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Abstract: The three-operator splitting algorithm is a new splitting algorithm for finding monotone
inclusion problems of the sum of three maximally monotone operators, where one is cocoercive.
As the resolvent operator is not available in a closed form in the original three-operator splitting
algorithm, in this paper, we introduce an inexact three-operator splitting algorithm to solve this type
of monotone inclusion problem. The theoretical convergence properties of the proposed iterative
algorithm are studied in general Hilbert spaces under mild conditions on the iterative parameters.
As a corollary, we obtain general convergence results of the inexact forward-backward splitting
algorithm and the inexact Douglas-Rachford splitting algorithm, which extend the existing results in
the literature.
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1. Introduction

Operator splitting algorithms have been widely applied for solving various convex optimization
problems in signal and image processing, medical image reconstruction, machine learning and others.
In particular, the forward-backward splitting algorithm [1], the Douglas-Rachford splitting algorithm
[2,3] and Tseng’s forward-backward-forward splitting algorithm [4] are classical operator splitting
algorithms for solving monotone inclusion problems. Many popular optimization algorithms can
be derived from them, such as the proximal gradient algorithm [5,6], the primal-dual fixed point
algorithm [7,8], the alternating directions method of multipliers (ADMM) [9–11], the primal-dual
splitting algorithm [12–16] and many others (for more results, see [17–19] for a comprehensive review).
Recently, to solve large-scale optimization problems, new operator splitting algorithms were proposed,
that is, algorithms including the generalized forward-backward splitting algorithm [20,21], the variable
metric forward-backward splitting algorithm [22], the asymmetric forward-backward-adjoint splitting
algorithm [23] and the inertial forward-backward splitting algorithm [24].

In particular, Davis and Yin [25] proposed a three-operator splitting algorithm to solve the
following monotone inclusion problem,

Find x ∈ H such that 0 ∈ Ax + Bx + Cx, (1)

where H is a real Hilbert space, A : H → 2H and B : H → 2H are maximally monotone
operators, and C : H → H is a cocoercive operator. They pointed out that the three-operator
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splitting algorithm includes not only the forward-backward operator splitting algorithm [26] and the
Douglas-Rachford operator splitting algorithm [27], but also the forward-Douglas-Rachford operator
splitting algorithm [28]. Also, they proved some of the convergence theorems of the three-operator
splitting algorithm under mild conditions on the parameters and studied the convergence rates
of the iterative algorithm. It is worth mentioning that Raguet et al. [20] introduced a generalized
forward-backward splitting (GFBS) algorithm for solving monotone inclusion of the sum of a finite
family of maximally monotone operators and a cocoercive operator. It is known that the sum of
a finite family of maximally monotone operators can be represented by the sum of two maximally
monotone operators in a suitable product space, where one of them is the normal cone of a closed
vector subspace. Therefore, the GFBS algorithm could be recovered by the three-operator splitting
algorithm. Conversely, it is not clear how to deduce the three-operator splitting algorithm from the
GFBS algorithm. Besides, a preconditioning extension of the GFBS algorithm was developed by Raguet
and Landrieu [21].

On the other hand, it is worth mentioning that Vũ [15] introduced a primal-dual splitting
algorithm to solve the monotone inclusion with the sum of mixtures of maximally monotone operators,
parallel sums of maximally monotone operators with linear operators, and cocoercive operators.
Although this general monotone inclusion includes the three-operator monotone inclusion (1) studied
in Davis and Yin [25], the obtained primal-dual splitting algorithm introduced additional dual variables.
Therefore, the primal-dual splitting algorithm is different from the three-operator splitting algorithm.

The corresponding convex optimization problem related with the three-operator inclusion
problem (1) is as follows:

min
x∈H

f (x) + g(x) + h(x), (2)

where g, h : H → (−∞,+∞] are proper, lower-semicontinuous convex functions and f : H → R is a
convex continuous differentiable function, and its gradient ∇ f is L-Lipschitz continuous, for some
L ∈ (0,+∞) . Under the assumptions that the proximity operators of g and h have an explicit
closed-form solution, the three-operator splitting algorithm [25] can be applied directly to solve the
convex minimization problem (2) by letting A = ∂g, B = ∂h and C = ∇ f , where ∂g and ∂h denote
the subdifferentials of g and h, respectively. The convex optimization problem (2) includes many real
problems that have appeared in signal and image processing, material sciences and medical image
reconstruction, etc. See, for example [6,29–31].

Since the three-operator splitting algorithm [25] is a new algorithm, there exists relatively few
works directly related to it. Cevher et al. [32] extended the three-operator splitting algorithm [25] from
deterministic setting to stochastic setting for solving the monotone inclusion problem (1). Further,
Yurtsever et al. [33] proposed a stochastic three-composite minimization algorithm (S3CM) for solving
the convex minimization problem of the sum of three convex functions (2). Besides, Pedregosa and
Gidel [34] proposed a novel adaptive three-operator splitting algorithm, which choses the step-size
without knowing the Lipschitz constant of the gradient operator. However, in these works, they did
not consider errors that appeared in the computation of proximity operators or gradient operators.

As we have mentioned before, operator splitting algorithms provide a simple way to construct an
effective iterative algorithm for solving many structure convex optimization problems, for example (2).
It is sufficient to require that the proximity operator of the corresponding function has an explicit
closed-form solution. However, there are also many convex functions which exist that do not have
a closed-form solution of their proximity operators. Although it is difficult to compute the exact
proximity operator for these functions, it can be accurately calculated under certain error conditions.
In general, the operator splitting algorithm that allows the calculation of the proximity operator with
error is called an inexact operator splitting algorithm. These were developed together with the exact
operator splitting algorithms. We will briefly review some existing works for inexact operator splitting
schemes. The well-known inexact proximal point algorithm was first studied in Rockafellar [35].
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In [27], Eckstein and Bertsekas proposed a relaxed inexact proximal point algorithm and a relaxed
inexact Douglas-Rachford splitting algorithm.

In the context of convex minimization problem, Combettes and Wajs [26] introduced an inexact
forward-backward splitting algorithm. They analyzed the convergence of the algorithm, which was
based on the fixed point theoretic framework in [36]. He and Yuan [37] and Salzo and Villa [38] studied
an accelerated inexact proximal point algorithm ( f = 0 and g = 0 in (2)). Subsequently, an accelerated
inexact forward-backward splitting algorithm was proposed by Villa et al. [39], who not only proved
that the objective function values have a convergence rate 1/k2 when the allowable error is a certain
type, but also presented a global analysis of iteration-complexity. Schmidt et al. [40] analyzed the
convergence rates of an accelerated proximal-gradient algorithm with an inexact proximity operator.
Inspired by a special case of the hybrid proximal outer gradient method of Solodov and Svaiter [41],
Eckstein and Yao [42] derived an inexact Douglas-Rachford operator splitting algorithm and an inexact
ADMM operator algorithm. Recently, the algorithm was further developed by Alves and Geremia [43],
who proved complexity of the inexact Douglas-Rachford algorithm (for more results on other inexact
operator splitting algorithms, see [43–52]).

The purpose of this paper is to introduce an inexact three-operator splitting algorithm
(Algorithm 1) to solve the monotone inclusion (1). The corresponding resolvent operators and
cocoercive operator are allowed to be computed with errors. Under mild conditions with the
parameters and errors, we investigate the convergence behavior of the inexact three-operator splitting
algorithm. Furthermore, we recover the inexact forward-backward splitting algorithm and the inexact
Douglas-Rachford splitting algorithm as corollaries.

The rest of this paper is organized as follows. In Section 2 we review some background on
monotone operators and convex analysis. In Section 3, we present the inexact three-operator splitting
algorithm and its convergence theorem. Finally, we give some conclusions and future works.

Algorithm 1: An inexact three-operator splitting algorithm

Input: For arbitrary z0 ∈ H, choose γ and λk.
For each k = 0, 1, 2, · · · , compute

1: xk
B = JγB(zk) + ek

B;

2: xk
A = JγA(2xk

B − zk − γ(Cxk
B + ek

C)) + ek
A;

3: zk+1 = zk + λk(xk
A − xk

B).
Stop when a given stopping criterion is met.

Output: xk
B, xk

A and zk+1.

2. Preliminaries

In this paper, let H be a real Hilbert space. The inner product and the associated norms of H are
denoted by 〈, 〉 and ‖ · ‖, respectively. Let Γ0(H) denotes the class of proper, lower semicontinuous
and convex functions from H to (−∞,+∞]. Let Fix(T) denotes the fixed points set of an operator T.
We use the symbols ⇀ and→ to denote weak and strong convergence, respectively.

The following definitions and properties are mostly found in [53].

Definition 1. (Zeros, Domain, Range, Graph and Resolvent) Let A : H → 2H be a set-valued operator,
where 2H denotes the power set of H. Let I be the identity operator on H. Then,

(1) The set of zeros of A is zer A := {x ∈ H : 0 ∈ Ax};
(2) The domain of A is dom A := {x ∈ H : Ax 6= ∅};
(3) The range of A is ran A := {y ∈ H : ∃x ∈ H : y ∈ Ax};
(4) The graph of A is gra A := {(x, y) ∈ H × H : y ∈ Ax};
(5) The resolvent of A is JA = (I + A)−1.
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Definition 2. (Maximal monotone operator) Let A : H → 2H be a set-valued operator. Then A is said to be
monotone if

〈x− y, u− v〉 ≥ 0, ∀(x, u) ∈ gra A, (y, v) ∈ gra A. (3)

A is said to be maximally monotone if there exists no monotone operator B : H → 2H such that the graph
of B properly contains gra A.

Definition 3. (Nonexpansive and α-averaged) Let T : H → H be an operator, T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H. (4)

Let α ∈ (0, 1), T is said to be α-averaged if there exists a nonexpansive operator R such that
T = (1− α)Id + αR. If α = 1

2 , then T is called a firmly nonexpansive operator.

The following two lemmas give some useful characterizations of firmly nonexpansive operators
and α-averaged operators.

Lemma 1. Let T : H → H be an operator. Then, the following statements are equivalent:

(1) T is firmly nonexpansive.
(2) 2T − Id is nonexpansive.
(3) For all x, y ∈ H, ‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉.

Lemma 2. Let T : H → H is nonexpansive, and let α ∈ (0, 1). Then the following are equivalent:

(1) T is α-averaged.
(2) (1− 1

α )Id + ( 1
α )T is nonexpansive.

(3) For all x, y ∈ H, ‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1−α
α ‖(Id− T)x− (Id− T)y‖2.

Lemma 3. Let γ ∈ (0,+∞). Let A : H → 2H be a maximally monotone operator. Then JγA : H → H and
Id− JγA : H → H are firmly nonexpansive and maximally monotone.

Definition 4. (Cocoercive operator) An operator B : H → H is said to be β-cocoercive with β ∈ (0,+∞) if

β‖Bx− By‖2 ≤ 〈Bx− By, x− y〉, ∀x, y ∈ H. (5)

A cocoercive operator is also called an inverse strongly monotone operator (see, for example, [54]).

It is easy to see that a β-cocoercive operator is 1/β-Lipschitz continuous.
Let’s recall the definition of a uniformly monotone operator.

Definition 5. (Uniformly monotone operator) A set-valued operator A : H → 2H is said to be uniformly
monotone of a modulus φ : [0,+∞]→ [0,+∞] if φ is a nondecreasing function with φ(0) = 0 such that

〈u− v, x− y〉 ≥ φ(‖x− y‖), ∀(x, u) ∈ gra A, (y, v) ∈ gra A. (6)

If φ ≡ β(·)2 > 0, then A is said to be strongly monotone.

Definition 6. (Demiregular) A set-valued operator A : H → 2H is said to be demiregular at x ∈ dom A, if for
all u ∈ Ax and for all sequences (xk, uk) ∈ gra A with xk ⇀ x and uk → u, we have xk → x.

We shall make full use of the following lemma to prove the weak convergence of the iterative
sequence.
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Lemma 4. Let sequence {xn} ⊂ H. Then we say that {xn} converges weakly to a point x ∈ H if and only if it
is bounded and the weak sequential cluster point is unique.

The following lemma will be needed in the next section.

Lemma 5. Let x, y ∈ H and λ ∈ R. Then we have

‖λx + (1− λ)y‖2 + λ(1− λ)‖x− y‖2 = λ‖x‖2 + (1− λ)‖y‖2. (7)

We recall the following lemma, which is crucial to our convergence analysis (See Lemma 5.1 of
Combettes [36]):

Lemma 6. (Inexact Krasnosel’skiĭ-Mann algorithm) Let T : H → H be nonexpansive, {λn} be a
sequence in (0, 1) and {en} be a sequence in H. Suppose that Fix(T) 6= ∅, ∑+∞

n=0 λn(1 − λn) = +∞
and ∑+∞

n=0 λn‖en‖ < +∞. Let x0 ∈ H, and set

xn+1 = xn + λn(Txn + en − xn), ∀n ≥ 0, (8)

Then the following hold:

(1) {xn} is Fejér monotone with respect to Fix(T).
(2) {Txn − xn} converges strongly to 0.
(3) {xn} converges weakly to a point in Fix(T).

When en ≡ 0, the inexact Krasnosel’skiĭ-Mann algorithm (iKM) (8) reduces to the classical
Krasnosel’skiĭ-Mann algorithm (KM). The algorithms (KM) and (iKM) are useful for finding fixed
points of nonexpansive mappings. They provide a unified way for analyzing the convergence of
various operator splitting algorithms and convex optimization algorithms.

Lemma 6 could be easily extended to the setting of α-averaged operators.

Lemma 7. Let T : H → H be α-averaged, {λn} be a sequence in (0, 1
α ) and {en} be a sequence in H.

Suppose that Fix(T) 6= ∅, ∑+∞
n=0 λn(

1
α − λn) = +∞ and ∑+∞

n=0 λn‖en‖ < +∞. Let x0 ∈ H and set

xn+1 = xn + λn(Txn + en − xn), ∀n ≥ 0, (9)

Then the following hold:

(1) {xn} is Fejér monotone with respect to Fix(T).
(2) {Txn − xn} converges strongly to 0.
(3) {xn} converges weakly to a point in Fix(T).

Proof. Set T = (1 − α)I + αS, where S is nonexpansive. Then the iterative algorithm (9) can be
rewritten as

xn+1 = xn + αλn(Sxn +
1
α

en − xn) (10)

for all n ≥ 0. Since Fix(T) = Fix(S), it is easy to check that all the conditions of Lemma 6 are satisfied.
Thus the results of Lemma 7 follow directly from Lemma 6. This completes the proof.

3. An Inexact Three-Operator Splitting Algorithm

In this section, first, we present an inexact three-operator splitting algorithm. Second, we prove
the convergence of it.
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Now, we are ready to prove the main convergence results of Algorithm 1. Theorem 1 is parallel
to the convergence results of the three-operator splitting algorithm [25], in which the error terms ek

A,
ek

B and ek
C are equal to zeros in Algorithm 1.

Theorem 1. Let A : H → 2H and B : H → 2H be maximally monotone operators. Let C : H → H be a
β-cocoercive operator, for some β > 0. Assume that zer(A + B + C) is nonempty. Let γ > 0 and define an
operator T : H → H as follows,

T := I − JγB + JγA(2JγB − I − γCJγB). (11)

Let α = 1
2−ε , where ε ∈ (0, 1). Assume that γ ∈ (0, 2βε) and λk ∈ (0, 1

α ) such that
∑+∞

k=0 λk(
1
α − λk) = +∞. Let {zk}, {xk

B} and {xk
A} be the iterative sequences generated by Algorithm 1.

Assume that
+∞

∑
k=0
‖ek

A‖ < +∞,
+∞

∑
k=0
‖ek

B‖ < +∞,
+∞

∑
k=0
‖ek

C‖ < +∞.

Then the following hold:

(1) {zk} is Fejér-monotone with respect to Fix(T).
(2) {Tzk − zk} converges strongly to zero.
(3) {zk} converges weakly to a fixed point of T.
(4) If x∗ ∈ zer(A + B + C), then there exists a constant M > 0 such that, for any λk ∈ (0, 1

α ),

+∞

∑
k=0

λk‖CJγBzk − Cx∗‖2 ≤ 1
γ(2β− γ

ε )

(
‖z◦ − z∗‖2 +

+∞

∑
k=0

M
α
‖ek‖

)
. (12)

In addition, we have

+∞

∑
k=0

λk‖Cxk
B − Cx∗‖2 ≤ 1

γ(2β− γ
ε )
‖z◦ − z∗‖2 + S, (13)

where

S =
M

αγ(2β− γ
ε )

+∞

∑
k=0
‖ek‖+ 1

αβ2

+∞

∑
k=0
‖ek

B‖(‖ek
B‖+ 2‖z◦ − z∗‖).

(5) If λk ≥ λ > 0, then there exists z∗ ∈ Fix(T) such that the iterative sequence {xk
B} converges weakly to

JγBz∗ ∈ zer(A + B + C).
(6) If λk ≥ λ > 0, then there exists z∗ ∈ Fix(T) such that the iterative sequence {xk

A} converges weakly to
JγBz∗ ∈ zer(A + B + C).

(7) Let λk ≥ λ > 0 and assume that there exists z∗ ∈ Fix(T). Suppose that one of the following
conditions hold:

(a) A is uniformly monotone on every nonempty bounded subset of dom A;
(b) B is uniformly monotone on every nonempty bounded subset of dom B;
(c) C is demiregular at every point x ∈ zer(A + B + C).

Then {xk
A} and {xk

B} converge strongly to JγBz∗ ∈ zer(A + B + C).
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Proof. First, the iterative sequences {zk+1} of Algorithm 1 can be written equivalently as

zk+1 = zk + λk(xk
A − xk

B)

= zk + λk(JγA(2xk
B − zk − γ(Cxk

B + ek
C)) + ek

A − JγBzk − ek
B)

= zk + λk(Tzk − zk + JγA(2xk
B − zk − γ(Cxk

B + ek
C)) (14)

− JγA(2JγBzk − zk − γCJγBzk) + ek
A − ek

B)

= zk + λk(Tzk − zk + ek),

where
ek = JγA(2xk

B − zk − γ(Cxk
B + ek

C))− JγA(2JγBzk − zk − γCJγBzk) + ek
A − ek

B.

Since C is 1
β -Lipschitz continuous and JγA is nonexpansive, it follows that

‖ek‖ = ‖JγA(2xk
B − zk − γ(Cxk

B + ek
C))− JγA(2JγBzk − zk − γCJγBzk) + ek

A − ek
B‖

≤ ‖JγA(2xk
B − zk − γ(Cxk

B + ek
C))− JγA(2JγBzk − zk − γCJγBzk)‖

+ ‖ek
A‖+ ‖ek

B‖
≤ ‖2xk

B − zk − γ(Cxk
B + ek

C)− 2JγBzk + zk + γCJγBzk‖+ ‖ek
A‖+ ‖ek

B‖ (15)

= ‖2ek
B − γ(Cxk

B + ek
C) + γCJγBzk‖+ ‖ek

A‖+ ‖ek
B‖

≤ γ‖C(JγBzk + ek
B)− CJγBzk‖+ 3‖ek

B‖+ ‖ek
A‖+ γ‖ek

C‖

≤ (
γ

β
+ 3)‖ek

B‖+ ‖ek
A‖+ γ‖ek

C‖.

Since ∑+∞
k=0 ‖e

k
A‖ < +∞, ∑+∞

k=0 ‖e
k
B‖ < +∞, ∑+∞

k=0 ‖e
k
C‖ < +∞ and γ ∈ (0, 2βε), we have

∑+∞
k=0 ‖e

k‖ < +∞. Thus, with the help of Proposition 2.1 of [25], T is α-averaged and we can obtain the
conclusions (1), (2) and (3) by Lemma 7.

(4) Let x∗ ∈ zer(A + B + C). Then, by Lemma 2.2 of [25], there exists z∗ ∈ Fix(T) such that
x∗ = JγB(z∗). By (1) and ∑+∞

k=0 ‖e
k‖ < +∞, we know that {‖zk − z∗‖} and {‖ek‖} are bounded. In

view of (14), Lemma 5 and the Cauchy-schwartz inequality, we have

‖zk+1 − z∗‖2 = ‖zk + λk(Tzk − zk + ek)− z∗‖2

= ‖(1− λk)(zk − z∗) + λk(Tzk − z∗) + λkek‖2

= ‖(1− λk)(zk − z∗) + λk(Tzk − z∗)‖2 + λ2
k‖e

k‖2

+ 2λk〈(1− λk)(zk − z∗) + λk(Tzk − z∗), ek〉
≤ ‖(1− λk)(zk − z∗) + λk(Tzk − z∗)‖2 + 2λk‖(1− λk)(zk − z∗) (16)

+ λk(Tzk − z∗)‖‖ek‖+ λ2
k‖e

k‖2

≤ ‖(1− λk)(zk − z∗) + λk(Tzk − z∗)‖2 + Mλk‖ek‖
= (1− λk)‖zk − z∗‖2 + λk‖Tzk − z∗‖2

− λk(1− λk)‖Tzk − zk‖2 + Mλk‖ek‖,

where M = supk∈N(2‖zk − z∗‖+ λk‖ek‖). On the other hand, it follows from Remark 2.1 of [25] that

‖Tzk − z∗‖2 ≤ ‖zk − z∗‖2 − 1− α

α
‖Tzk − zk‖2 − γ

(
2β− γ

ε

)
‖CJγBzk − CJγBz∗‖2. (17)
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Substituting (17) into (16), we get

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − λk

(
1− λk +

1− α

α

)
‖Tzk − zk‖2

− γλk

(
2β− γ

ε

)
‖CJγBzk − CJγBz∗‖2 + Mλk‖ek‖, (18)

which implies that

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − γλk

(
2β− γ

ε

)
‖CJγBzk − Cx∗‖2 +

M
α
‖ek‖. (19)

Then we have

γλk

(
2β− γ

ε

)
‖CJγBzk − Cx∗‖2 ≤ ‖zk − z∗‖2 − ‖zk+1 − z∗‖2 +

M
α
‖ek‖. (20)

Summing from zero to infinity, we obtain

+∞

∑
k=0

λk‖CJγBzk − Cx∗‖2 ≤ 1
γ(2β− γ

ε )

(
‖z◦ − z∗‖2 +

+∞

∑
k=0

M
α
‖ek‖

)
. (21)

Further, we have

‖Cxk
B − Cx∗‖2 = ‖Cxk

B − CJγBzk + CJγBzk − Cx∗‖2

= ‖Cxk
B − CJγBzk‖2 + ‖CJγBzk − Cx∗‖2

+ 2〈Cxk
B − CJγBzk, CJγBzk − Cx∗〉 (22)

≤ ‖C(JγBzk + ek
B)− CJγBzk‖2 + ‖CJγBzk − Cx∗‖2

+ 2‖Cxk
B − CJγBzk‖‖CJγBzk − Cx∗‖

≤ 1
β2 ‖e

k
B‖2 + ‖CJγBzk − Cx∗‖2 +

2
β
‖ek

B‖‖CJγBzk − Cx∗‖

≤ ‖CJγBzk − Cx∗‖2 +
1
β2 ‖e

k
B‖(‖ek

B‖+ 2‖z0 − z∗‖).

Therefore, summing (22) from zero to infinity, we obtain

+∞

∑
k=0

λk‖Cxk
B − Cx∗‖2

≤
+∞

∑
k=0

λk

(
‖CJγBzk − Cx∗‖2 +

1
β2 ‖e

k
B‖(‖ek

B‖+ 2‖z0 − z∗‖)
)

(23)

≤ 1
γ(2β− γ

ε )

(
‖z◦ − z∗‖2 +

+∞

∑
k=0

M
α
‖ek‖

)
+

1
αβ2

+∞

∑
k=0
‖ek

B‖(‖ek
B‖+ 2‖z◦ − z∗‖).

(5) Since the resolvent operator is firmly nonexpansive, it is also nonexpansive. Then we have

‖xk
B − JγBz∗‖ = ‖JγBzk + ek

B − JγBz∗‖
≤ ‖JγBzk − JγBz∗‖+ ‖ek

B‖ (24)

≤ ‖zk − z∗‖+ ‖ek
B‖.
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Notice that {zk} and {‖ek
B‖} are bounded, {xk

B} is also bounded. Let x̄ be a weak sequential
cluster point of {xk

B}, say xkn
B ⇀ x̄. From Algorithm 1, it follows that

xk
B − ek

B = JγBzk, xk
A − ek

A = JγA(2xk
B − zk − γ(Cxk

B + ek
C)).

Let

uk
B :=

1
γ
(zk − xk

B + ek
B) ∈ B(xk

B − ek
B), (25)

and

uk
A :=

1
γ
(2xk

B − zk − γ(Cxk
B + ek

C)− xk
A + ek

A) ∈ A(xk
A − ek

A). (26)

Then we have (xk
B − ek

B, uk
B) ∈ gra B and (xk

A − ek
A, uk

A) ∈ gra A. By (4), we have Cxk
B → Cx∗,

where x∗ ∈ zer(A + B + C). Since C is cocoercive, it is maximal monotone and so its graph is closed in
Hweak × Hstrong, which, together with xkn

B ⇀ x̄, yields Cx̄ = Cx∗. Consequently, we have Cxkn
B → Cx̄.

By (2), we have xk
A − xk

B = Tzk − zk + ek → 0. Then xkn
A ⇀ x̄. Further, by (3), we obtain

ukn
B ⇀

1
γ
(z∗ − x̄), ukn

A ⇀
1
γ
(x̄− z∗ − γCx̄).

From Corollary 25.5 of [53], we obtain

x̄ ∈ zer(A + B + C),
(

x̄,
1
γ
(z∗ − x̄)

)
∈ gra B,

(
x̄,

1
γ
(x̄− z∗ − γCx̄)

)
∈ gra A. (27)

Hence x̄ = JγBz∗. Thus JγBz∗ is the unique weak sequential cluster point of {xk
B}. By Lemma 4,

we can conclude that {xk
B} converges weakly to JγBz∗ ∈ zer(A + B + C).

(6) Notice that xk
A − xk

B → 0 as k → +∞. By (5), it follows that {xk
A} also converges weakly to

JγBz∗ ∈ zer(A + B + C).
(7) Let x∗ = JγB(z∗). By Lemma 2.2 of [25], we have x∗ ∈ zer(A + B + C). Let u∗B := 1

γ (z
∗ − x∗).

Then u∗B ∈ Bx∗. Let u∗A := 1
γ (x∗ − z∗)− Cx∗. It follow from x∗ ∈ zer(A + B + C) and u∗B ∈ Bx∗ that

u∗A ∈ Ax∗.
(a) From (5), we have

(xk
A − ek

A, uk
A) ∈ gra A, (xk

B − ek
B, uk

B) ∈ gra B.

Since B + C is monotone, we obtain

0 ≤ 〈xk
B − ek

B − x∗, uk
B + C(xk

B − ek
B)− (u∗B + Cx∗)〉. (28)

Define S := {x∗} ∪ {xk
A − ek

A}. By (6), {xk
A} is bounded and so S is also bounded. Since A is

uniformly monotone, there exists an increasing function ΦA : R+ → [0,+∞) with ΦA(0) = 0 such that

ΦA(‖xk
A − ek

A − x∗‖) ≤ 〈xk
A − ek

A − x∗, uk
A − u∗A〉. (29)



Symmetry 2018, 10, 563 10 of 15

Adding (28) and (29) yields

γΦA(‖xk
A − ek

A − x∗‖)
≤ γ〈xk

A − ek
A − x∗, uk

A − u∗A〉+ γ〈xk
B − ek

B − x∗, uk
B + C(xk

B − ek
B)− (u∗B + Cx∗)〉

= γ〈xk
A − ek

A − (xk
B − ek

B), uk
A − u∗A〉+ γ〈xk

B − ek
B − x∗, uk

A − u∗A〉
+ γ〈xk

B − ek
B − x∗, uk

B + C(xk
B − ek

B)− (u∗B + Cx∗)〉
= γ〈xk

A − ek
A − (xk

B − ek
B), uk

A − u∗A〉+ γ〈xk
B − ek

B − x∗, uk
A + uk

B + C(xk
B − ek

B)〉
= 〈xk

A − ek
A − xk

B + ek
B, γuk

A − γu∗A〉+ 〈xk
B − ek

B − x∗, xk
B − xk

A + ek
A + ek

B

+ γC(xk
B − ek

B)− γCxk
B − γek

C〉
= 〈xk

A − ek
A − xk

B, γuk
A − γu∗A〉+ 〈ek

B, γuk
A − γu∗A〉

+ 〈xk
B − ek

B − x∗, xk
B − xk

A + ek
A〉+ 〈xk

B − ek
B − x∗, ek

B〉 (30)

+ 〈xk
B − ek

B − x∗, γC(xk
B − ek

B)− γCxk
B − γek

C〉
= 〈xk

B − xk
A + ek

A, xk
B − ek

B − x∗ − γuk
A + γu∗A〉+ 〈ek

B, xk
B − ek

B − x∗ + γuk
A − γu∗A〉

+ 〈xk
B − ek

B − x∗, γC(xk
B − ek

B)− γCxk
B − γek

C〉
= 〈xk

B − xk
A + ek

A, zk − z∗ + γCxk
B − γCx∗ + xk

A − xk
B − ek

A − ek
B + γek

C〉
+ 〈ek

B, 3xk
B − zk − γ(Cxk

B + ek
C)− xk

A + ek
A − ek

B − 2x∗ + z∗ + γCx∗〉
+ 〈xk

B − ek
B − x∗, γC(xk

B − ek
B)− γCxk

B − γek
C〉.

By (2) and (4), we have ‖xk
B − xk

A‖ → 0 and ‖Cxk
B − Cx∗‖ → 0 as k→ +∞. Then we have

〈xk
B − xk

A + ek
A, zk − z∗ + γCxk

B − γCx∗ + xk
A − xk

B − ek
A − ek

B + γek
C〉 → 0, (31)

as k → +∞. By (3), (5) and (6), we know that {xk
B}, {xk

A} and {zk} are bounded. Notice that
∑+∞

k=0 ‖e
k
B‖ < +∞ and ∑+∞

k=0 ‖e
k
A‖ < +∞, we have

〈ek
B, 3xk

B − zk − γ(Cxk
B + ek

C)− xk
A + ek

A − ek
B − 2x∗ + z∗ + γCx∗〉 → 0, (32)

as k→ +∞. Since C is 1
β -Lipschitz continuous, we have

‖γC(xk
B − ek

B)− γCxk
B − γek

C‖ ≤ γ‖C(xk
B − ek

B)− Cxk
B‖+ γ‖ek

C‖

≤ γ
1
β
‖ek

B‖+ γ‖ek
C‖ → 0, (33)

as k→ +∞. Then we have

〈xk
B − ek

B − x∗, γC(xk
B − ek

B)− γCxk
B − γek

C〉 → 0, (34)

as k→ +∞. From (31), (32) and (34), we obtain

‖xk
A − ek

A − x∗‖ → 0, (35)

as k→ +∞.
Now, we prove that xk

A → x∗ as k→ +∞. In fact, by (35), we have

‖xk
A − x∗‖ ≤ ‖xk

A − x∗ − ek
A‖+ ‖ek

A‖ → 0, (36)

as k→ +∞. Since xk
A − xk

B → 0 as k→ +∞. Then we have xk
B → x∗ as k→ +∞.
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(b) Since A + C is monotone, we have

0 ≤ 〈xk
A − ek

A − x∗, uk
A + C(xk

A − ek
A)− (u∗A + Cx∗)〉. (37)

It follows from that B is uniformly monotone, then there exists an increasing function
ΦB : R+ → [0,+∞) with ΦB(0) = 0 such that

ΦB(‖xk
B − ek

B − x∗‖) ≤ 〈xk
B − ek

B − x∗, uk
B − u∗B〉. (38)

Multiple (37) and (38) by γ, respectively, and add together, we obtain

γΦB(‖xk
B − ek

B − x∗‖) ≤ γ〈xk
B − ek

B − x∗, uk
B − u∗B〉

+ γ〈xk
A − ek

A − x∗, uk
A + C(xk

A − ek
A)− (u∗A + Cx∗)〉. (39)

Next, we prove that ‖xk
B − ek

B − x∗‖ → 0 as k→ +∞. The technical proof is similar to (a). We start
from estimating the right side of (39). In fact, we have

γ〈xk
B − ek

B − x∗, uk
B − u∗B〉+ γ〈xk

A − ek
A − x∗, uk

A + C(xk
A − ek

A)− (u∗A + Cx∗)〉
= γ〈xk

B − ek
B − (xk

A − ek
A), uk

B − u∗B〉+ γ〈xk
A − ek

A − x∗, uk
B − u∗B〉

+ γ〈xk
A − ek

A − x∗, uk
A + C(xk

A − ek
A)− (u∗A + Cx∗)〉

= γ〈xk
B − ek

B − (xk
A − ek

A), uk
B − u∗B〉+ γ〈xk

A − ek
A − x∗, uk

B + uk
A + C(xk

A − ek
A)〉 (40)

= 〈xk
B − xk

A + ek
A, γuk

B − γu∗B〉 − 〈ek
B, γuk

B − γu∗B〉
+ 〈xk

A − ek
A − x∗, xk

B − xk
A + ek

A + ek
B − γ(Cxk

B + ek
C) + γC(xk

A − ek
A)〉

= 〈xk
B − xk

A + ek
A, γuk

B − γu∗B + xk
A − ek

A − x∗〉+ 〈ek
B,−γuk

B + γu∗B + xk
A − ek

A − x∗〉
+ 〈xk

A − ek
A − x∗, γC(xk

A − ek
A)− γ(Cxk

B + ek
C)〉.

For the first term of the right side (40), we have

〈xk
B − xk

A + ek
A, γuk

B − γu∗B + xk
A − ek

A − x∗〉
= 〈xk

B − xk
A + ek

A, xk
A − xk

B + ek
B − ek

A + zk − z∗〉 → 0, (41)

as k→ +∞. For the second term of the right side (40), we have

〈ek
B,−γuk

B + γu∗B + xk
A − ek

A − x∗〉
= 〈ek

B, xk
A + xk

B − ek
A − ek

B − zk + z∗ − 2x∗〉 → 0, (42)

as k→ +∞. Since C is 1
β -Lipschitz continuous, we have

‖γC(xk
A − ek

A)− γ(Cxk
B + ek

C)‖ ≤ γ
1
β
‖xk

A − ek
A − xk

B‖+ γ‖ek
C‖ → 0, (43)

as k→ +∞. From (39)–(43), it follows that

‖xk
B − ek

B − x∗‖ → 0, (44)

as k→ +∞. Therefore, we have ‖xk
B − x∗‖ → 0 as k→ +∞. In fact, we have

‖xk
B − x∗‖ ≤ ‖xk

B − ek
B − x∗‖+ ‖ek

B‖ → 0, (45)

as k→ +∞. Finally, ‖xk
A − x∗‖ → 0 as k→ +∞ is due to the fact that ‖xk

A − xk
B‖ → 0 as k→ +∞.
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(c) By (4) and (5), we know that Cxk
B → Cx∗ and xk

B ⇀ x∗ as k → +∞. Since C is demiregular,
xk

B → x∗ as k→ +∞. Also, we have xk
A → x∗ as k→ +∞. This completes the proof.

Let B ≡ 0 and ek
B = 0. Then the inexact three-operator splitting algorithm (Algorithm 1) reduces

to the inexact forward-backward splitting algorithm as follows:{
xk

A = JγA(zk − γ(Czk + ek
C)) + ek

A,

zk+1 = zk + λk(xk
A − zk),

(46)

which is equivalent to

zk+1 = (1− λk)zk + λk(JγA(zk − γ(Czk + ek
C)) + ek

A). (47)

From Theorem 1, we obtain the following convergence results of the inexact forward-backward
splitting algorithm immediately.

Corollary 1. Let A : H → 2H be a maximally monotone operator. Let C : H → H be a β-cocoercive operator,
for some β > 0. For any z0 ∈ H, let {zk} be defined by (46). Assume that γ ∈ (0, 2β) and λk ∈ (0, 4β−γ

2β )

such that ∑+∞
k=0 λk(

4β−γ
2β − λk) = +∞. Let {ek

A} and {ek
C} be absolutely summable sequences in H. Then the

following hold:

(1) {zk} converges weakly to a solution x ∈ zer(A + C);
(2) ‖Czk − Cx‖ → 0 as k→ +∞ for λk ≥ λ > 0;
(3) ‖JγA(zk − γCzk)− zk‖ → 0 as k→ +∞;
(4) Let λk ≥ λ > 0 and let z∗ ∈ zer(A + C). Suppose that one of the following conditions holds:

(a) A is uniformly monotone on every nonempty bounded subset of dom A;
(b) C is demiregular at each point x ∈ zer(A + C).

Then the sequence {xk
A} converge strongly to a solution of zer(A + C).

Remark 1. Corollary 1 provides a larger choice for the relaxation parameters {λk} than Corollary 6.5 of
Combettes [36] when the stepsizes remain constant in [36]. In addition, Corollary 1 also generalizes Theorem 3.4
of Combettes and Wajs [26] for solving the convex minimization probelm of the sum of two convex functions
(i.e., h(x) = 0 in (2)) to the general monotone inclusion problem (i.e., B = 0 in (1)).

Let C ≡ 0 and ek
C = 0. Then the inexact three-operator splitting algorithm reduces to the inexact

Douglas-Rachford splitting algorithm as follows:
xk

B = JγB(zk) + ek
B,

xk
A = JγA(2xk

B − zk) + ek
A,

zk+1 = zk + λk(xk
A − xk

B),

(48)

which is equivalent to

zk+1 = zk + λk(JγA(2(JγB(zk) + ek
B)− zk) + ek

A − (JγB(zk) + ek
B)). (49)

Now, we have the convergence results of the inexact Douglas-Rachford splitting algorithm from
Theorem 1 as follows:

Define an operator T := I − JγB + JγA(2JγB − I), where the operator T is usually called the
Douglas-Rachford splitting operator.
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Corollary 2. Let A : H → 2H and B : H → 2H be maximally monotone operators. For any z0 ∈ H, let {zk}
be defined by (48). Assume that γ > 0, and λk ∈ (0, 2) such that ∑+∞

k=0 λk(2− λk) = +∞. Let {ek
A} and

{ek
B} be absolutely summable sequences in H. Then the following hold:

(1) {zk} converges weakly to a fixed point of T;
(2) ‖JγA(2JγB(zk)− zk)− JγB(zk)‖ → 0 as k→ +∞;
(3) Let λk ≥ λ > 0 and z∗ be a fixed point of T. Then the iterative sequence {xk

B} converges weakly to
JγBz∗ ∈ zer(A + B);

(4) Let λk ≥ λ > 0 and z∗ be a fixed point of T. Then the iterative sequence {xk
A} converges weakly to

JγBz∗ ∈ zer(A + B);
(5) Let λk ≥ λ > 0 and let z∗ ∈ zer(A + B). Suppose that one of the following conditions holds:

(a) A is uniformly monotone on every nonempty bounded subset of dom A;
(b) B is uniformly monotone on every nonempty bounded subset of dom B.

Then the sequence {xk
A} and {xk

B} converge strongly to a solution of zer(A + B).

Remark 2.

(I) (1) of Corollary 2 recovers Corollary 5.2 of [36].
(II) (2)–(5) of Corollary 2 generalize Theorem 25.6 of Bauschke and Combettes [53] from the exact

Douglas-Rachford splitting algorithm to the inexact Douglas-Rachford splitting algorithm.

4. Conclusions

In this paper, we generalized the three-operator splitting algorithm proposed by Davis and
Yin [25] from exact to inexact. The theoretical convergence of the inexact three-operator splitting
algorithm was studied under mild conditions on the parameters. In the forthcoming works, we will
discuss the convergence rates of the inexact three-operator splitting algorithm including the fixed point
residual and the ergodic and the nonergodic convergence rates of the function values in the context of
convex optimization problems.
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