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Abstract: Due to scale and complexity of first-order formulas, simplifications play a very important
role in first-order theorem proving, in which removal of clauses and literals identified as redundant
is a significant component. In this paper, four types of clauses with the local redundancy property
were proposed, separately called a set-blocked clause (SBC), extended set-blocked clause (E-SBC),
equality-set-blocked clause (ESBC) and extended equality-set-blocked clause (E-ESBC). The former
two are redundant clauses in first-order formulas without equality while the latter two are redundant
clauses in first-order formulas with equality. In addition, to prove the correctness of the four proposals,
the redundancy of the four kinds of clauses were proved. It was guaranteed eliminating clauses with
the four forms has no effect on the satisfiability or the unsatisfiability of original formulas. In the end,
effectiveness and confluence properties of corresponding clause elimination methods were analyzed
and compared.
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1. Introduction

Simplifications have been diffusely recognized as an indispensable component of both
propositional SAT solving and first-order theorem proving. Clause elimination has always been
crucial among simplification techniques. In 2010, blocked clause elimination in propositional logic
was proposed for reducing the size of formulas and speeding up SAT solvers as a preprocessing
technique [1]. After that, there have been published further research work related to blocked clause.
Hidden blocked clause and asymmetric blocked clause were created by combining hidden literal
addition and asymmetric literal addition with blocked clause at the same year [2,3]. Then, abcdSAT [4]
based on blocked clause decomposition [5] won the SAT-Race 2015 competition. In 2016, the extension
of blocked clause was widened further. Super-blocked clause and set-blocked clause in propositional
logic were produced, in which super-blocked clause had the most general local redundancy property
[6]. After that, Blocked clause was successfully lifted to first-order logic in 2017 [7], which as a
preprocessing technique of Vampire boosted the efficiency of Vampire [8].

In the paper, we generalize the conception of blocked clause further in first-order logic. Set-blocked
clause (SBC) and extended set-blocked clause (E-SBC) in first-order logic without equality are presented,
which are generalizations of blocked clause in first-order logic. The evolution is that SBC is blocked by
a subset of its literals while blocked clause (BC) is blocked by one of its literals. Similarly, E-SBC can
be considered as a further generalization based on SBC. Informally, if a clause C is an E-SBC, for any
assignment β over the external ground atoms of the clause C, there exists a subset Sβ of literals of C, C
is a SBC upon Sβ in F|β. Assignments over the external ground atoms of C may transform resolution
environment of C into a different one from the original resolution environment, in addition, the subset
Sβ is able to be various along with the diversity of the assignment β, which makes the requirement for
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a clause to be an extended set-blocked clause is quite flexible compared with the requirement for an
SBC. To guarantee those clauses are capable to be eliminated from formulas without influencing the
satisfiability or unsatisfiability, the redundancy of the two categories of clauses are proved. The proof
is not given directly under the circumstance of first-order logic but lower it to propositional logic and
connect with the variant of Herbrand’s Theorem: if a first-order formula F is satisfiable if and only if
it is satisfiable for all the finite ground instances of F. After that, their abilities to simplify formulas
are contrasted with blocked clause elimination (BCE) by comparing their effectiveness. Furthermore,
set-blocked clause elimination (SBCE) and extended set-blocked clause elimination (E-SBCE) have the
confluence properties just the same as blocked clause elimination.

The paper is not only relevant to first-order formulas without equality but also first-order formulas
with equality. Because of the peculiarities of equality, there will be some mistakes if we remove
clauses according to the definitions of SBC and E-SBC. The solution is to combine SBC and E-SBC with
flattening and flat resolution, developing the new two categories of clauses: equality-set-blocked clause
(ESBC) and extend equality-set-blocked clause (E-ESBC). The combination can erase the “confusion
jamming” caused by the characteristics of equality that some different literals with distinct items have
the same truth values under any assignment. Similarly, redundancy, effectiveness and confluence
properties of ESBC and E-ESEB are also demonstrated, analyzed and compared.

The contribution of the paper mainly is: (1) Establish the concepts of SBC and E-SBC in formulas
without equality and ESBC and E-ESBC in formulas with equality; (2) Prove all the four types of
clauses are redundant; (3) Contrast the four corresponding clause elimination methods’ effectiveness;
(4) Illuminate the confluence properties of the four clause elimination methods.

The rest of the paper is organized as follows. After some necessary preliminaries are introduced
in Section 2, we propose SBC and E-SBC, and prove the redundancy of the two types of clauses in
Section 3. In Section 4, we present ESBC and E-ESBC, show how they can deal with formulas with
equality and prove the redundancy of the two types of clauses. Finally, we compare and analyze those
clause elimination methods’ effectiveness and confluence properties in Section 5.

2. Preliminaries

In the section, we introduce some necessary notations, definitions and theorems for the paper.
Here we only consider first-order formulas in conjunctive normal form (CNF). A formula is a

conjunction of clauses. A clause is a disjunction of literals. A literal is an atom or the negation of an
atom. An atom is made up of a predicate symbol and items. Items can be the mixture of variables,
constants and functions or just single variable, constant or function. Variables are usually represented
by x, y . . ., constants are represented by a, b, c . . . and functions are represented by f , g, h . . .[9].

A propositional assignment is a mapping from ground atoms to the truth values 1 (true) and 0 (false).
Accordingly, a set V of ground clause is propositionally satisfiable if there exists a propositional
assignment which can assign every ground clause in V to the truth value 1. A clause is valid when
it is true under any assignment, tautology is one case of valid clause. Let F be a formula and α be
an assignment, F|α is defined as {C|C ∈ F and α does not satisfy C}. Two formulas F and F′ are
satisfiability equivalent if they are either both satisfiable or unsatisfiable. A clause C is redundant w.r.t.
F if F and F\{C} are satisfiability equivalent. A substitution is a mapping from variables to terms.
A ground substitution is a mapping of which the range consists only of ground terms. For a literal,
clause or formula F, atom{F} denotes the atoms in F and Gatom{F} denotes the ground atoms in F.

A clause is a blocked clause upon L ∈ C in a first-order formula F without equality, if all its
L-resolvents are tautologies. L-resolvent is defined below [7]:

Definition 1. Given two clauses C = L∨C1 and D = N1∨ . . .∨Nm ∨D1 such that there exists a substitution
σ which can unify L,¬N1 . . .¬Nm, the clause (C1 ∨ D1)σ is called as the L-resolvent of C and D.
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For a clause C in a formula F, the resolution environment, envF(C), of C in first-order formula F
without equality is the set of all the clauses in F\{C} which can be resolved with C: envF(C) = {C′ ∈
F\{C}|∃¬L′ in C′ such that L ∈ C and L and L′ can be unified}

And for those atoms in envF(C) but not appearing in C and not able to be unified with atom{C},
they are called as the external atoms of C. The definition is: extF(C) = {A | A ∈ atom{envF(C)},
A /∈ atom{C} and there is no unification between A and atom{C}}. The set of external ground atoms
is defined as extGF(C).

Since first-order CNF formulas with equality will be discussed in this paper, equality axioms εL is
introduced here [10]: (1) x = x; (2) x 6= y ∨ y = x (3)x 6= y ∨ y 6= z ∨ x = z (4) if f is a n-ary function
symbol, x1 6= y1 ∨ . . . ∨ xn 6= yn ∨ f (x1, . . . , xn) = f (y1, . . . , yn); (5) if P is a n-ary predicate symbol,
x1 6= y1 ∨ . . . ∨ xn 6= yn ∨ P(x1, . . . , xn) ∨ ¬P(y1, . . . , yn)

Flattening and flat resolution [11] are the constituent parts of E-SBC and E-ESBC. The definitions
are showed below [7].

Definition 2. After flattening the literal L(s1, s2, . . . , sn) of the clause C = L(s1, s2, . . . , sn) ∨ C1, the new
flattened literal is L′ = L(x1, x2, . . . , xn) and the new flattened clause is C′ = ∨1≤i≤nxi 6= si ∨
L(x1, x2, . . . , xn) ∨ C1 with xi(i = 1, 2, . . . , n) being variables not occurring in C

Definition 3. Suppose C = L ∨ C1 and D = N1 ∨ N2 ∨ . . . ∨ Nm ∨ D1 and L,¬N1, . . . ,¬Nm have the
same predicate symbol but the opposite polarity. After flattening L in C and N1, . . . , Nm in D, the new
flattened clauses C′ = L′ ∨ C′1 and D′ = N′1 ∨ . . . ∨ N′m ∨ D′1 are obtained. In addition, the resolvent
(C′\{L′})σ ∨ (D′\{N′1, . . . , N′m})σ of C′ and D′ is called as a flat L-resolvent of C and D.

A clause C is an equality-blocked clause (EBC) upon L ∨ C in a formula F with equality, if all its
flat L-resolvents are valid.

The resolution environment of a clause C in a formula F with equality is different from the
definition in formulas without equality. The existence of equality makes the clauses own literals,
which can be resolved with some literal in C, cannot consist of the whole resolution environment of C,
but extend to clauses contain literals have the same predicate but the contrary polarity with some literal
in C. envFE = {C′ ∈ F\{C}|∃¬L′ ∈ C′ such that L ∈ C and L and L′ have the same predicate symbol}.

Meanwhile, the external atoms in envFE(C), of C in first-order formulas with equality are
also distinguished from the definition of external atom in first-order formulas without equality:
extFE(C) = {A|A ∈ atom{envFE(C)}, A /∈ atom{C} and A has no same predicate symbol as atom{C}},
in which the set of ground external atoms is defined as extGFE(C).

In a formula F with equality, flipping the truth value of a ground literal L = P(s1, . . . , sn) under
a propositional assignment β, it should flip the truth value of all the ground literals with the form
L′ = P(t1, . . . , tn) such that β(si = ti) = 1 for all 1 ≤ i ≤ n rather than simply flip the truth value of
L [7].

Definition 4. Given a propositional assignment β and a ground literal L = P(t1, . . . , tn) of which the predicate
symbol is not equality symbol. The definition of a propositional assignment β′ is obtained from β by equivalence
flipping the truth value of L = P(t1, . . . , tn) is below:

β′(L) =

{
1− β(L) if L = P(s1, s2, . . . , sn) and β(ti ≈ si) = 1 for all 1 ≤ i ≤ n

β(L) otherwise

The following are two variants of Herbrand’s Theorm we adopt in the rest part of the paper. One
is suitable for first-order CNF formulas without equality, while the other is suitable for first-order CNF
formulas with equality [10].
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Theorem 1. For a first-order formula F without equality predicate, it is satisfiable if and only if every finite set
of ground instances of clauses in F is propositionally satisfiable.

Theorem 2. For a first-order formula F with equality predicate, it is satisfiable if and only if every finite set of
ground instances of clauses in F ∪ εL is propositionally satisfiable.

3. Set-Blocked Clause and Extended Set-Blocked Clause in First-Order Logic without Equality

In this section, we demonstrate set-blocked clause and extended set-blocked clause in formulas
without equality. First, we give the definition of LS

i -resolvent as follows, which is different from the
definition of L-resolvent of a clause C in the paper [7]. The former includes substituted literals from
negations of some literals in the clause C while the latter has no such characteristics in it.

Definition 5. Given two clauses, C = L1 ∨ L2 ∨ . . . ∨ Ln ∨ C′ with the subset S = {L1, L2, . . . , Ln} ⊆ C
such that Li(1 ≤ i ≤ n) and Lj(1 ≤ j ≤ n) cannot be resolved with each other, and D = N1 ∨ N2 ∨ . . . ∨
Nm ∨ D′. If one of literals Li ∈ S(1 ≤ i ≤ n),¬N1, . . . ,¬Nm can be unified by an mgu σ, the clause
C′σ ∪ D′σ ∪ (S̄\{¬Li})σ is called LS

i -resolvent of C and D.

Example 1. Let the clause C = Q(b) ∨ P(b) ∨ R(c) with S = {Q(b), P(b), R(c)} and the clause
D = ¬P(b) ∨ ¬P(x) ∨Q(x). P(b), P(b) and P(x) can be unified by the substitution σ = {x 7→ b}. We can
know that C′σ = Φ, D′σ = Q(b) and (S̄\{¬Li})σ = ¬Q(b) ∨ ¬R(c). Therefore, Q(b) ∨ ¬Q(b) ∨ ¬R(c)
is the P(b){Q(b),P(b),R(c)}-resolvent of C and D.

Next is the definition of set-blocked clause, a generalization from blocked clause by extending
one blocking literal of clause C to multiple blocking literals of clause C.

Definition 6. A clause C is a set-blocked clause (SBC) in the formula F if there exists a set
S = {L1, L2, . . . , Ln} ⊆ C such that Li(1 ≤ i ≤ n) and Lj(1 ≤ j ≤ n) cannot be resolved with each
other and all its LS

i -resolvent (1 ≤ i ≤ n) are tautologies.

Example 2. Let the clause C = Q(a) ∨ P(b) ∨ R(c), S = {Q(a), P(b)} and the formula
F = {Q(a) ∨ P(b) ∨ R(c),¬P(x) ∨Q(a),¬Q(a) ∨ P(b), P(x) ∨ ¬R(x)}. We can see that there is only one
P(b){Q(a),P(b)}-resolvent and one Q(a){Q(a),P(b)}-resolvent of C and D, separately obtained by resolving C
with ¬P(x) ∨Q(a) and resolving C with ¬Q(a) ∨ P(b). P(b){Q(a),P(b)}-resolvent is R(c) ∨Q(a) ∨ ¬Q(a)
which is a tautology and Q(a){Q(a),P(b)}-resolvent is R(c) ∨ P(b) ∨ ¬P(b) which is also a tautology. Then,
all the LS

i -resolvents (1 ≤ i ≤ n) are tautologies. Therefore, C is set-blocked upon S w.r.t. F.

In Example 2, the clause C is an SBC; however, the clause C is not blocked no matter upon
Q(a), P(b) or R(c).

To justify it has no impact on the satisfiability or unsatisfiability of formulas by removing SBCs in
formulas, the redundancy property of SBC is proved subsequently.

Lemma 1. Given a clause C is set-blocked upon S = {L1, L2, . . . , Ln} ⊆ C in a formula F. Let α be an
assignment that propositionally satisfies all the ground instances of clauses in F\{C} but falsifies a ground
instance Cλ of C. Then, the assignment α′, obtained from α by flipping all the truth values of ground literals
L1λ, L2λ, . . . , Lnλ in Sλ, still satisfies all the ground instances in F\{C}.

Proof. Let Dτ be a ground instance of D in F\{C}. Dτ may be falsified according to the assignment
α′ by flipping all the truth values of ground literals L1λ, L2λ, . . . , Lnλ in Sλ, only if Dτ contains a set
of literals {¬Li1λ,¬Li2λ, . . . ,¬Limλ} ⊆ {¬L1λ,¬L2λ, . . . ,¬Lnλ}. Without loss of generality, assume
that Dτ contains the literal ¬L1λ (if Dτ contains more than one literal from {¬L1λ,¬L2λ, . . . ,¬Lnλ},
the proof process is the same) and let N1, . . . , Nk be all the literals in D such that Niτ = ¬L1λ for
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1 ≤ i ≤ k. Then, the substitution λτ (note that C and D are variable disjoint by assumption) is a
unifier of ¬L1, N1, . . . , Nk. Hence, RS

L1
= (C\S)σ ∨ (D\{N1, . . . , Nk})σ ∨ (S̄\{¬L1})σ, with σ an mgu

of ¬L1, N1, . . . , Nk, is an LS
1 -resolvent of C, which is a tautology due to the fact that the clause C is a

set-blocked clause.
As the substitution σ is the most general unifier, there exists a substitution θ such that σθ = λτ.

We can obtain the following equation:

(C\S)σθ ∨ (D\{N1, . . . , Nk})σθ ∨ (S̄\{¬L1})σθ

= (C\S)λτ ∨ (D\{N1, . . . , Nk})λτ ∨ (S̄\{¬L1})λτ

= (C\S)λ ∨ (D\{N1, . . . , Nk})τ ∨ (S̄\{¬L1})λ

which is a ground instance of RS
L1

, so it is a tautology of which the truth value is 1. Because α falsifies
Cλ and α′ is acquired by flipping all the truth values of L1λ, L2λ, . . . , Lnλ to be true while the truth
values of all the other ground literals are maintained. Therefore, α′ falsifies (C\S)λ and (S̄\{¬L1})λ.
Meanwhile, since the truth value of (C\S)λ ∨ (D\{N1, . . . , Nk})τ ∨ (S̄\{¬L1})λ is 1, then the truth
value of (D\{N1, . . . , Nk})τ must be 1. Therefore, α′ satisfies (D\{N1, . . . , Nk}), and of course α′

satisfies Dτ. Hence, flipping the truth values of ground literals L1λ, L2λ, . . . , Lnλ will not falsify any
ground instances in F\{C}, so α′ satisfies all the ground instances in F\{C}.

Lemma 1 demonstrates that flipping the truth values of ground literals in S has no influence
on the truth values of ground instances of clauses in F\{C}. However, it may falsify other ground
instances of C. Here is an example.

Example 3. Assume C = ¬P(x) ∨ P( f (y)) ∨ ¬Q(u) ∨ Q( f (v)) is a SBC upon S =

{P( f (y)), Q( f (v))} in a formula F. Consider two ground instances of C, C1 = ¬P(a) ∨
P( f (a)) ∨ ¬Q(a) ∨ Q( f (a)) and C2 = ¬P( f (a)) ∨ P( f (b)) ∨ ¬Q( f (a)) ∨ Q( f (b)). The assignment
P(a)¬P( f (a))Q(a)¬Q( f (a))¬P( f (b))¬Q( f (b)) falsifies C1, but we can satisfy C1 by flipping the truth
values of ground instances P( f (a)) and Q( f (a)) in S1 ⊆ C1 and we can obtain the new assignment
P(a)P( f (a))Q(a)Q( f (a))¬P( f (b))¬Q( f (b)), apparently the new assignment satisfies C1; however,
it falsifies the other ground instance C2 of C.

Even though flipping the truth values of ground literals of the set S1, one ground instance of S
in a ground instance C1 of C, may falsify other ground instances of C, it has no severe consequence.
Assume that flipping the truth values of ground literals in S1 falsifies another ground instances C2

of C, then there are no identical ground literals in S2 ⊆ C2, one ground instance of S in the ground
instance C2. Now that S2 contains totally different ground literals from S1, and ground literals in S2

are not capable to be resolved with ground literals in S1 according to the definition of SBC, then it will
not falsify C1 by flipping the truth value of ground literals in S2. We can conclude that both C1 and C2

can keep their truth values as true, by flipping the truth values of ground literals as true in S1 and S2.

Theorem 3. If a clause C is set-blocked upon S = {L1, L2, . . . , Ln} ⊆ C in a formula F, the clause C is
redundant w.r.t. F.

Proof. Given a clause C is set-blocked upon S = {L1, L2, . . . , Ln} ⊆ C in a formula F. Assume that
F\{C} is satisfiable. Let F′ and FC be finite sets of ground instances of clauses in F\{C} and {C}.
Since F\{C} is satisfiable, there exists a propositional assignment α satisfies F′. Assume that it falsifies
some ground instances {C1, C2, . . . , Ck} of C which are contained in FC. Flipping all the truth value of
ground literals of ground instance Si of S in Ci(1 ≤ i ≤ k), has no influence on ground instances in F′

according to Lemma 1, but it may falsify some other ground instances of FC. Nevertheless, since FC
is finite, we can satisfy those ground instances of FC by flipping orderly the truth value of ground
literals of the ground instances of S in those falsified ground instances of C. Eventually, all the ground
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instances of FC are satisfied. According to Theorem 1, F is satisfiable, which means F and F\{C} are
satisfiability equivalent. Therefore, the clause C is redundant w.r.t. F.

Apparently the redundancy property of set-blocked clause is local. A clause can be assessed
whether it is an SBC, by only considering its resolution environment rather than the whole formula.
If a clause C is an SBC in a formula F and the clause C has the same resolution environment in another
formula F′, then the clause C is also an SBC in F′.

Next, we introduce extended set-blocked clause (E-SBC), a generalization of SBC. With respect to
E-SBC, another factor, external ground atoms, is added into consideration. external ground atoms of a
clause C are ground atoms in the resolution environment of C but not occurring in C and not able to
be unified with atoms in atom{C}, which means variations of truth values of external ground axioms
and truth values of C are not relevant. In other words, if a clause C′ is true because of the truth values
of several external ground atoms of C in C′, then the clause C′ will not be falsified under any change
of the truth values of literals in C.

Definition 7. A clause C is an extended set-blocked clause (E-SBC) in a formula F if, for every assignment
β over the external ground atoms extGF(C), there exists a subset Sβ = {L1, L2, . . . , Lnβ

} ⊆ C such that C is
set-blocked upon Sβ = {L1, L2, . . . , Lnβ

} ⊆ C in F|β.

Example 4. Suppose C = P(x) ∨Q(x) and the resolution environment of C: envF(C) = {¬P(a) ∨Q(a) ∨
T(z) ∨ R(a),¬Q(b) ∨ ¬R(a),¬Q( f (y)) ∨ P( f (y))}. Apparently, the clause C is not a set-blocked clause,
because not all the LS

i -resovlents (1 ≤ i ≤ n) are tautologies no matter which subset of C has been chosen
to be S. The external ground atoms of C is extGF(C) = {R(a)}. If an assignment α satisfies α(R(a)) = 1
and α(¬R(a)) = 0, then α(¬P(a) ∨Q(a) ∨ T(z) ∨ R(a)) = 1 and ¬P(a) ∨Q(a) ∨ T(z) ∨ R(a) will not be
included in F|α according to the definition of F|α. Therefore, we only consider ¬Q(b)∨¬R(a) and ¬Q( f (y))∨
P( f (y)) as the resolution environment of C in F|α. If we choose S as S = {P(x)}, C cannot be resolved with
either ¬Q(b) ∨ ¬R(a) or ¬Q( f (y)) ∨ P( f (y)) upon S, clause C is trivially set-blocked upon S = {P(x)} in
F|α. If another assignment λ satisfies λ(R(a)) = 0 and λ(¬R(a)) = 1, then λ(¬Q(b) ∨ ¬R(a)) = 1 and it
is not covered in F|λ. We only need to consider ¬P(a) ∨ Q(a) ∨ T(z) ∨ R(a) and ¬Q( f (y)) ∨ P( f (y)) as
the resolution environment of C in F|λ. If we choose S as S = {P(x), Q(x)}, the P(x){P(x),Q(x)}-resolvents
Q(a) ∨ T(x) ∨ R(a) ∨ ¬Q(a) and Q(x){P(x),Q(x)}-resolvent ¬P( f (y)) ∨ P( f (y)) both are tautologies by
resolving C with ¬P(a) ∨Q(a) ∨ T(z) ∨ R(a) and ¬Q( f (y)) ∨ P( f (y)). Therefore, clause C is set-blocked
upon S = {P(x), Q(x)} in F|λ. Because α and λ cover all the possible assignments over R(a), then we can
conclude that C is set-blocked in F|β for any assignment β over the external ground atoms extGF(C). Therefore,
the clause C is an E-SBC.

Evaluating whether a clause C is an E-SBC when there are no external ground atoms, it only
needs to evaluate if the clause C is an SBC. No external ground atoms means no way to influence the
resolution environment of C, therefore, F|β is equal to F all the time for any assignment β.

Lemma 2. Given a clause C is an E-SBC in a formula F. Let α be an assignment that propositionally satisfies
all the ground instances of clauses in F\{C} but falsifies a ground instance Cλ of C. Then, there exist a subset
Sλ = {L1λ, L2λ, . . . , Lnλ} of Cλ such that the assignment α′, obtained from α by flipping all the truth values
of ground literals L1λ, L2λ, . . . , Lnλ in Sλ, still satisfies all the ground instances in F\{C}.

Proof. Since flipping the truth values of ground literals of C can only affect the truth values of ground
clauses in the resolution environment of C, we only consider the ground instances in the resolution
environment of C whether they will be falsified by flipping the truth values of ground literals in C. It
is analyzed in two cases:

Case 1: In the resolution environment envF(C) of C, there are no external ground atoms. Since C
is an E-SBC and there is no ground atoms in the resolution environment of C, it means that C is
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set-blocked in the formula F. Now that C is set-blocked in the formula F, there exists a subset
Sλ = {L1λ, L2λ, . . . , Lnλ}of Cλ such that the assignment α′, obtained from α by flipping all the truth
values of ground literals L1λ, L2λ, . . . , Lnλ in Sλ, still satisfies all the ground instances in F\{C}
according to Lemma 1.

Case 2: In the resolution environment envF(C) of C, there exist external ground atoms
{A1, A2, . . . , Am}. Since α is an assignment which covers all the ground instances of clauses in
F\{C}, it also assigns the truth values of those external ground atoms {A1, A2, . . . , Am} to be true
or false. Assume that the assignment α to the external ground atoms {A1, A2, . . . , Am} make the
truth values of clauses {C1, C2, . . . , Ck} in the resolution environment of C are true. Since clause C is
extended set-blocked in a formula F, there exist a subset S = {L1, L2, . . . , Ln} of C, C is set-blocked
upon S in F|α, which means C is set-blocked upon S in the formula F\{C1, C2, . . . , Ck}. Now that C is
set-blocked upon S in the formula F\{C1, C2, . . . , Ck}, flipping all the truth values of ground literals
L1λ, L2λ, . . . , Lnλ in Sλ will not falsify any ground instances of F\{C, C1, C2, . . . , Ck}. Furthermore,
α already satisfies all the ground instances of {C1, C2, . . . , Ck} by its assignment to those external ground
atoms {A1, A2, . . . , Am} according to the assumption, flipping all the truth values of ground literals
L1λ, L2λ, . . . , Lnλ in Sλ will not falsify any ground instances of {C1, C2, . . . , Ck}. Hence, flipping all
the truth values of ground literals L1λ, L2λ, . . . , Lnλ in Sλ will not falsify any ground instances of
F\{C}. Therefore, the assignment α′, obtained from α by flipping all the truth values of ground literals
L1λ, L2λ, . . . , Lnλ in Sλ, still satisfies all the ground instances in F\{C}.

Theorem 4. If a clause C is an E-SBC in a formula F, it is redundant w.r.t. F.

Proof. Given finite ground instances F′ and FC are sets of finite ground instances of F\{C} and {C}.
Assume that F\{C} is satisfiable, then there exists a propositional assignment α satisfies all the ground
instances of F′, but it may falsify some ground instances in FC. According to Lemma 2, there exists a
subset S = {L1, L2, . . . , Ln} of C, it will not affect the truth values of ground instances in F′ by flipping
the truth values of ground literals of S in those falsified ground instances of C. Even though flipping
those truth values of ground literals in those falsified ground instances of C may falsify other ground
instances of C in FC; however, we can flip the truth values of ground literals in ground instances of S
in those falsified ground instances successively, until all the truth values of falsified ground instances
become true. According to Theorem 1, F is satisfiable. Therefore, the clause C is redundant w.r.t. F.

4. Equality-Set-Blocked Clause and Extended Equality-Blocked Clause in First-Order Logic
Formulas with Equality

In the last section, SBC and E-SBC in formulas without equality are discussed. In fact,
the conceptions of SBC and E-SBC can only be adopted in first-order formulas without equality,
if they are utilized in first-order formulas with equality, some clauses will be removed mistakenly.
A counter-example is given as follows:

Example 5. Let C = R(a) ∨ P(a) and the formula F = {R(a) ∨ P(a),¬R(b),¬P(b), a = b}. According
to the definition of SBC in Section 3, clause C is trivially set-blocked upon {R(a), P(a)}, because there is no
clauses in F\{C} can be directly resolved with clause C upon {R(a), P(a)}, which means clause C can be
removed from formula F without influencing the satisfiability or unsatisfiability. However, F is unsatisfiable
while F\{C} is satisfiable.

The reason why this situation happens is because the definitions of SBC and E-SBC are not
involved with equality. For example, the truth values of R(a) and R(b) are always the same even
though their forms are diverse in Example 5, nevertheless, this situation is not considered in the
definitions of SBC and E-SBC. But if we combine the definitions of SBC and E-SBC in Section 3 with
flattening and flat resolution, this problem can be solved.



Symmetry 2018, 10, 553 8 of 15

The definition of flat LS
i -resolvent of clause C in first-order logic with equality is given below.

It deletes a subset of substituted literals from literals in clause C but adds the subset of substituted
literals from the negations of literals in clause C compared with flat L-resolvent of clause C.

Definition 8. Given two clauses, C = L1 ∨ L2 ∨ . . . ∨ Ln ∨ C′ with S = {L1, L2, . . . , Ln} such that
Lk(1 ≤ k ≤ n) does not contain the predicate symbol = and Li(1 ≤ i ≤ n) and Lj(1 ≤ j ≤ n)
do not have the same predicate symbol but the opposite polarity, and D = N1 ∨ N2 ∨ . . . ∨ Nm ∨ D′.
If a literal Li ∈ S(1 ≤ i ≤ n) and ¬N1, . . . ,¬Nm have the same predicate symbol and polarity, by flattening
Li, N1, . . . , Nm, new literals L f

i , N f
1 , . . . , N f

m can be obtained from Li, N1, . . . , Nm and new flattened clauses

C f and D f can be obtained from C and D. If the mgu of L f
i , N f

1 , . . . , N f
m is σ, the clause (C f \L f

i )σ ∪
(D f \{N f

1 , . . . , N f
m})σ ∪ (S̄\{¬Li})σ is called the flat LS

i -resolvent of C and D.

Example 6. Let C = P(b) ∨Q(b)(S = {P(b), Q(b)}) and D = ¬Q(c) ∨ P(b). After flattening Q(b) and
¬Q(c), two new flattened clauses C f = P(b) ∨ Q(x) ∨ x 6= b and D f = y 6= c ∨ ¬Q(y) ∨ P(b) can be
obtained from C and D. Then, the flat Q(b){P(b),Q(b)}-resolvent of C and D is x 6= b ∨ x 6= c ∨ P(b) ∨ ¬P(b)
via substitution δ = {y 7→ x}.

Compared with equality-blocked clause, equality-set-blocked clause is obtained by generalizing
one blocking literal in equality-blocked clause to multiple blocking literals.

Definition 9. For a clause C in a formula F, if there exists a subset S = {L1, L2, . . . , Ln} ⊆ C such that
Lk(1 ≤ k ≤ n) does not contain the predicate = and Li(1 ≤ i ≤ n) and Lj(1 ≤ j ≤ n) do not have the same
predicate symbol but the opposite polarity. If all the flat LS

i -resolvents (1 ≤ i ≤ n) of C are valid, then the clause
C is called as an equality-set-blocked clause (ESBC) upon S in the formula F.

Example 7. Let C = P(b) ∨ Q(b), S = {P(b), Q(b)}, and the formula F = {P(b) ∨ Q(b),¬Q(c) ∨
P(b),¬P(z) ∨ Q(z)}. About Q(b), there is only the clause ¬Q(c) ∨ P(b) in F\{C} contains the literal
¬Q(c) has the same predicate symbol and the opposite polarity with the literal Q(b) in S. Hence, the only flat
Q(b){P(b),Q(b)}-resolvent of C is x 6= b ∨ x 6= c ∨ P(b) ∨ ¬P(b) which is valid. In addition, with respect to
P(b), there is only the clause ¬P(z) ∨Q(z) in F\{C} contains the literal ¬P(z) has the same predicate symbol
and the opposite polarity with the literal P(b) in the set S, then the only one flat P(b){P(b),Q(b)}-resolvent is
y 6= b∨Q(y)∨¬Q(b) and it is valid. According to Definition 9, the clause C is ESBC upon S = {P(b), Q(b)}
in the formula F.

ESBC is also redundant in first-order formulas with equality. Before proving its redundancy,
a Lemma is introduced first.

Lemma 3. Suppose a clause C is an ESBC upon S = {L1, . . . , Lm} ⊆ C in a formula F. β is a propositional
assignment satisfying all the ground instances of equality axioms and all the ground instances of clauses in
F\{C}, but falsifies a ground instance Cλ of C. β′ is a propositional assignment obtained from β by equivalence
flipping all the truth values of ground literals L1λ, . . . , Lmλ in the set Sλ, then β′ satisfies all the ground
instances of clauses in F\{C} and all the ground instances of equality axioms.

Proof. Let the clause C = L1(t11, . . . , t1k1) ∨ . . . ∨ Lm(tm1, . . . , tmkm) ∨ C′ and S =

{L1(t11, . . . , t1k1), . . . , Lm(tm1, . . . , tmkm)}. Assume that equivalence flipping the truth values of
ground literals L1(t11, . . . , t1k1)λ, . . . , Lm(tm1, . . . , tmkm)λ in the set Sλ falsifies the truth value
of a ground instance Dγ in F\{C}, the form of the clause must be D with at least one literal
¬Li(si1, . . . , siki

)((1 ≤ i ≤ m) in it and it has β(tijλ = sijγ) = 1 for all 1 ≤ j ≤ ki. Without loss of
generality, we assume that the clause D with the literal ¬L1.

Let the clause D be a clause with literals ¬L1(s11, . . . , s1k1), . . . ,¬L1(p11, . . . , p1k1) such that
β(t1jλ = s1jγ) = 1, . . . , β(t1jλ = p1jγ) = 1 for 1 ≤ j ≤ k1. To simplify the presentation and
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without loss of generality, we assume that ¬L1(s11, . . . , s1k1) and ¬L1(p11, . . . , p1k1) are all such literals
in the clause D, therefore D = ¬L1(s11, . . . , s1k1) ∨ ¬L1(p11, . . . , p1k1) ∨ D′.

Since C is equality-set-blocked upon S, then all the flat L1(t11, . . . , t1k1)
S-resolvents are valid.

Therefore, the flat L1(t11, . . . , t1k1)
S-resolvent between C and D:

R = (C′ ∨ D′ ∨ (S̄\¬L1(t11, . . . , t1k1)) ∨ (∨1≤j≤k1 x1j 6= t1j ∨ y1j 6= s1j ∨ z1j 6= p1j)σ

is valid, where σ is an mgu of the literals L1(x11, . . . , x1k1), L1(y11, . . . , y1k1) and L1(z11, . . . , z1k1),
obtained by flattening L1(t11, . . . , t1k1), L1(s11, . . . , s1k1) and L1(p11, . . . , p1k1). Without loss of generality,
we assume that σ = {y1j 7→ x1j, z1j 7→ x1j|1 ≤ j ≤ k1}, then the flat L1(t11, . . . , t1k1)

S-resolvent can be
written as:

R = C′ ∨ D′ ∨ (S̄\¬L1(t11, . . . , t1k1)) ∨ (∨1≤j≤k1 x1j 6= t1j ∨ x1j 6= s1j ∨ x1j 6= p1j)

Because R is valid, then the assignment β must satisfy all the ground instances of R. A ground
instance Rδ of R can be created by implementing the following substitution:

δ(x) =


t1jλ if x ∈ x11, . . . , x1k1

xλ if x ∈ C′

xγ if x ∈ D′

xλ if x ∈ (S̄\L̄1(t11, . . . , t1k1))

Then Rδ can be written as follows:

Rδ = C′λ ∨ D′γ ∨ (S̄\¬L1(t11, . . . , t1k1))λ ∨ (∨1≤j≤k1 t1jλ 6= t1jλ ∨ t1jλ 6= s1jγ ∨ t1jλ 6= p1jγ)

which must be satisfied by β′ because it is valid. In Rδ, all the t1jλ 6= t1jλ, all the t1jλ 6= s1jγ,
all the t1jλ 6= p1jγ (according to the assumption) and C′λ are falsified by β, we can conclude that
all the t1jλ 6= t1jλ, all the t1jλ 6= s1jγ, all the t1jλ 6= p1jγ and C′λ are also falsified by β′. In
addition, because β satisfies (S̄\¬L1(t11, . . . , t1k1))λ and β′ is obtained by equivalence flipping the
truth values of (S̄\¬L1(t11, . . . , t1k1))λ from β, β′ falsifies (S̄\¬L1(t11, . . . , t1k1))λ. As a result, D′γ
must contain at least one literal which is satisfied by β′ due to β′(Rδ) = 1. Hence, Dγ is satisfied by
β′. Therefore, β′ satisfies not only Cλ but also all the ground instances of clauses in F\{C} and all the
ground instances of equality axioms.

Theorem 5. If a clause C is an ESBC upon S = {L1, . . . , Lm} ⊆ C in a formula F, it is redundant w.r.t. F.

Proof. Given there are some finite ground instances FC, F′ and FE of C ∪ F\{C} ∪ εL and assume
β is a propositional assignment which satisfies F′ and FE. Suppose the assignment β falsifies some
ground instances in FC, those ground instances can be satisfied by equivalence flipping the truth
values of ground literals of ground instances of S in those ground instances without influencing the
satisfiability of F′ and FE according to Lemma 3. Even though it may falsify other ground instances
in FC by equivalence flipping, those ground instances can be satisfied by equivalence flipping the
truth values of ground literals of ground instances of S in those falsified ground instances of C in FC
without affecting the satisfiability of the previous ground instances. Because those ground instances
are finite in FC, all the ground instances in FC can be satisfied by orderly equivalence flipping the truth
values of ground literals of ground instances of S in those ground instances which have been falsified.
Therefore, for any satisfying propositional assignment β of ground instances F′ and FE of F\{C} ∪ εL,
there exists a satisfying propositional assignment β′, obtained by orderly equivalence flipping the
truth values of ground literals of ground instances of S in those falsified ground instances of C from β.
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Hence, F ∪ εL is satisfiable according to Theorem 2. Therefore, F ∪ εL and F\{C} ∪ εL are satisfiable
equivalent, then the clause C is redundant w.r.t. F.

Similarly, there is a generalization of ESBC in first-order logic with equality, by adding a new
factor, the assignments over the external ground atoms.

Definition 10. A clause C is an extended equality-set-blocked clause (E-ESBC) in a formula F if, for every
assignment β over the external ground atoms extGFE(C), there exists a subset Sβ = {L1, L2, . . . , Lnβ

} ⊆ C,
C is equality-set-blocked upon Sβ = {L1, L2, . . . , Lnβ

} ⊆ C in F|β.

Example 8. Suppose C = P(a) ∨ Q(a) and the resolution environment of C: envFE(C) = {¬P(x) ∨ x =

a ∨ R(a), Q(a) ∨ ¬P(y),¬P(a) ∨ ¬R(a)}. We can see that external ground atoms extGFE(C) = {R(a)}.
If an assignment α satisfies α(R(a)) = 1 and α(¬R(a)) = 0, then α(¬P(x) ∨ x 6= a ∨ R(a)) = 1. Therefore,
Q(a) ∨ ¬P(y) and ¬P(a) ∨ ¬R(a) are the clauses in the resolution environment in C in F|α. Since if
the subset {Q(a)} is chosen as the Sα, Q(a) ∨ ¬P(y) and ¬P(a) ∨ ¬R(a) cannot be resolved with the
clause C, hence the clause C is trivially equality-set-blocked upon Sα = {Q(a)} in F|α. If the assignment
λ satisfies λ(R(a)) = 0 and λ(¬R(a)) = 1, then λ(¬P(a) ∨ ¬R(a)) = 1. ¬P(x) ∨ x = a ∨ R(a)
and Q(a) ∨ ¬P(y) consist of the resolution environment of C in F|λ. When Sλ = {P(a), Q(a)}, two flat
P(a)Sλ -resolvents x1 6= a∨ x1 6= x∨ x = a∨ R(a)∨¬Q(a) and y1 6= a∨ y1 6= y∨Q(a)∨¬R(a)∨¬Q(a)
both are valid. For Q(a), there is no Q(a)Sλ -resolvents. As a result, the clause C is equality-set-blocked upon
Sλ = {P(a), Q(a)} in F|λ. Hence, the clause C is an E-ESBC.

Lemma 4. Suppose a clause C is an E-ESBC in a formula F. β is a propositional assignment satisfying all the
ground instances of equality axioms and all the ground instances of clauses in F\{C}, but falsifies a ground
instance Cλ of C. There exist a subset S = {L1, . . . , Ln} such that β′, obtained from β by equivalence flipping
all the truth values of ground literals L1λ, . . . , Lnλ in the set Sλ, satisfies all the ground instances of clauses in
F\{C} and all the ground instances of equality axioms.

Proof. We only consider whether the ground instances of clauses will be falsified in the resolution
environment of C. It is analyzed in two cases.

Case 1: In the resolution environment envFE(C) of C, there is no external ground atoms. Since
there are no external ground atoms in the resolution environment of C and C is an extended
equality-set-blocked clause in the formula F, it means that C is equality-set-blocked in the formula
F. In addition, because C is equality-set-blocked in the formula F, there must exist a subset
Sλ = {L1λ, L2λ, . . . , Lnλ} of Cλ and the assignment β′, obtained from β by flipping all the truth
values of ground literals L1λ, L2λ, . . . , Lnλ in Sλ, still satisfies all the ground instances in F\{C} and
all the ground instances of equality axioms according to Lemma 3.

Case 2: In the resolution environment envFE(C) of C, there exist external ground atoms
{A1, A2, . . . , Am}. Since β is an assignment which covers all the ground instances of clauses
in F\{C}, it also assigns the truth values of those external ground atoms {A1, A2, . . . , Am}.
Assume that the assignment to the external ground atoms make the truth values of clauses
{C1, C2, . . . , Ck} in the resolution environment of C are true. Therefore, there exist a subset
S = {L1, L2, . . . , Ln} of C, C is equality-set-blocked upon S in the formula F\{C1, C2, . . . , Ck}. Now that
C is equality-set-blocked upon S in the formula F\{C1, C2, . . . , Ck}, flipping all the truth values of
ground literals L1λ, L2λ, . . . , Lnλ in Sλ will not falsify any ground instances of F\{C, C1, C2, . . . , Ck}.
Furthermore, α satisfies all the ground instances of {C1, C2, . . . , Ck} by its assignment to those external
ground atoms {A1, A2, . . . , Am}, as a result, equivalence flipping all the truth values of ground literals
L1λ, L2λ, . . . , Lnλ in Sλ will not falsify any ground instances of {C1, C2, . . . , Ck}. Hence, equivalence
flipping all the truth values of ground literals L1λ, L2λ, . . . , Lnλ in Sλ will not falsify any ground
instances of F\{C}. Therefore, the assignment β′, obtained from β by flipping all the truth values
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of ground literals L1λ, L2λ, . . . , Lnλ in Sλ, still satisfies all the ground instances in F\{C} and all the
ground axioms of equality axioms.

Theorem 6. If a clause C is an E-ESBC in a formula F, it is redundant w.r.t. F.

Proof. For every finite ground instances of F\{C} ∪ {C} ∪ εL and any assignment β propositionally
satisfies finite ground instances of F\{C} ∪ εL, there exists a subset S ⊆ C, equivalence flipping the
truth values of ground literals of the subset S in some ground instances of C will not affect the truth
values of those finite ground instances in F\{C} ∪ εL according to Lemma 4. Besides, since the ground
instances of C are finite, those falsified ground instances of C can become true by equivalence flipping
the ground literals in ground instances of S in those falsified ground instances of C successively.
Therefore, F\{C} ∪ {C} ∪ εL is satisfiable according to Theorem 2. Hence, the clause C is redundant
w.r.t. F.

5. Effectiveness and Confluence Property

In this section, we evaluate effectiveness and confluence properties of the four corresponding
clause elimination methods set-blocked clause elimination, extended set-blocked clause elimination,
equality-set-blocked clause elimination and extended equality-set-blocked clause elimination.

5.1. Comparison of Effectiveness

Effectiveness is a significant evaluation standard for a clause elimination method. It reflects the
capability of clause elimination methods to simplify formulas. The more effective a kind of clause
elimination method is, the more clauses can be removed from the formulas. Below is the definition of
effectiveness [2].

Definition 11. Given two clause elimination methods CE1 and CE2, and a CNF formula F. After the clause
elimination method CE1 or CE2 is implemented, the new formula is CE1(F) or CE2(F). If CE1(F) ⊆ CE2(F),
it is called that CE1 is at least as effective as CE2. In addition, if CE1(F) ⊆ CE2(F) exists and there exists a
formula F′, CE1(F′) ⊂ CE2(F′), then CE1 is more effective than CE2.

First, we compare the effectiveness between blocked clause elimination (BCE) and set-blocked
clause elimination (SBCE).

Theorem 7. SBCE is more effective than BCE.

Proof. If a clause C is a BC upon L ∈ C in a formula F, it must be a SBC upon S = {L} ⊆ C.
Assume that there is a clause D = N1 ∨ N2 ∨ . . . ∨ Nm ∨ D′ in the formula and L,¬N1, . . . ,¬Nm can be
unified by an mgu σ, then LS-resolvent of C and D is C′σ ∪ D′σ ∪ (S̄\{¬Li})σ = C′σ ∪ D′σ, which is
the same as the L-resolvent C′ ∪ D′σ of C and D. Therefore, LS-resolvent of C and D is a tautology.
This situation can generalize to all the LS-resolvent of C, so all the LS-resolvent of C are tautologies.
Hence, the clause C is an SBC upon S = {L}. On the contrary, the situation is not the same vice versa.
For example, the clause C is an SBC but it is not a BC in Example 2. Therefore, we can conclude that
SBCE is more effective than BCE.

Next, effectiveness between extended set-blocked clause elimination (E-SBCE) and set-blocked
clause (SBCE) is compared.

Theorem 8. E-SBCE is more effective than SBCE.

Proof. If a clause C is a set-blocked clause upon S = {L1, L2, . . . , Ln} ⊆ C in a formula F, it must be
an extended set-blocked clause. It is analyzed by two cases.
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Case 1: There is no external ground atoms of the clause C. When there are no external ground
atoms, the clause C is trivially an E-SBC when it is an SBC.

Case 2: Some external ground atoms {A1, A2, . . . , Am} exist in the resolution environment of C.
For any assignment α over {A1, A2, . . . , Am}, it may assign some clauses {C1, C2, . . . , Ck} in envF(C) as
true and it only needs to consider envF(C)\{C1, C2, . . . , Ck} as the resolution environment of C in F|α.
Since C is a SBC upon S ⊆ C, all the LS

i -resovlents (1 ≤ i ≤ n) obtained by resolving C with clauses
in envF(C) are tautologies, then there is no doubt that all the LS

i -resovlents (1 ≤ i ≤ n) obtained by
resolving C with clauses in envF(C)\{C1, C2, . . . , Ck} are tautologies. Therefore, C is an SBC upon S in
F|α. As a result, C is an E-SBC.

However, if a clause C is an E-SBC, it may not be an SBC. For example, the clause C is an E-SBC
but it is not an SBC in Example 4.

Since effectiveness has the property of transitivity, then E-SBCE is more effective than BCE.
Similarly, situation is analogous among those clause elimination methods dealing with first-order
formulas with equality.

Theorem 9. Equality-set-blocked clause elimination (ESBCE) is more effective than equality-blocked clause
elimination (EBCE).

Proof. If a clause is an EBC upon L ∈ C in a formula F, it must be an ESBC upon S = {L} ⊆ C in the
formula F. The reason is because all the flat LS-resolvents of C are the same as all the flat L-resolvents
of C, then it is no doubt all the flat LS-resolvents of C are also valid. Therefore, the clause C is also an
ESBC. However, if a clause is an EBC, it may not be an EBC. For example, in Example 7, the clause C is
an ESBC but it is not an EBC. Hence, ESBC is more effective than EBCE.

Theorem 10. Extended equality-set-blocked clause elimination (E-ESBCE) is more effective than
equality-set-blocked clause elimination (ESBCE).

Proof. If a clause C is an ESBC upon S = {L1, L2, . . . , Ln} ⊆ C in a formula F, then for all possible
assignments over the external ground atoms of C, C must be an ESBC upon S = {L1, L2, . . . , Ln} ⊆ C.
Therefore, we can conclude that C is also an E-ESBC. Nevertheless, if a clause is an E-ESBC, it may not
be an ESBC. For example, in Example 8, the clause C is an E-ESBC but it is not an ESBC.

Figure 1 shows the effectiveness among those clause elimination methods, separately in the
circumstance of first-order logic without equality and first-order logic with equality.

Figure 1. Effectiveness among those clause elimination methods. A arrow from A to B means A is
more effective than B.
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5.2. Confluence Property

Confluence property is also a crucial evaluation standard for a clause elimination method.
It illuminates whether the difference of the sequence of eliminating clauses in a formula will cause
the final obtained new formula different. If a clause elimination method has the confluence property,
the final obtained new formula is the same no matter what the elimination sequence is. However,
the final obtained formula will vary according to the distinction of elimination sequence if the clause
elimination method has no confluence property, as a result, making a good strategy for elimination
sequence determines how much clauses can be removed. In this subsection, we discuss the four clause
elimination methods’ confluence properties. Below is the definition of diamond property [12]:

Definition 12. If a relation R has the diamond property, for ∀x, y, z with xRy and xRz, there exists a v with
yRv and zRv.

If a relation has the diamond property, it also has the confluence property [12]. Clause elimination
methods can be seen as relations, which is between original formulas and new formulas after the
elimination. Next, we prove all the four clause elimination methods have the confluence properties.

Theorem 11. SBCE is confluent.

Proof. Assume that there are two SBCs C1 and C2 in a formula F. Here we prove the other clause still
can be removed no matter which clause will be removed first. Without loss of generality, assume that
C1 is removed earlier and C2 is not an SBC in F\{C1} after that. Since C2 is an SBC in the formula
F, there exists S = {L1, L2, . . . , Ln} ⊆ C2 such that all the LS

i -resovlents (1 ≤ i ≤ n) obtained by
resolving C2 with clauses in F\{C2} are tautologies. Now that C2 is not an SBC after removing the
clause C1, then there exists at least one LS

j -resovlents (1 ≤ j ≤ n) acquired by resolving C2 with clauses
in F\{C1, C2} is not a tautology which is contradictory with the fact that C2 is an SBC in the formula F.
Therefore, C2 is still a SBC after removing the clause C1. As a result, we can conclude that SBCE
is confluent.

Theorem 12. E-SBCE is confluent.

Proof. Here we prove E-SBC is confluent by proving a clause C is still an E-SBC in a subset F′ of the
formula F if it is an E-SBC in the formula F. Assume that the clause C is not an E-SBC in the subset F′,
then there exists at least one assignment α over the external ground atoms of C, satisfying that there
exists a subset Sα = {L1, L2, . . . , Ln} ⊆ C, such that C is not a set-blocked clause upon Sα in F′|α, but C
is a set-blocked clause upon Sα in F|α. Then there is at least one LSα

i -resovlents (1 ≤ i ≤ n) is not a
tautology by resolving C with the clauses in F′|α\{C}, which is a contradiction against the fact C is a
set-blocked clause upon Sα in F|α. E-SBCE is confluent.

Theorem 13. ESBCE is confluent.

Proof. Assume that there are two ESBCs C1 and C2 in a formula F. We prove that the order of
eliminating clauses has no effect on the redundancy of ESBCs. Without loss of generality, we assume
that the clause C1 is removed first and C2 is not an ESBC in F\{C1} after eliminating C1. Since C2 is
not an ESBC after removing C1, then for arbitrary subset S = {L1, L2, . . . , Ln} ⊆ C2, there exists at least
one flat LS

i -resovlents (1 ≤ i ≤ n) is not valid obtained by resolving C2 with clauses in F\{C1, C2},
which is contradictory to the fact C2 is an ESBC in F. Therefore, C2 is also an ESBC in F\{C1}. Hence,
equality-set-blocked clause is confluent.

Theorem 14. E-ESBCE is confluent.
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Proof. Assume that a clause C is an E-ESBC in a formula F, then the clause C must be an E-ESBC in any
subset of F. Assume that C is not an E-ESBC in a subset F′ of F, then there exists an assignment α over
the external ground atoms such that C is equality-set-blocked upon subset Sα = {L1, L2, . . . , Ln} ⊆ C
in F|α while C is not equality-set-blocked upon S in F′|α, which means there exists a flat LSα

i -resovlents
(1 ≤ i ≤ n) is not valid obtained by resolving C with clauses in F′|α\{C}. Apparently it is a
contradiction that C is an equality-set-blocked clause upon Sα = {L1, L2, . . . , Ln} ⊆ C in F|α . Therefore,
C is also an E-ESBC in F′. Hence, E-ESBC is confluent.

Table 1 shows that all the novel clause elimination methods have the confluence property.

Table 1. Confluence properties of clause elimination methods.

Clause elimination method Confluence

SBCE Yes
E-SBCE Yes
ESBCE Yes

E-ESBCE Yes

6. Conclusions

In the paper, we generalized blocked clause in first-order logic further, proposing four types of
redundant clauses set-blocked clause, extended set-blocked clause, equality-set-blocked clause and
extended equality-set-blocked clause, of which the former two were suitable for formulas without
equality while the latter two were suitable for formulas with equality. Besides, we proved the
redundancies of the four types of clauses and they could be removed from formulas without influencing
the satisfiability or unsatisfiability of the original formulas. Finally, we discussed and analyzed their
effectiveness and confluence properties. It shows that the four clause elimination methods are more
effective compared with blocked clause elimination and equality-blocked clause elimination, and all
the four clause elimination methods have the confluence properties.

The paper is a theoretical work about the properties of the four types of clauses. Even though
all the four clause elimination methods are more effective than blocked clause elimination and
equality-blocked clause elimination, identification of the four types of clauses will be more complicated
and more time-consuming in the specific implementation. In future work, we will implement those
clause elimination methods as preprocessing techniques of first-order theorem provers by considering
the balance between effectiveness and time consumption, expecting to improve the performance of
first-order theorem provers.
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