower limits for a particular entry. So, for a child with six entries (3, 6, 9, 1, 12, 5), the randomly
selected fraction is 50%. Then entries (1, 2, 3) are checked with the mutation rate; if entry (3) is a hit,
it will go to the second step and number (9) should be replaced by another random number selected
uniformly by considering the upper and lower limits for this entry.

4. Dataset Description

Three datasets were used to conduct the experiments. Table 7 shows descriptions of the datasets:
Chess, Mushroom, and Mobile. Two of the datasets are from the Irvine Machine Learning Repository.
These datasets were originally generated and described in Reference [34]. In the Chess dataset,
there are six attribute variables and one class variable. The second dataset is the Mushroom dataset,
which contains 8124 records, each referring to a single mushroom. The label column represents the
mushroom classification based on two categories: “edible” and “poisonous.” The other 22 columns
are different features of mushrooms, such as color, shape, habitat, cape shape, gill size, and gill color.
The third dataset is the Mobile dataset, which was prepared by our group. It is a huge dataset, so we
took 5000 randomly chosen transactions to work on. This dataset has 16 columns, each one a feature,
including location information, time, IP address, network performance, etc.
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Table 7. Dataset descriptions.

Dataset No. of Items No. of Transactions Transaction Length

Chess 75 3196 37
Mushroom 119 8124 23

Mobile 5250 5000 16

5. Experiments and Analysis

In this section, a set of comprehensive simulations and experiments are conducted to measure the
efficiency of the proposed algorithm. In Section 5.1, an experimental setup is defined. In Section 5.2, we
present the evaluation measure. In Section 5.2, we present the dataset description. Finally, in Section 5.3,
we provide the evaluation results and their analysis.

5.1. Experimental Setup

Computational tests were conducted on three datasets for our experiments. The comparison of the
benchmark and EARH-GA was analyzed in the same experimental context. The DCR and EARH-GA
were implemented in MATLAB (2016a) and performed on an Intel Core i7 with 8 GB of RAM using the
Windows 8 platform at 2.40 GHz. The Chess, Mushroom, and Mobile datasets were used to conduct
the computational cost, and in the test case different confidence and support thresholds were applied
to each repository.

5.2. Evaluation Measures

The first evaluation measure is execution time, which is used to prove the efficacy of the developed
algorithm. The execution times of EARH-GA and DCR were calculated by observing the numbers of
sensitive rules on the dataset.

Data utility and data accuracy are the evaluation metrics to estimate the effectiveness of the data
sanitization algorithm. The effectiveness of a data sanitization algorithm is estimated by the capability
to find the nonsensitive rules in the released dataset from the sanitized dataset. Clearly, data utility is
associated with the number of lost rules in the original dataset. This implies that the data utility is
determined to be high when there are fewer lost rules, and vice versa [18]. The data utility is calculated
using Equation (6):

Data utility = 1− number o f lost rules
number o f rules

(6)

Data accuracy is evaluated by determining the similarities between the original data and the
sanitized datasets. Generally, it is the percentage of the number of items not removed from the
sanitized dataset. It can be calculated as shown in Equation (7), where D is an original dataset and D′

is a sanitized dataset:
Accuracy = 1− Dissimilarity

(
D, D′

)
(7)

To evaluate the accuracy of the sanitization algorithm, we should measure the dissimilarity. It is
expressed as the difference between how many times an item appears in each dataset before and after
the data sanitization process. It can be measured using Equation (8):

Dissimilarity
(

D, D′
)
=

∑m
i=1 | fD(i)− fD′(i)|

∑n
i=1 fD(i)

(8)

Misses cost is used to measure the side effects of the sanitization process. MC computes the
percentage of lost rules that are hidden during the sanitization process. It can be measured using
Equation (9):

Misses cost =
fD(i)− fD′(i)

fD(i)
(9)
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where D is the original dataset and D′ is the sanitized dataset, m is the frequency of items in the
dataset, fD(i) is the frequency of nonsensitive rules in the original dataset, and fD′(i) is the frequency
of nonsensitive rules in D′. In order to maintain the quality of data, we need to reduce the number of
missing nonsensitive rules as much as possible.

5.3. Performance Analysis

First, the data mining algorithm [10] was applied to these datasets using different values of
support and confidence thresholds. Then, 1% of the resulting association rules were randomly chosen
as sensitive rules. Finally, the two algorithms were used to hide the sensitive data and the following
results were generated. We conducted several experiments for each dataset. In each experiment,
the number of sensitive rules was constantly 1% and they were randomly chosen each time. Table 8
shows the different confidence thresholds during the association rules mining stage.

Table 8. Experimental settings of datasets.

Dataset Minimum Confidence No. of Association Rules No. of Sensitive Rules

94% 7177 72
Chess 95% 6145 62

96% 4435 45

97% 4081 41
45% 4949 50

Mushroom 50% 4402 45
55% 3937 40
60% 3535 36

40% 2092 20
50% 1984 19

Mobile 60% 1801 18
70% 1580 15
80% 1333 13
90% 1246 12

Figure 2a–c show the efficiency advantage of our approach compared to the DCR algorithm,
where the execution time of EARH-GA and DCR are plotted against the confidence thresholds for the
datasets. Execution time is a time duration taken by the algorithm to run a program. These increasing
confidence thresholds resulted in a decreased number of sensitive rules and it is clear that less execution
time is needed by the proposed algorithm as compared to the DCR for all datasets in all conditions.
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association rules hiding using a genetic algorithm (EARH-GA) on (a) Mushroom dataset; (b) Chess
dataset; and (c) Mobile dataset.

Figure 3a–c show the utility in terms of the different number of sensitive rules for the three
datasets. They demonstrate that EARH-GA has better utility compared to the DCR algorithm, as it
has the lowest number of lost rules. However, the number of nonsensitive rules lost by the DCR was
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less than that of EARH-GA when the confidence threshold was 70 and 90 with the Mobile dataset.
This resulted in worse utility in these two situations.
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Figure 4a–c demonstrate the accuracy advantage of EARH-GA over the DCR, where in all tested
situations our approach resulted in less dissimilarity and better accuracy. This comes back to the
parallel nature of the GA when choosing the best solution.
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Figure 5a–c demonstrate that with respect to different sizes of sensitive rules, EARH-GA has the
lower misses count compared with the DCR algorithm. The misses cost of the proposed algorithm is
less than that of the base algorithm.
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All the experiments show that the proposed algorithm outperforms the DCR algorithm in all
aspects. The performance improvement is elaborated in Table 9.

Table 9. Percentage of improvement in results.

Improvement Mushroom Chess Mobile Max

Time 81% 70% 48% 81%
Lost rules ratio 36% 79% 21% 79%

Accuracy 5% 5% 3% 5%
Utility 2% ‘2% 23% 23%

6. Conclusions

In this work, a novel algorithm called efficient association rules hiding using a genetic algorithm
(EARH-GA) was presented for hiding sensitive association rules with better time cost while doing
a better job of controlling the side effects of the nonsensitive rules. We managed to achieve this by
taking advantage of the genetic algorithm and by using recursion in its objective function. With the
objective of demonstrating the superiority of our approach, an algorithm called the decrease the
confidence rule (DCR) was chosen as a benchmark. The experimental analysis demonstrated that the
performance of EARH-GA was better than the DCR with regard to execution time, utility, and accuracy.
In future work, we aim to develop the formulation of EARH-GA to consider hiding a set of rules in
one optimization run instead of hiding one rule in every run.
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