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Abstract: In this paper, we analyze two discontinuous self-mappings that satisfy Sehgal-type
inequalities in the setup of complete b-metric space. The main results of the paper cover and
extend a few existing results in the corresponding literature. Furthermore, we give some illustrative
examples to verify the effectiveness and strength of our derived results. Thereafter, as an application,
we consider the obtained result to aggregate the existence and uniqueness of the solution for nonlinear
Fredholm integral equations.
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1. Introduction and Preliminaries

In 1969, Sehgal [1] formulated an inequality that can be considered an extension of the renowned
Banach contractions mapping principle in the setting of a complete metric space. Indeed, Sehgal [1]
investigated the contractive iteration of each point of continuous self-mappings in the circumstance of
complete metric spaces.

Theorem 1. [1] Suppose that O is a continuous self-mapping on a complete metric space (M, d). If there exists
a positive real number c with c < 1 such that for each p ∈ M there exists a positive integer n(p) such that:

d(On(p)p, On(p)q) ≤ cd(p, q), for each q ∈ M, (1)

then O possesses an unique fixed point inM.

Sehgal [1] gave also an example of a mapping O that does not form a contraction, but it satisfies (1)
and possesses a fixed point. This result has been refined by Guseman [2] by relaxing the continuity
condition on the mapping. Our purpose in this study is to extend the existing common fixed point
results in a more general abstract structure. The idea of the extension of a metric notion, in particular
the concept of b-metric, is quite natural, and it has appeared in several papers, such as Bourbaki [3],
Bakhtin [4], Czerwik [5], Heinonen [6] and many others. In brief, the b-metric was obtained by
substituting the triangle inequality of the metric

(T) d(p, q) ≤ d(p, µ) + d(µ, q), for every p, q, µ ∈ M,

with the inequality:

(S) d(p, q) ≤ s[d(p, µ) + d(µ, q)], for every p, q, µ ∈ M,
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for a fixed s ≥ 1. In this case, the triplet (M, d, s) is termed a b-metric space. It is clear that (M, d, s)
forms a standard metric space in the case of s = 1.

A typical example of b-metric is the following:

Example 1. [7] For any metric space (M, d), it is possible to define a function dα : M×M → R+
0 as

dα(p, q) = (d(p, q))α with α > 1, where α is a real number and R+
0 is the collection of all nonnegative

real numbers. I this case, (M, dα, s) forms a b-metric with s = 2p−1. Indeed, for 1 < α < ∞, the function
J : (0, ∞)→ R defined by J(t) = tα is convex, and therefore, it verifies Jensen’s inequality J

(
a+b

2

)
≤ J(a)+J(b)

2 .

Hence,
(

a+b
2

)α
≤ aα+bα

2 , meaning (a + b)α ≤ 2α−1(aα + bα).

For more interesting examples and fundamental results on the b-metric, we refer to, e.g., [8–17] and
the related references therein. With respect to the analogy with the standard metric space, the topology
on b-metric space is easily setup. On the other hand, in general, b-metrics are not necessary continuous.
We say that a sequence {pn} in a b-metric space (M, d, s) converges to p if limn→∞ d(pn, p) = 0.
A sequence {pn} is Cauchy if d(pn, pm) → 0 as n, m → ∞. We notice also that each convergent
sequence in a b-metric space is Cauchy. As usual, if each Cauchy sequence is convergent, then we
say that a b-metric space (M, d, s) is complete. We mention also that in a b-metric space (M, d, s),
a convergent sequence has a unique limit.

2. Main Results

First of all, inspired by the ideas from [18,19], we consider a new type of contractive condition.

Definition 1. Let O, R be self-mappings on a b-metric space (M, d, s). We say that O, R forms ∆-contraction
if there exists c ∈ (0, 1

2s−1 ) such that for each p, q ∈ M, there exist positive integers n(p), m(q) such that:

d(On(p)p, Rm(q)q) ≤ cE(p, q), (2)

where:
E(p, q) =

[
d(p, q) +

∣∣∣d(p, On(p)p)− d(q, Rm(q)q)
∣∣∣] .

Theorem 2. If O, R form ∆-contraction on a complete b-metric space (M, d, s), then O and R possess exactly
one common fixed point.

Proof. Firstly, we notice that:

E(p, q) = 0 if and only if p = q and On(p)p = Rm(p)p.

Indeed, if E(p, q) = d(p, q) +
∣∣∣d(p, On(p)p)− d(q, Rm(q)q)

∣∣∣ = 0, then:

0 = d(p, q) +
∣∣∣d(p, On(p)p)− d(q, Rm(q)q)

∣∣∣ ≥ d(p, q) ≥ 0,

and hence,
d(p, q) = 0⇒ p = q. (3)

On the other hand, for p = q, we have by (2):

0 ≤ d(On(p)p, Rm(p)p) ≤ cE(p, p) = 0,

which yields that:
d(On(p)p, Rm(p)p) = 0⇒ On(p)p = Rm(p)p. (4)
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Therefore, by combining (3) and (4), we get that On(p)p = p = q = Rm(q)q.
Conversely, if p = q and On(p)p = Rm(p)p, then:

d(p, p) +
∣∣∣d(p, On(p)p)− d(p, Rm(p)p)

∣∣∣ = 0.

Let p0 ∈ M be an arbitrary point. Starting from p0, we will inductively construct a sequence
{pk}, by:

p1 = Rm(p0)p0, p2 = On(p1)p1, ... p2k+1 = Rm(p2k)p2k, p2k+2 = On(p2k+1)p2k+1, ... (5)

or if we use the notation mk = m(p2k), nk = n(p2k−1), we can write p2k+1 = Rmk p2k, respectively
p2k+2 = Onk+1 p2k+1.

If we suppose that for some k0 ∈ N0, pk0 = pk0+1, then the proof is completed, since t = pk0 is a
common fixed point for O and R. Hence, without loss of generality, we presume that pk 6= pk+1 for
each k ∈ N. We examine the following cases:

(a) For p = p2k−1 and q = p2k, the inequality (2) becomes:

0 < d(p2k, p2k+1) = d(Onk p2k−1, Rmk p2k) ≤ c [d(p2k−1, p2k) + |d(p2k−1, Onk p2k−1)− d(p2k, Rmk p2k)|]

= c · [d(p2k−1, p2k) + |d(p2k−1, p2k)− d(p2k, p2k+1)|] .
(6)

If max {d(p2k−1, p2k), d(p2k, p2k+1)} = d(p2k, p2k+1), then from (6), we obtain a contradiction:

0 < d(p2k, p2k+1) = d(Onk p2k−1, Rmk p2k) ≤ c · d(p2k, p2k+1) < d(p2k, p2k+1), (7)

since c ∈ (0, 1
2s−1 ). Therefore, max {d(p2k−1, p2k), d(p2k, p2k+1)} = d(p2k−1, p2k), and (6) becomes:

d(p2k, p2k+1) ≤ c · (2d(p2k−1, p2k)− d(p2k, p2k+1)) , (8)

or equivalently:

d(p2k, p2k+1) ≤
2c

1 + c
d(p2k−1, p2k), for all k ≥ 1. (9)

(b) For p = p2k+1, q = p2k, we have:

0 < d(p2k+2, p2k+1) = d(Onk+1 p2k+1, Rmk p2k)

≤ c · [d(p2k+1, p2k) + |d(p2k+1, Onk+1 p2k+1)− d(p2k, Rmk p2k)|]

= c · (d(p2k+1, p2k) + |d(p2k+1, p2k+2)− d(p2k, p2k+1)|) .

(10)

If max {d(p2k+1, p2k+2), d(p2k, p2k+1)} = d(p2k+1, p2k+2), then (10) turns into:

d(p2k+1, p2k+2) ≤ cd(p2k+1, p2k+2) < d(p2k+1, p2k+2),

which is a contradiction. Hence, for all k ≥ 1, max {d(p2k+1, p2k+2), d(p2k, p2k+1)} = d(p2k, p2k+1). Thus,

0 < d(p2k+2, p2k+1) ≤ c [2d(p2k, p2k+1)− d(p2k+1, p2k+2)]

or:
d(p2k+1, p2k+2) ≤

2c
1 + c

d(p2k, p2k+1), for all k ≥ 1. (11)

By routine calculation and based on (9) and (11), we get:

0 < d(p2k+1, p2k+2) ≤
2c

1 + c
d(p2k, p2k+1) ≤ ... ≤

(
2c

1 + c

)2k
d(p1, p2), (12)
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and:

0 < d(p2k, p2k+1) ≤
2c

1 + c
d(p2k−1, p2k) ≤ ... ≤

(
2c

1 + c

)2k
d(p0, p1). (13)

Therefore, combining (12) and (13), we can conclude that:

d(pn, pn+1) ≤
(

2c
1 + c

)n
r(p0), (14)

for all n ∈ N, where we denoted by r(p0) = max {d(p0, p1), d(p1, p2))}. Letting n → ∞ in (14),
we obtain:

lim
n→∞

d(pn, pn+1) = 0. (15)

We will establish that {pn} is a Cauchy sequence in (M, d, s). For p ∈ N, using the triangle
inequality and taking (14) into account, we have:

d(pk, pk+p) ≤ s ·
[
d(pk, pk+1) + d(pk+1, pk+p)

]
≤ s · d(pk, pk+1) + s2d(pk+1, pk+2) + ... + sp · d(pk+p−1, pk+p)

≤ s ·
( 2c

1+c
)k r(p0) + s2 ·

( 2c
1+c
)k+1 r(p0) + ... + sp ·

( 2c
1+c
)k+p−1 r(p0)

= s ·
( 2c

1+c
)k r(p0)

[
1 + s ·

( 2c
1+c
)
+ s2 ·

( 2c
1+c
)2

+ ... + sp−1 ·
( 2c

1+c
)p−1

]
= s ·

( 2c
1+c
)k r(p0) ·

1−(s· 2c
1+c )

p

1−s· 2c
1+c

→ 0,

when k→ ∞. Consequently, {pn} is a Cauchy sequence. By completeness, pn → t as n→ ∞ for some
point t ∈ M, that is:

lim
n→∞

d(pn, t) = 0. (16)

Letting p = t and q = p2k in (2), we have:

d(On(t)t, p2k+1) = d(On(t)t, Rmk p2k) ≤ c ·
(

d(t, p2k) +
∣∣∣d(t, On(t)t)− d(p2k, Rmk p2k)

∣∣∣)
= c

(
d(t, p2k) +

∣∣∣d(t, On(t)t)− d(p2k, p2k+1)
∣∣∣) .

(17)

Taking the limit of k→ ∞ in (17) and using (15), (16), we obtain:

d(On(t)t, t) ≤ c · d(t, On(t)t) < d(t, On(t)t),

which means that On(t)t = t. Using the same reasoning, we observe that for p = p2k−1 and q = t,

d(p2k, Rm(t)t) = d(Onk p2k−1, Rm(t)t) ≤ c ·
(

d(p2k−1, t) +
∣∣∣d(p2k−1, Onk p2k−1)− d(t, Rm(t)t)

∣∣∣)
= c ·

(
d(p2k−1, t) +

∣∣∣d(p2k−1, p2k)− d(t, Rm(t)t)
∣∣∣) ,

(18)

and letting k→ ∞ in the inequality above, we derive that:

d(t, Rm(t)t) ≤ c · d(t, Rm(t)t) < d(t, Rm(t)t). (19)

Hence, we get that Rm(t)t = t. We suppose now that there exists another point υ ∈ M, with t 6= υ

such that:
On(υ)υ = υ and Rm(υ)υ = υ.

We get from (2) that:

0 < d(t, υ) = d(On(t)t, Rm(υ)υ) ≤ c
[
d(t, υ) +

∣∣∣d(t, On(t)t)− d(υ, Rm(υ)υ)
∣∣∣] = c · d(t, υ) < d(t, υ),
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which is a contradiction. Hence, t = υ. On the other hand, Ot = O(On(t)t) = On(t)(Ot) and from the
uniqueness of t, we can conclude that Ot = t. Similarly, we get Rt = t. In conclusion, O and R have
exactly one common fixed point t.

Example 2. LetM = {0, 1, 2, 3}, and define d : M×M → R+
0 by d(p, q) = d(q, p), for all p, q ∈ M,

d(p, p) = 0, p ∈ M, d(0, 1) = d(1, 2) = 3, d(1, 3) = d(2, 3) = 1, d(0, 2) = 4, d(0, 3) = 2. Therefore,
(M, d, s) is a b-metric space with s = 4

3 , but not a metric space since for p = 0 and q = 2:

d(0, 2) = 4 > 2 + 1 = d(0, 3) + d(3, 2).

Therefore, the triangle inequality is not satisfied. Let O, R :M→M be two mappings defined as:

O(1) = O(3) = O(2) = 1, O(0) = 2

and:
R(1) = 1, R(3) = 2, R(2) = 0, R(0) = 1.

It is easy to see that for any p ∈ M, there is n = n(p) ∈ {3, 4, ...} such that On(p)p = 1 and for any
q ∈ M, there is m = m(q) ∈ {4, 5, ...} such that Rm(q)q = 1. Therefore, there exists c ∈ (0, 1

2s−1 ) such that
for each p, q ∈ M, there exist positive integers n(p), m(q) such that

0 = d(1, 1) = d(On(p)p, Rm(q)q) ≤ c
[
d(p, q) +

∣∣∣d(p, On(p)p)− d(q, Rm(q)q)
∣∣∣] .

Hence, all the conditions of Theorem 2 are fulfilled, and O and R have exactly one fixed point, p = 1. In
addition, we can observe that for p = 1, q = 3,

d(O(1), R(3)) = d(1, 2) = 3 > 2 = d(1, 3) + |d(1, O(1))− d(3, R(3))| .

Example 3. LetM = [0, 1] and d : M×M → R+
0 be defined as d(p, q) = |p− q|2. It is clear, due to

Example (1), that (M, d, s) is a b-metric space with the constant s = 2. Let O, R :M→M be defined by:

O(p) =


p
2 for p ∈ [0, 1)

1
8 for p = 1.

and R(p) = p
4 .

Due to this definition of mappings O and R, we consider two cases:
(a) For fixed p ∈ [0, 1), q ∈ [0, 1], if we denote n(p) = n and m(q) = m, we have:

On(p) =
p

2n , Rm(q) =
q

22m .

Considering n = 4, m = 2, we get:

d(O4(p), R2(q)) = d
( p

16
,

q
16

)
=
|p− q|2

256

and:
d(p, q) +

∣∣d(p, O4(p))− d(q, R2(q))
∣∣ = |p− q|2 +

∣∣∣∣∣p− p
16

∣∣2 − ∣∣q− q
16

∣∣2∣∣∣
= |p− q|2 + 225 · |p

2−q2|
256 .
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In this case, (2) becomes:

|p− q|2
256

≤ c

(
|p− q|2 + 225 ·

∣∣p2 − q2
∣∣

256

)
.

Therefore, for p 6= q,
|p− q| ≤ c (256|p− q|+ 225(p + q))

or, equivalently,
(1− 256q)|p− q| ≤ 225(p + q)

which is true, for any 1
256 < c < 1

2 .
(b) For p = 1 and q ∈ [0, 1], we choose n(1) = 2 and m(q) = 2. Since O2(1) = 1

16 and R2(q) = q
16 , we

find that:

d(O2(1), R2(q)) = d( 1
16 , q

16 ) =
|1−q|2

256 ,

d(1, O2(1)) = d
(

1, 1
16

)
= 225

256 ,

d(q, R2(q)) = d(q, q
16 ) =

225q2

256 ,

d(1, q) = |1− q|2 ,

and for any 1
256 < c < 1

2 , we get:

|1− q|2

256
≤ c

[
|1− q|2 +

∣∣∣∣225
256
− 225q2

256

∣∣∣∣] ,

which shows that (2) is satisfied.
In conclusion, for any p, q ∈ M, all the presumptions of Theorem 2 are satisfied. It follows that O and R

have exactly one common fixed point inM, t = 0.

Corollary 1. Let (M, d, s) be a complete b-metric space with s ≥ 1 and O : M → M be a mapping for
which there exists a real number c, 0 < c < 1

2s−1 such that, for each p, q ∈ M there exists a positive integer
n(p) with:

d(On(p)p, On(q)q) ≤ c
[
d(p, q) +

∣∣∣d(p, On(p)p)− d(q, On(q)q)
∣∣∣] . (20)

Then, O has exactly one fixed point.

Theorem 3. Let O, R be two self-mappings on a complete b-metric space (M, d, s) such that for all p, q ∈ M,
there exist positive integers n(p), m(q) such that:

d(On(p)p, Rm(q)q) ≤ a1d(p, q) + a2d(p, On(p)p) + a3d(q, Rm(q)q) + a4

(
d(q, On(p)p) + d(p, Om(q)q)

)
, (21)

where ai ≥ 0, i ∈ {1, 2, 3, 4} with a1 + a2 + a3 + 2sa4 < 1
s . Then, the pair of mappings O, R possesses exactly

one common fixed point t.

Proof. Starting with an arbitrary point p0 ∈ M, we construct a sequence {pk} inM as follows:

p1 = Rm(p0)p0, p2 = On(p1)p1, ... p2k+1 = Rm(p2k)p2k, p2k+2 = On(p2k+1)p2k+1, ... (22)
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Let mk = m(p2k) and nk = n(p2k−1). For p = p2k−1 and q = p2k, the inequality (21) becomes:

d(p2k, p2k+1) = d(Onk p2k−1, Rmk p2k)

≤ a1d(p2k−1, p2k) + a2d(p2k−1, Onk p2k−1) + a3d(p2k, Rmk p2k)

+a4 (d(p2k, Onk p2k−1) + d(p2k−1, Rmk p2k)

= a1d(p2k−1, p2k) + a2d(p2k−1, p2k) + a3d(p2k, p2k+1)

+a4 (d(p2k, p2k) + d(p2k−1, p2k+1)) .

(23)

By using the triangle inequality, we find that:

d(p2k, p2k+1) ≤ a1d(p2k−1, p2k) + a2d(p2k−1, p2k) + a3d(p2k, p2k+1)+

a4 · s [d(p2k−1, p2k) + d(p2k, p2k+1)]

= (a1 + a2 + sa4)d(p2k−1, p2k) + (a3 + sa4)d(p2k, p2k+1).

(24)

Hence, from the above inequality, it follows that:

d(p2k, p2k+1) ≤
a1 + a2 + sa4

1− a3 − sa4
d(p2k−1, p2k) < d(p2k−1, p2k), (25)

where
a1 + a2 + sa4

1− a3 − sa4
<

1
s

. Repeating the above process, we obtain for p = p2k+1 and q = p2k:

d(p2k+2, p2k+1) ≤ a1d(p2k+1, p2k) + a2d(p2k+1, Onk+1 p2k+1) + a3d(p2k, Rmk p2k)

+a4

(
d(p2k, Onk+1 p2k+1) + d(p2k+1, Rmk)p2k)

)
= a1d(p2k+1, p2k) + a2d(p2k+1, p2k+2) + a3d(p2k, p2k+1)

+a4 (d(p2k, p2k+2) + d(p2k+1, p2k+1))

< (a1 + a3 + sa4)d(p2k+1, p2k) + (a2 + sa4)d(p2k+1, p2k+2).

(26)

Therefore,

d(p2k+1, p2k+2) ≤
a1 + a3 + sa4

1− a2 − sa4
(d(p2k, p2k+1). (27)

Putting together (25) and (27), we find that for any k ∈ N:

d(p2k, p2k+1) ≤
(

a1 + a2 + sa4

1− a3 − sa4

)2k
d(p0, p1),

d(p2k+1, p2k+2) ≤
(

a1 + a3 + sa4

1− a2 − sa4

)2k
d(p1, p2).

(28)

From here, considering r(p0) = max {d(p0, p1), d(p1, p2)} and q = max
{

a1+a3+sa4
1−a2−sa4

, a1+a2+sa4
1−a3−sa4

}
<

1
s , we can conclude that:

d(pm, pm+1) ≤ qmr(p0), for any m ∈ N. (29)
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In order to prove that the sequence {pk} is Cauchy, we will estimate d(pk, pk+p). For p ∈ N,
we have:

d(pk, pk+p) ≤ s ·
[
d(pk, pk+1) + d(pk+1, pk+p)

]
≤ s · d(pk, pk+1) + s2d(pk+1, pk+2) + ... + sp · d(pk+p−1, pk+p)

≤ s · qkr(x0) + s2 · qk+1r(x0) + ... + sp · qk+p−1r(x0)

= r(p0)∑
k+p−1
i=k si−k+1 · qi

≤ r(x0)∑∞
i=k(s · q)i → 0

as n→ ∞. Therefore, {pn} is a Cauchy sequence. When the b-metric space (M, d, s) is complete, there
is a point t ∈ M such that:

lim
n→∞

d(pn, t) = 0. (30)

We prove that On(t)t = t = Rm(t)t, meaning that t is a common fixed point of On(t), respectively
Rm(t). If we take p = p2k−1 and y = u in (21), we get:

d(Onk p2k−1, Rm(t)t) ≤ a1d(p2k−1, t) + a2d(p2k−1, Onk p2k−1) + a3d(t, Rm(t)t)

+a4

(
d(p2k−1, Rm(t)t) + d(t, Onk p2k−1)

)
= a1d(p2k−1, t) + a2d(p2k−1, p2k) + a3d(t, Rm(t)t)

+a4

(
d(p2k−1, Rm(t)t) + d(t, p2k)

)
,

(31)

and taking the limit k→ ∞ in the previous inequality, we obtain:

d(t, Rm(t)t) ≤ lim
n→∞

d(p2k, Rm(t)t) ≤ (a3 + a4)(d(t, Rm(t)t) < d(t, Rm(t)t), (32)

which implies that d(t, Rm(t)t) = 0. Hence, Rm(t)t = t. Supposing that On(t)t 6= t, from (21) and (32),
we have:

0 < d(On(t)t, t) = d(On(t)t, Rm(t)t) ≤ a2d(t, On(t)t) + a4d(t, On(t)t)) < d(t, On(t)t) (33)

which is a contradiction, and hence, On(t)t = t.
Finally, we will demonstrate the uniqueness of the fixed point. For this, we presume that on the

contrary, there exists another point υ ∈ M such that On(υ)υ = υ = Rm(υ)υ and t 6= υ. Therefore,

0 < d(t, υ) = d(On(t)t, Rm(υ)υ))

≤ a1d(t, υ) + a2d(t, On(t)t) + a3d(υ, Rm(υ)υ) + a4d(υ, On(t)t) + d(t, Rm(υ)υ)

= a1d(t, υ) < d(t, υ).

(34)

This is a contradiction, hence t = υ. Since the fixed point is unique, we can conclude that t is a
common fixed point for O and R. Indeed,

Ot = O(On(t)t) = On(t)(Ot) (35)

shows that Ot is also a fixed point of On(t). However, On(t) has a unique fixed point t; hence, Ot = t.
Similarly Rt = t.
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Corollary 2. Let O, R be two self-mappings on a complete b-metric space (M, d, s). Suppose that there exists a
positive constant c, 0 < c < 1

s and for all p, q ∈ M there exist positive integers n(p), m(q) such that:

d(On(p)p, Rm(q)q) ≤ cd(p, q). (36)

Then, the pair of mappings O, R has exactly one common fixed point t.

Proof. The proof follows from Theorem 3 by taking a2 = a3 = a4 = 0 and a1 = c < 1/s.

Example 4. Let M =

{
A(p) =

(
2p 4p
p 0

)
: p ∈ R

}
and d : M ×M → R+

0 be defined as

d(A(p), A(q)) = |tr(A(p) − A(q))|2. The triplet (M, d, s) forms a complete two-metric space. Let

O, R : M → M be defined by O (A(p)) = BA(p), S(A(p)) = CA(p), where B =

(
1/2 1/2

0 1/2

)
,

respectively C =

(
1/4 2/3

0 1/2

)
. By regular calculation, we have O3(A(p)) = B3 A(p) =

(
5p/8 p/2
p/8 0

)

and R3(A(q)) = C2 A(q) =

(
5q/8 q/4
q/4 0

)
. For c = 1

4 < 1
2 , we have:

d(O3(A(p)), R3(A(q))) =
25
64
|p− q|2 <

1
4
· 4|p− q|2 = d(A(p), A(q))

so, for all A(p), A(q) ∈ M we can find n(p) = 3 and m(q) = 2 such that the assumptions of Corollary 2 are
satisfied, which means that A(0) is the unique common fixed point for O and R. We can remark that, in fact,
choosing for example a1 = 1

64 , the presumptions of Theorem 3 are satisfied for any a2, a3, a4 ≥ 0 such that
a2 + a3 + 4a4 < 31

64 = 1
2 −

1
64 . The system BA(p) = CA(p) = A(p) has exactly one solution.

Letting O = R and m(q) = n(q) in Theorem 3, we obtain the next result:

Corollary 3. Let O be a self-mapping on a complete b-metric space (M, d, s). Suppose that for all p, q ∈ M,
there exist positive integers n(p), n(q) such that:

d(On(p)p, On(q)q) ≤ a1d(p, q) + a2d(p, On(p)p) + a3d(q, On(q)q) + a4

(
d(q, On(p)p) + d(p, On(q)q)

)
, (37)

where ai ≥ 0, i ∈ {1, 2, 3, 4} and a1 + a2 + a3 + 2sa4 < 1
s . Then, the mapping O has exactly one fixed point t.

Corollary 4. Let O be a self-mapping on a complete b-metric space (M, d, s). Suppose that there exists a
positive constant c, 0 < c < 1

s such that for each p, q ∈ M, there exist positive integers n(p), n(q) such that:

d(On(p)p, On(q)q) ≤ cd(p, q). (38)

Then, the mapping O has exactly one fixed point.

Proof. In Corollary 3, set a1 = c < 1
s and a2 = a3 = a4 = 0.
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3. Application to Nonlinear Fredholm Integral Equation

In this section, as an application, we use Corollary 12 to study the existence and uniqueness of the
common solution of nonlinear Fredholm integral equations. LetM = C([0, 1],R+

0 ) be the space of all
continuous real valued functions defined on [0,1], where: R+

0 = [0, ∞). Define dτ :M×M→ R+
0 by:

dτ(p, q) = sup
t∈[0,1]

{|p(t)− q(t)|2e−τt}

= ||p− q||τ

for all p, q ∈ C([0, 1],R+
0 ).

For p ∈ C([0, 1],R+
0 ), we define norm as ||p||τ = sup

t∈[0,1]
{|p(t)|e−τt} where τ > 0 is taken

arbitrarily. Then, (M, dτ) becomes a complete b-metric space. Let us study the Fredholm integral
equations as:

p(t) =
∫ t

0
Υ1(t, s, p(s)ds) + $(t) (39)

q(t) =
∫ t

0
Υ2(t, s, q(s)ds) + $(t) (40)

for all s, t ∈ [0, 1] and n(p), n(q) are positive integers; where $ : [0, 1]→ R+
0 and Υ1, Υ2 : [0, 1]× [0, 1]×

R+
0 → R+

0 are continuous functions.
Now, we shall state and prove the following theorem to ensure the existence and uniqueness of

the common solution of nonlinear Fredholm integral Equations (39) and (40).

Theorem 4. Let (M, dτ) be a complete b-metric space defined above. Further, we presume that the following
conditions are fulfilled.

1. Define

On(p)p(t) =
∫ t

0
Υ1(t, s, p(s))ds + $(t), (41)

On(q)q(t) =
∫ t

0
Υ2(t, s, q(s))ds + $(t). (42)

2. Suppose there exists τ > 0 and a non-negative constant z, where 0 < z < 1
s such that:

|Υ1(t, s, p(s))− Υ2(t, s, q(s))|2 ≤ zτ|p(s)− q(s)|2.

Then, the Fredholm integral Equations (39) and (40) have exactly one common solution.
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Proof. For any p, q ∈ C([0, 1]), t ∈ [0, 1] and n(p), n(q) positive integers, we consider:

|On(p)p(t)−On(q)q(t)|2 =

∣∣∣∣∫ t

0
Υ1(t, s, p(s))ds + $(t)−

∫ t

0
Υ2(t, s, q(s))ds + $(t)

∣∣∣∣2
=

∣∣∣∣∫ t

0
Υ1(t, s, p(s))ds−

∫ t

0
Υ2(t, s, q(s))ds

∣∣∣∣2
≤
∫ t

0
|Υ1(t, s, p(s))− Υ2(t, s, q(s))|2 ds

≤
∫ t

0
zτ|p(s)− q(s)|2ds

=
∫ t

0
zτe−sτ .esτ |p(s)− q(s)|2ds

=
∫ t

0
zτesτ ||p− q||ds

=
∫ t

0
zτesτdτ(p, q)ds

= zτdτ(p, q)
∫ t

0
esτds

= zτdτ(p, q)
[

esτ

τ

]t

0

< zdτ(p, q)etτ ,

(43)

which bring us:
e−tτ |On(p)p(t)−On(q)q(t)|2 ≤ zdτ(p, q)

⇒ ||On(p)p−On(q)q||2 ≤ zdτ(p, q)

⇒ dτ(On(p)p, On(q)q) ≤ zdτ(p, q).

Thus, all the conditions of Corollary 12 are satisfied. Hence, given the fact that the nonlinear
Fredholm integral Equations (39) and (40) have a common solution, this yields the existence and
uniqueness of the common solution of nonlinear Fredholm integral equations.

4. Conclusions

In this paper, we have extended several existing results two-fold. Firstly, we proved our results
in the most generalized setting, the b-metric space. Secondly, we considered distinct contraction
conditions that are not commonly studied in the metric fixed point theory. It is obvious that the given
results cover the existing results of Sehgal [1], Guseman [2], Ray and Rhoades [19], and so on. It is
also clear that by taking n(p) = 1 in the setting of the b-metric space, we get some more corollaries.
On the other hand, if n(p) ≥ 2, the continuity of the mappings cannot be derived from the contraction
conditions. Hence, our results can be considered as fixed point results in the frame of discontinuous
functions [20]. Moreover, as an application, we used the obtained results to aggregate the existence
and uniqueness of the solution for nonlinear Fredholm integral equations.
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