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Abstract: We prove many factorization formulas for highest weight Macdonald polynomials indexed
by particular partitions called quasistaircases. Consequently, we prove a conjecture of Bernevig and
Haldane stated in the context of the fractional quantum Hall effect theory.
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1. Introduction

Jack polynomials have many applications in physics, especially in statistical physics and quantum
physics due to their relation to the many-body problem. In particular, fractional quantum Hall
(FQH) states of particles in the lowest Landau levels are described by such polynomials [1–3]. In that
context, some properties, called clustering properties, are highly relevant. A clustering property
can occur for some negative rational parameters of a Jack polynomial and means that the Jack
polynomial vanishes when distinct clusters of equal variables are formed. Using tools of algebraic
geometry, Berkesch-Zamaere et al. [4] proved several clustering properties including some special
cases conjectured by Bervenig and Haldane [1]. Coming from theoretical physics, the study of these
properties raises very interesting problems in combinatorics and representation theory of the affine
Hecke algebra. More precisely, the problem is studied in the realm of Macdonald polynomials which
form a (q, t)-deformation of the Jack polynomials related to the double affine Hecke algebra and
the results are recovered by making degenerate the parameters q and t. Recently, a very similar
technique has been used in [5] to prove general formulas for perturbative correlators in basic matrix
models that can be interpreted as the Schur-preservation property of Gaussian measures. In this case,
the substitution of Schur functions by Macdonald polynomials defines a deformation of the matrix
model. For our case, instead of stating the results in terms of clustering properties, we prefer to
state them in terms of factorizations. Indeed, clustering properties are shown to be equivalent to
very elegant formulas involving factorizations of Macdonald polynomials. For instance, many such
factorizations have already been investigated in [6–9]. In particular, this paper is the sequel of [9] in
which two of the authors proved factorizations for rectangular Macdonald polynomials. In this paper,
we investigate factorizations for more general partitions, called quasistaircase partitions.

The paper is organized as follows. In Section 2, we recall essential prerequisites on Macdonald
polynomials. In Section 3, we give a brief account on the physics motivations coming from the FQH
effect theory. In Section 4, we investigate some factorizations involved for generic values of (q, t).
Section 5 is devoted to the special cases of specializations of the type taqb = 1 and, in particular,
to the consequences on spectral vectors. In Section 6, we deduce factorizations from the results of
Feigen et al. [10] and, in Section 7, we prove more general results which are consequences of the
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highest weight (HW) condition of some Macdonald polynomials indexed by quasistaircase partitions
proved in [11]. Section 8 is devoted to illustrate our results by proving a conjecture stated by Bernevig
and Haldane [2] and also we show many other examples of factorizations that do not follow from
our formulas.

2. Background

This paper is focused on the study of four variants of the Macdonald polynomials: symmetric,
nonsymmetric, shifted symmetric and shifted nonsymmetric. Before getting into the results,
we introduce these polynomials as well as some useful notation. All the results contained in this
section are well known results showed in several papers (see, e.g., [12–20]). The results of [21–23] are
extensively used throughout our paper.

2.1. Partitions and Vectors

A partition λ = [λ1, . . . , λ`] of n is a weakly decreasing sequence of nonnegative integers such that
|λ| := ∑i λi = n. The length of a partition λ is the number of nonzero parts, `(λ) = max{i : λi > 0}.
We denote by bλci the number of parts of λ lower or equal to i, and by mλ the multiplicity of the
maximal part in λ.

We consider a dominance order on the partitions: Let λ and µ be partitions, we say that λ �D µ if
and only if, for all i, λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi.

We also consider vectors, denoting by v = [v[1], . . . , v[N]] a vector of length `(v) = N and with
nonnegative entries. We denote by |v| the sum of the entries of v. For each vector v, there is a unique
partition, v+, which is a permutation of v. The dominance order defined on partitions extends to
vectors with the same definition. In addition, we define another order: For u and v vectors, we say that
u � v if and only if either u+ �D v+ or (u+ = v+ and u �D v). Initially, this order is only defined for
vectors such that |u| = |v|, and we extend it straightforwardly for any vectors by adding the condition
u ≺ v when |u| < |v|.

We define the standardization of v, stdv, as the vector obtained by labeling with the integers from 0
to N − 1 the positions in v from the smallest entries to the largest one and from right to left. Moreover,
we define the reciprocal vector of v as 〈v〉 =

[
tstdv [1]qv[1], . . . , tstdv [N]qv[N]

]
, and the reciprocal sum of v as

*v+ = ∑
i
〈v〉[i]. If there is ambiguity, the indices q and t are added. Note that in the particular case of

considering a partition λ, *λ+ = ∑i tN−iqλi .
For example, consider the vector v = [1, 2, 2, 0, 1, 1] of length 6. Then, std(v) = [3, 5, 4, 0, 2, 1],

〈v〉 =
[
qt3, q2t5, q2t4, 1, qt2, qt

]
, and *v+ = 1 + qt + qt2 + qt3 + q2t4 + q2t5.

2.2. Affine Hecke Algebra

We present a brief introduction to the affine Hecke algebraHN(q, t) and the Demazure–Lusztig
operators Ti. For more details, see [24–27].

Let N ≥ 2 be an integer, q and t be two independent parameters, and X = {x1, . . . , xN} be a set of
formal variables. We consider the right operators Ti, for 1 ≤ i ≤ N − 1, acting on Laurent polynomials
in the variables X by

Ti = t + (si − 1)
txi+1 − xi
xi+1 − xi

,

where si is the elementary transposition permuting the variables xi and xi+1. For instance, 1Ti = t and
xi+1Ti = xi. In fact, the operators Ti are the unique operators that commute with multiplication by
symmetric functions in xi and xi+1 satisfying these last two equations. Consider also the affine operator
τ defined by

f (x1, . . . , xN)τ = f
(

xN
q

, x1, . . . , xN−1

)
.
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The operators Ti satisfy the relations of the Hecke algebra of the symmetric group:

TiTi+1Ti = Ti+1TiTi+1, for all i, TiTj = TjTi for |i− j| > 1, (Ti − t)(Ti + 1) = 0, for all i.

Then, together with the multiplication by variables xi and the affine operator τ, they generate the
affine Hecke algebra of the symmetric group:

HN(q, t) = C(q, t)
[

x±1 , . . . , x±N , T±1 , . . . , T±N1
, τ
]

.

2.3. Symmetric Functions and Virtual Alphabets

For the sake of simplicity, we use Λ-ring notation for specializations of symmetric polynomials
(see [22]). A finite alphabet is a finite set of formal variables and we denote it by X = {x1, x2, . . . , xn} or
X = x1 + x2 + · · ·+ xn. By specialization, we mean a morphism of algebras and, since we manipulate
only finite alphabets, specializing an alphabet is equivalent to sending each letter to a value. Notice
that this is no longer the case for infinite alphabets for which the theory is more complicated.

More precisely, we adopt the following convention stated in terms of the basis of power sums
symmetric polynomials. For any variable x, alphabets X and Y and scalar α, we set

pn(x) = xn,
pn(X±Y) = pn(X)± pn(Y),

pn(XY) = pn(X)pn(Y),
pn(αY) = α · pn(Y).

We set also the following notation: Xk = {x1, . . . , xk} and Ya,b = {ya, ya+1, . . . , yb}, for a ≤ b. For
two alphabets X and Y, the resultant of X and Y is defined as

R(X;Y) = ∏
(x,y)∈X×Y

(x− y),

which is a symmetric polynomial in X and Y separately (but not in X∪Y). Hence,

R(X+X′;Y) = R(X;Y)R(X′;Y) and R(X;Y+Y′) = R(X;Y)R(X;Y′).

Throughout this paper, the following notation is relevant and very useful. Let P(X; q, t) and

Q(X; q, t) be two polynomials in X with coefficients in q and t. We say that P(X; q, t)
(∗)
= Q(X; q, t) if the

equality holds up to a scalar factor consisting of powers of q and t.

2.4. Macdonald Polynomials and Variants

In this section, we set up the definitions and the notation for the different variants of Jack and
Macdonald polynomials that appear in this paper. For that, we define several vectors and the basis of
eigenfunctions associated. First, we define the two variants of nonsymmetric Macdonald polynomials,
indexed by vectors.

Definition 1. The (q, t)-version of the Cherednik operators are the operators defined by

ξi := t1−iTi−1 . . . T1τT−1
N−1 . . . T−1

i , for 1 ≤ i ≤ N.

The nonsymmetric Macdonald polynomials {Ev}v∈NN are the unique basis of simultaneous eigenfunctions

of the (q, t)-version of the Cherednik operators such that Ev
(∗)
= xv + ∑

u≺v
αu,vxu. The corresponding vector of

eigenvalues is called spectral vector and its ith entry is Spec(v)i =
1
〈v〉i

.
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We consider also the following variant of the ξi operators.

Definition 2. The Knop–Cherednik operators are defined by

Ξi := t1−iTi−1 . . . T1τ

(
1− 1

xN

)
T−1

N−1 . . . T−1
i +

1
xi

, for 1 ≤ i ≤ N.

The nonsymmetric shifted Macdonald polynomials {Mv}v∈NN are the unique basis of simultaneous

eigenfunctions of the Knop–Cherednik operators such that Mv
(∗)
= xv + ∑

u≺v
αu,vxu.

As in the case of the nonsymmetric Macdonald polynomials, the eigenvalues make up the spectral
vector Spec(v).

Note that the polynomial Ev can be recovered as a limit from Mv:

Ev(x1, . . . , xN) = lim
a→0

a|v|Mv

( x1

a
, . . . ,

xN
a

)
,

which follows from the relation Mv(x1, . . . , xN) =
(∗) Ev(x1, . . . , xN) + ∑u≺v βu,vEu.

Now, we define both variants for symmetric Macdonald polynomials, indexed by partitions, by
considering the sum of the operators defined above.

The Debiard–Sekiguchi–Macdonald operator is the operator defined as ξ = ∑i ξi. The symmetric
Macdonald polynomials, Pλ, are defined as the eigenfunctions of ξ. Similarly, we can consider the operator
Ξ = ∑i Ξi and the symmetric shifted Macdonald polynomials, MSλ, are defined as the eigenfunctions of Ξ.
In both cases, the eigenvalues are *λ+q−1,t−1 .

We define the symmetric Jack polynomials, Jα
λ, as the limit of the Macdonald polynomials, Pλ, with

q = tα and t→ 1. The other versions of Jack polynomials can be also defined as a limit, but we focus
our attention on the symmetric variant.

Two families of polynomials are relevant for our study and rely on the difference of the operators
presented above. The differences of the Cherednik operators and the Knop–Cherednik operators are
known as the Dunkl operators, Di = Ξi − ξi. We say that a polynomial is singular if it is in the kernel of
Di, for all i. We say that a polynomial is a HW polynomial if it is in the kernel of Ξ− ξ.

2.5. Computing Macdonald Polynomials Using the Yang–Baxter Graph

In [21], Lascoux described how to compute the nonsymmetric shifted Macdonald polynomials
Mv using the Yang–Baxter graph. This computation is based on the following result.

Proposition 1. Let v be a vector.

• If v[i] < v[i + 1], Mv.si = Mv

Ti +
1− t

1− 〈v〉[i+1]
〈v〉[i]

, where v.si is the vector obtained from v by

exchanging the values v[i] and v[i + 1].

• MvΦ = Mvτ(xN − 1), where vΦ = [v[2], . . . , v[N], v[1] + 1]. We refer to this step as affine step.

This result provides a method to compute the polynomials Mv following the Yang–Baxter graph
associated to the vector v, starting with the zero vector

[
0N] and M0N = 1. We illustrate how to do it

for the nonsymmetric shifted Macdonald polynomials with an example. On the one side, we have the
following sequence for the vectors:

[000] Φ−→ [001]
s2=(23)−−−−→ [010]

s1=(12)−−−−→ [100] Φ−→ [002]
s2=(23)−−−−→ [020] Φ−→ [201].
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Notice that we simplify the notation by writing [000] for the vector [0, 0, 0]. Since our examples do
not contain numbers larger than nine, there is no misunderstanding.

The sequence above corresponds to the following sequence on the polynomials:

M[000]
τ(x3−1)−−−−→ M[001]

T2+
1−t

1−qt2−−−−−→ M[010]

T1+
1−t
1−qt−−−−→ M[100]

τ(x3−1)−−−−→ M[002]

T2+
1−t

1−q2t2−−−−−−→ M[020]
τ(x3−1)−−−−→ M[201].

The nonsymmetric Macdonald polynomials are obtained following an almost similar algorithm
where the affine action is substituted by EvΦ = EvτxN . For instance, using the same sequence as before,

E[000]
τx3−−→ E[001]

T2+
1−t

1−qt2−−−−−→ E[010]

T1+
1−t
1−qt−−−−→ E[100]

τx3−−→ E[002]

T2+
1−t

1−q2t2−−−−−−→ E[020]
τx3−−→ E[201].

The symmetric variants of the Macdonald polynomials are hence obtained by applying the
symmetrizing operator S = ∑σ∈SN

Tσ, where Tσ = Ti1 · · · Tik if σ = si1 · · · sik is a shortest
decomposition of σ in elementary transpositions, to the polynomials labeled by a decreasing
vector. In addition, Jack polynomials are obtained following a Yang–Baxter graph with degenerated
intertwining operators.

2.6. Vanishing Properties

The shifted variants for Jack and Macdonald polynomials can be defined alternatively by
interpolation. Indeed, one shows with the help of the Yang–Baxter graph that the shifted nonsymmetric
Macdonald polynomials are characterized up to a global coefficient by the equations Mv(〈u〉) = 0,
for any vector u satisfying |u| ≤ |v| and u 6= v. That is, by specializing the variables of X to the entries
of the vector 〈u〉 in the nonsymmetric Macdonald polynomial Mv.

By symmetrization, the shifted symmetric Macdonald polynomials are characterized up to a
global coefficient by MSµ(〈λ〉) = 0, for any partition µ satisfying |µ| ≤ |λ| and µ 6= λ.

In addition, vanishing properties of shifted symmetric and nonsymmetric Jack polynomials are
obtained by making the equations above degenerate.

3. Clustering Properties of Jack Polynomials and the Quantum Hall Effect

3.1. A Gentle History of the Quantum Hall Effect

The quantum Hall effect is a phenomenon involving a collection of electrons restricted to move in
a two-dimensional space and subject to a strong magnetic field.

The classical Hall effect was discovered by Edwin Hall in 1879 [28] and is a direct consequence of
the motion of electrons in a magnetic field. More precisely, it comes from the fact that the magnetic
field causes electrons to move in circles. Let us recall quickly the calculation. This phenomena is
known under the name cyclotron effect and is deduced from the equations of the motion for a particle
of mass m and charge −e in a z-directed magnetic field of intensity B:

m
d2

dt2 x = −eB
d
dt

y,

m
d2

dt2 y = eB
d
dt

x.

The general solution, x(t) = x0− r sin(ωBt + φ) and y(t) = y0 + r cos(ωBt + φ), describes a circle.
The parameters x0, y0, r and φ are chosen arbitrary, while ωB = eB

m is a linear function of B and is
called the cyclotron frequency. Taking into account an electric field ~E generating the current together
with a linear friction term modeled by the scattering time τ, the motion equations become
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m
(

d
dt

)
~v = −e~v ∧ ~B− m

τ
~v− e~E.

This model is known under the name of Drude model [29,30] and consists in considering the
electrons as classical balls. Assuming that the velocity is constant, it can be written as:(

m
2 −eB

eB m
2

)
~v = ~E.

The current density ~J is related to the velocity by the equality ~J = −ne~v, where n denotes the
number of charged particles. Hence, ~E = ρ~J where

ρ =
m

e2nτ

(
1 ωBτ

−ωBτ 1

)

denotes the conductivity.
We see that there are two components to the resistivity: the off-diagonal component

(Hall resistivity, see Figure 1) ρxy =
mωB

e2n
, which does not depend on τ but is linear in B, and the

diagonal component (longitudinal resistivity) ρxx =
m

e2nτ
, which does not depend on B and tends to 0

when the scattering time τ tends to ∞.

Figure 1. Classical Hall effect.

In 1980, Von Klitzing et al. [31] realized measurements of the Hall voltage of a two-dimensional
electron gas with a silicon metal-oxide-semiconductor field-effect transistor and showed the Hall resistivity
has fixed values. The exhibited phenomenon is called the integer quantum Hall effect, see Figure 2
(This figure was obtained by replacing the vertical scale RH by ν in [32] (Figure 4.1, Section 4.4) and it is
under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Generic License).

https://creativecommons.org/licenses/by-nc-sa/3.0/
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Figure 2. Integral quantum Hall effect.

Both the Hall resistivity and longitudinal resistivity have a behavior which highlights a quantum
phenomena at the mesoscopic scale. The Hall resistivity is no longer a linear function of B but sits on
a plateau for a range of magnetic field before jumping to the next one. These plateaux are centered

on values Bν = rq
n
ν

, where rq =
2πh̄

e
is the quantum resistivity, depending on a parameter ν ∈ Z and

the Hall resistivity takes the value ρxy =
rq

ν
. The longitudinal resistivity vanishes when ρxy sits on a

plateau and spikes when ρxy jumps to the next one.
The FQH effect was discovered by Tsui et al. [33]. They observed that, as the disorder is decreased,

the integer Hall plateaux become less prominent and other plateaux emerge for fractional values of ν,
see Figure 3 (This figure was drawn by modifying a picture from [34]).

Figure 3. Fractional quantum Hall (FQH) effect.

The difference between the integer quantum Hall effect and the FQH effect is that, to explain the
second, physicists need to take into account the interactions between the particles. The interaction
between the electrons make the problem interesting from a mathematical point of view. The theoretical
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approach was pioneered by Laughlin [35] for ν = 1
2m+1 . Since the Hamiltonian is very difficult to

diagonalize, he proposed directly a wave function fulfilling several properties motivated by physical
insight. The Laughlin wave function overlaps more than 99% with the true ground state. From the
observations of Tsui et al. and the work of Laughlin, more than 80 plateaux have been observed for
various filling fractions. The description of the wave functions is one of the challenges of the study.
It is in this context that Jack polynomials appear.

3.2. Quantum Hall Wave Functions

The FQH effect appears in many configurations of the gas. Indeed, the Hall voltage can be
generated by the motion of the particles but also by quasi-particles or quasi-holes. Quasi-particles
and quasi-holes are virtual particles that occur when matter behaves as if it contains different weakly
interacting particles. The charges of these virtual particles are fractions of the electron charge and
their masses are also different. However, in all cases, for fermion gases, the wave function must take
the form

Φ(z1, . . . , zN) = φ(z1, · · · , zN)∏
i<j

(zi − zj) exp

{
−

N

∑
i=1

−|zi|2

4`2
B

}
,

where φ is a symmetric polynomial, and `B =
√

h̄
eB is the magnetic length, which is a characteristic

length scale governing quantum phenomena in a magnetic field (see, e.g., [36] for details).
This expression is obtained assuming that the system is in the lowest Landau level, where the single

particle wave functions take the form φ(z) = zme
−|z|2

4`2
B , and that all the particles play the same role.

This last condition is a quite puzzling point. Indeed, since the particles are placed in a finite portion of
the plane, they cannot play the same role because the interactions must take into account the distance
between the particles and the sides of the sample. Hence, the symmetry comes from an approximation
when assuming that the number of particles tends to infinity. The Haldane approach [37] for this theory
consists in placing the particles on a sphere. The position of a particle is specified by spinor coordinates
u = cos( 1

2 θ)ei 1
2 ψ and v = sin( 1

2 θ)ei 1
2 ψ. When the radius tends to infinity the two approaches coincide

and the wave functions in the spherical geometry are used to compute approximation for the plane
geometry via stereographic projection. All operators and wave function introduced by Haldane have
been translated by this way in the plane geometry. In the following, we consider the Haldane point of
view after stereographic projection.

The Laughlin wave function [35] models the simplest FQH states which occurs for ν = 1
m .

This wave function is given by

φm
Laughlin(z1, . . . , zN) := ∏

i<j
(zi − zj)

2m.

Notice that φLaughlin can be seen as the stereographic projection of Haldane wave function stated
in terms of spinor coordinates by

φm
Haldane = ∏

i<j
(uivj − ujvi)

2m.

In the Laughlin states no quasi-particle or quasi-hole is involved. From a mathematical point
of view, the absence of quasi-particle and quasi-hole is interpreted in terms of differential operators
as follows: We consider the operators En := ∑i zn

i
∂

∂zi
and we set L+ = E0 and L− = Nφ ∑i zi − E2

where Nφ = 2 deg φ
N . The parameter Nφ is interpreted in the spherical geometry by the fact that the

sphere surrounds a monopole with charge Nφ. The absence of quasi-particle is characterized by
L+φ = 0 (HW condition) while the absence of quasi-hole is characterized by L−φ = 0 (lowest weight
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(LW) condition). Noticing that [Em, En] = (m− n)En+m−1, we find that if P is a polynomial satisfying
the HW and LW conditions then E1P = 1

2 [E2, E0]P = − 1
2 E0E2P = 1

2 NφNP = deg(P)P, that is P is an
homogeneous polynomial. The HW condition means that the polynomial is invariant by translations.
A fast computation shows that φLaughlin is both a HW and a LW state.

Other interesting wave functions have been exhibited. For instance, the Moore–Read (Pfaffian)
state [38] is

φ0
MR = ∏

i<j
(zi − zj)Pf

(
1

zi − zj

)
,

where Pf denotes the Pfaffian. Surprisingly, it describes the FQH for ν = 1. To understand the
difference with the integer quantum Hall effect, physicists introduced two values k and r such that
ν = k

r . The parameter k means that the function vanishes for k + 1 particles together but not for k
and the parameter r is the order of the zeros. For instance, in the Laughlin state, we have r = 2m
and k = 1, while for the Moore–Read state we have r = 2 and k = 2. In [1,2], Bernevig and Haldane
showed how to associate to each Hall state an occupation number configuration. The occupation
number configuration is a vector nφ such that nφ[i] is the number of particles in the ith lowest Landau
level orbital (i ≥ 0). For a Laughlin state φm

Laughlin, we have nφm
Laughlin

= [1, 02m−1, 1, 02m−1, . . . ]. For the

Moore–Read state, we have nφ0
MR

= [2, 0, 2, 0, 2, . . . ]. The number Nφ is the greatest integer i such that
nφ[i] 6= 0. Instead of using the occupation number configuration, we use a decreasing partition λφ such
that the multiplicity of the part i in λφ equals nφ[i]. For instance λφm

Laughlin
= [(N − 1)m, . . . , m, 0] and

λφ0
MR

=
[
2(N

2 − 1), 2(N
2 − 1), . . . , 4, 4, 2, 2, 0, 0

]
(N needs to be even for Moore–Read states). We see

that Nφ is the biggest part in λφ.
Reader interested by FQH effect theory can refer to [36] for a complete picture on the topic.

3.3. FQHT and Jack Polynomials

Some of the trial wave functions proposed to describe the FQHE are Jack functions. This is the
case of the simplest one,

φm
Laughlin(z1, . . . , zN)

(∗)
= J(

−2
2m−1 )

[2(N−1)m,2(N−2)m,...,0](z1, . . . , zN).

This was first noticed by Bernevig and Haldane [1]. They obtained this equality by proving that
φm

Laughlin is an eigenstate of the Laplace–Beltrami operator

H(α) = ∑
i

(
zi

∂

∂zi

)2
+

1
α ∑

i<j

zi + zj

zi − zj

(
zi

∂

∂zj
− zj

∂

∂zi

)
.

It is particularly interesting to remark that the main argument of the proof comes from clustering
properties. Indeed, the idea is that the Laughlin wave function, considered as a polynomial in zi for
some i ∈ {1, . . . , N}, has a multiplicity 2m root at zi = zj for any j 6= i. Therefore, it vanishes
under the action of the operator DL,2m

i where DL,r
i = ∂

∂zi
− r ∑j 6=i

1
zi−zj

. Since φm
Lauglin is in the

kernel of ∑i ziD
L,1
i ziD

L,r
i = H(− 2

2m−1 ) − m
6 N(N − 1)(N + 1 + 6m(N − 1)), it is an eigenfunction

of H(− 2
2m−1 ). Hence, φm

Laughlin is identified with J(
−2

2m−1 )
[2(N−1)m,2(N−2)m,...,0](z1, . . . , zN) by considering its

dominant monomial.
In the same paper [1], a similar (but a little more complicated) reasoning is used to study the

Moore–Read state φ0
MR described in [38]. They proved that

φ0
MR(z1, . . . , zN)

(∗)
= J(−3)

[2( N
2 −1),2( N

2 −1),...,4,4,2,2,0,0]
(z1, . . . , zN).
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Other examples are treated in [1]. For instance, a generalization of the previous example is given
by the Zp parafermionic states

φ0
RR = S

 N

∏
k=1

∏
(k−1)N′≤i<j≤kN′

(zi − zj)
2

 (∗)
= J−(p+1)

[(2(N′−1))p ,...,2p ,0p ]
(z1, . . . , zN),

where N = pN′ and S denotes the symmetrizing operator. This example is a special case of a
Read–Rezayi state for ν = p

2 [39]. A more complicated example is involved at ν = 2
5 and refereed to as

“Gaffnian” [40]. This wave function is also proved to be a Jack polynomial [1]

φG(z1, . . . , zN)
(∗)
= J(

−3
4 )

[3(N′−1),3(N′−1),3(N′−2),3(N′−2),··· ,3,3,0,0(z1, . . . , zN),

with N = 2N′.
In the aim to provide tools for the understanding of FQH states, Bernevig and Haldane

investigated clustering properties of Jack polynomials, [2]. In particular, they exhibited a family
of HW Jack polynomials in N variables that vanish when s distinct clusters of k + 1 particles are
formed. The corresponding partitions are λ

β
k,r,s = [(βr + s(r− 1) + 1)k, . . . , (s(r− 1) + 1)k, 0n0 ] with

n0 = (k + 1)s− 1 and N = βk + n0. Notice that, in this case, the flux (i.e., the maximal degree in each
variable) equals

Nφ = βr + s(r− 1) + 1 =
r
k
(N − k− (k + 1)(s− 1)) + (r− 1)(s− 1).

Bernevig and Haldane investigated three kinds of clustering properties that occur when k + 1 and
s− 1 are coprime:

First clustering property: s− 1 clusters of k + 1 particles and one cluster of k particles, with the
remaining particles free.

This situation is formalized by setting Z1 = z1 = · · · = zk+1, Z2 = zk+1 = · · · =

z2(k+1),. . . ,Zs−1 = z(s−2)(k+1)+1 = · · · = z(s−1)(k+1), and ZF = z(s−1)(k+1) = · · · = zs(k+1)−1.

Then, the Jack polynomial J
− k+1

r−1

λ
β
k,r,s

((k + 1)(Z1 + · · ·+ Zs−1) + kZF + zs(k+1) + · · ·+ zN) behaves as

N

∏
i=s(k+1)

(ZF − zi)
r when each zi, with i = s(k + 1), . . . , N, tends to ZF. For instance, we have

J(−2)
53 (2Z1 + ZF + z3 + z4) = (ZF − z4)

2 (ZF − z3)
2 P(Z1, ZF, z3, z4), with

P(Z1, ZF, z3, z4) = 144 (z3 − z4)
2
(

z3 z4 + ZF z4 + ZF z3 − 2 Z1 z4 − 2 Z1 z3 − 2 Z1 ZF + 3 Z1
2
)

.

Second clustering property: A cluster of n0 = (k + 1)s− 1 particles.

To formalize this situation, we set z1 = · · · = z(k+1)s−1 = Z. Then, the Jack polynomial

J(
− k+1

r−1 )
λk,r,s

(n0Z + zn0+1 + · · · + zN) behaves as
N

∏
i=s(k+1)

(Z − zi)
(r−1)s+1, when each zi tends to Z.

More specifically, for HW Jack polynomials,

J(
− k+1

r−1 )
λ

β
k,r,s

(n0Z + zn0+1 + · · ·+ zN)
(∗)
=

N

∏
i=s(k+1)

(Z− zi)
(r−1)s+1 J(

− k+1
r−1 )

λ
β−1
k,r,1

(zn0+1 + · · ·+ zN). (1)

For instance,

J(−2)
53 (3Z + z4 + z5) = −144(Z− z4)

3(Z− z5)
3 J(−2)

2 (z4 + z5).
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Third clustering property: s− 1 clusters of 2k + 1 particles.

By setting s− 1 sets of variables as follows: Z1 = z1 = · · · = z2k+1,. . . , Zs−1 = z(s−2)(2k+1)+1 =

· · · = z(s−1)(2k+1), the HW Jack J
λ

β
k,r,s

satisfies

J(
− k+1

r−1 )
λ

β
k,r,s

((2k + 1)(Z1 + · · ·+ Zs−1) + z(s−1)(2k+1)+1 + · · ·+ zN)
(∗)
=

∏
1≤i<j≤s−1

(Zi − Zj)
k(3r−2)

s−1

∏
i=1

N

∏
`=(s−1)(2k+1)+1

(Zi − z`)2r−1 · J
λ

β−s+1
k,r

(z(s−1)(2k+1)+1 + · · ·+ zN).

For instance,

J(−2)
64 (3(Z1 + Z2) + z7) = −3456(Z1 − Z2)

4(Z1 − z7)
3(Z2 − z7)

3.

The aim of our paper is to show how the material described in [9] can help in this context.
In particular, we focus on the second clustering property for HW polynomials. Although the wave
functions are not all Jack polynomials, many of them can be obtained from Jack polynomials by acting
by an operator modeling the adding of a quasi-particle or a quasi-hole (see, e.g., [3]).

3.4. The Interest of Shifted Macdonald Polynomials

In [1], Bernevig and Haldane looked at the case s = 1 and proved the clustering properties on
HW Jack polynomials using a result of B. Feigin et al. [41] together with Lassalle binomial formulas
for Jack polynomials [42]. Lassalle binomial formula are used to describe the action of the operator
L+ on a Jack polynomial. When s > 1, the partitions do not fulfill some admissibility conditions of B.
Feigin et al. [41], and so, the equations are just conjectured from extensive numerical computations.

For the purpose of manipulating these identities properly, we must leave the framework of
homogeneous Jack polynomials. One reason is because clustering properties deal with vanishing
properties. Therefore, shifted Jack polynomials should be more appropriate for these problems.
Nevertheless, the multiplicities of the roots of the polynomials are difficult to manage. Therefore, the
idea consists in (q, t)-deforming these identities in such a way that they involve products of distinct
factors. For instance, a factor (zi − zj)

n should become (zi − zj)(zi − qzj) · · · (zi − qn−1zj). With such a
deformation, it is also easier to manipulate the eigenspaces which are smaller (see [7] for the example
related to φLaughlin). Consequently, we follow the strategy initiated in [9], which consists to manipulate
shifted Macdonald polynomials in the aim to prove the identities. The recipe, which could be used for
other problems, is as follows:

Step 1: Find a Macdonald version of the conjecture and we state it in terms of vanishing properties.
Step 2: Prove that the Macdonald polynomial involved is a HW polynomial (i.e., in the kernel of a

q-deformation of L+).

This property might come from [10] (Macdonald version of [41]), or by applying the results
of [11], which are based on the Lassalle binomial formula for Macdonald polynomials [42].

Step 3: In the last case of Step 2, the shifted Macdonald polynomial equals the homogeneous
Macdonald polynomials.

Step 4: Consequently, we deduce the equality from vanishing properties of the shifted Macdonald
polynomial and we recover the identity on Jack by setting t = qα and q to 1.

Notice that, in [11], one of the authors with Thierry Jolicoeur found some families of polynomials
which have not been considered in [2]. Indeed, Bernevig and Haldane missed that the family λ

β
k,r,s can

be extended by adding a parameter corresponding to the multiplicity of the largest part which can
be smaller than k. In addition, some other Macdonald polynomials do not specialize to a Jack for the
considered specialization of (q, t). This is explained in the next sections.
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4. Factorizations for Generic (q, t) Parameters

In this section, we study several factorizations of Macdonald polynomials for different partitions
and specializations of the variables, keeping q and t as generic parameters.

4.1. Saturated Partitions

We start by looking at the partitions ending with zeros. From the partitions perspective,
adding zeros at the end of a partition does not make a big difference. From the Yang–Baxter graph,
the starting vector is longer and the computation might require extra steps permuting entries. Let us
see how this relates to the Macdonald polynomials by starting with the definition.

Definition 3. Fix an integer N > 0. We say that a partition λ = [λ1, . . . , λN ] is saturated if λN > 0.

The following result shows a general factorization for the Macdonald polynomials indexed by
saturated partitions.

Proposition 2. If λ = [λ1, . . . , λN ] is saturated, then:

1. Pλ(x1, . . . , xN ; q, t) = (x1 · · · xN)
λN P[λ1−λN ,...,λN−1−λN ,0](q−λN x1, . . . , q−λN xN ; q, t).

2. MSλ(x1, . . . , xN ; q, t)
(∗)
=

λN−1

∏
k=0

N

∏
i=1

(xi − qk)MS[λ1−λN ,...,λN−1−λN ,0](q
−λN x1, . . . , q−λN xN ; q, t).

Proof. We prove both statements at the same time. Recall the affine step for nonsymmetric Macdonald
polynomials (respectively, Shifted Macdonald polynomials) from Proposition 1

EvΦ = EvτxN and MvΦ = Mvτ (xN − 1) .

If we apply this step N times, we obtain

E[v[1]+1,v[2]+1,...,v[N]+1] =
N

∏
i=1

xi × Ev

(
x1

q
,

x2

q
, . . .

xN
q

)
; and,

M[v[1]+1,v[2]+1,...,v[N]+1] =
N

∏
i=1

(xi − 1)×Mv

(
x1

q
,

x2

q
, . . .

xN
q

)
.

Hence, if we apply the affine step N times again, we obtain

E[v[1]+2,v[2]+2,...,v[N]+2] =
N

∏
i=1

x2
i

q
× Ev

(
x1

q2 ,
x2

q2 , . . .
xN

q2

)
; and,

M[v[1]+2,v[2]+2,...,v[N]+2] =
N

∏
i=1

(xi − 1)
(

xi
q
− 1
)
×Mv

(
x1

q2 ,
x2

q2 , . . .
xN

q2

)
.

By induction, starting with v = [λ1 − λN , λ2 − λN , . . . , λN−1 − λN , 0] and applying the affine step
NλN times, one finds

Eλ =(∗)
N

∏
i=1

xλN
i × Ev

(
x1

qλN
,

x2

qλN
, . . .

xN

qλN

)
; and,

Mλ =
N

∏
i=1

λN−1

∏
k=0

(
xλN

i
qk − 1

)
×Mv

(
x1

qλN
,

x2

qλN
, . . .

xN

qλN

)
.

Since the polynomials
N
∏
i=1

xλN
i and

N
∏
i=1

λN−1
∏

k=0

(
x

λN
i
qk − 1

)
are symmetric, they commute with the

action of the symmetrizing operator S and the result is obtained by applying S to Eλ and Mλ.
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The first result is classical. Indeed, following the Yang–Baxter graph and applying the affine step
several times, we have that for any vector v with m = mini{v[i]} > 0:

Ev(XN) = E[v1−m,...,vN−m](XN)(τxN)
NλN = E[v1−m,...,vN−m]

(
xN
q

, x1, . . . , xN−1

)
xN(τxN)

NλN−1

= E[v1−m,...,vN−m]

(
xN−1

q
,

xN
q

, x1, . . . , xN−2

)
xN−1xN(τxN)

NλN−2 = · · · =

(∗)
= E[v1−m,...,vN−m]

(
x1

qλN
,

x2

qλN
, . . .

xN

qλN

)
(x1 . . . xN)

λN .

Moreover, Pλ is obtained from Eλ− , where λ− = [λN , . . . , λ1], by applying the symmetrization
operator SN . Since (x1 . . . xN)

λN is symmetric, it commutes with SN . Therefore, Pλ is proportional
to P[λ1−λN ,...,λN−1−λN ,0](XN) · (x1 · · · xN)

λN and we deduce our result from the fact that the dominant
coefficient of Pλ is 1. Furthermore, it is the simultaneous eigenfunction for the Cherednik operators
ξi, whose spectral vector is [tN−1qk, . . . , qk], and it is also an eigenfunction for the operator ∑i ξi with
eigenvalues tN−1qk + · · ·+ qk.

For the second result, there is an alternative proof based on the examination of the vanishing
properties of

λN−1

∏
k=0

N

∏
i=1

(xi − qk)MS[λ1−λN ,...,λN−1−λN ,0](q
−λNXN ; q, t). (2)

Let µ 6= λ, with |µ| ≤ |λ|. If [λ1 − λN , . . . , λN−1 − λN ] ⊂ µ, by the vanishing properties of
MS[λ1−λN ,...,λN−1−λN ,0],

MS[λ1−λN ,...,λN−1−λN ,0](q
−λN qµ1 tN−1 + · · ·+ q−λN qµN−1 ; q, t)

= MS[λ1−λN ,...,λN−1−λN ,0](〈µ1 − λN , . . . , µN − λN〉) = 0.

If [λ1 − λN , . . . , λN−1 − λN ] 6⊂ µ, then this means that µN < λN . Then, the factor (xN − qµN )

in (2) vanishes for xN = qµN . This proves that the two polynomials have the same vanishing properties
and so, that they are equal.

4.2. Standard Specializations for the Variables

Apart from considering partitions ending with at least one zero, we consider now a particular
specialization for the variables.

Definition 4. For a partition λ = [λ1, . . . , λN−k, 0k] with k ≥ 1, the λ-standard specialization consists in
setting xN−j = tj, for j = 0, . . . , k− 1.

The λ-standard specialization provides another interesting factorization.

Proposition 3.

MS[λ1,...,λN−k ,0k ]

(
XN−k +

1− tk

1− t
; q, t

)
(∗)
= MS[λ1,...,λN−k ]

(t−kXN−k; q, t)
(∗)
=

λN−k−1

∏
j=0

N−k

∏
i=1

(xi − tkqj)MS[λ1−λN−k ,...,λN−k−1−λN−k ,0]

(
q−λN−k t−kXN−k; q, t

)
.
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Proof. Consider the polynomial

P(x1, . . . , xN−k) = MS[λ1,...,λN−k ,0k ]

(
XN−k +

1− tk

1− t
; q, t

)
.

This polynomial vanishes for [x1, · · · , xN−k] = [qµ1 tN−k−1, . . . , qµN−k t0], for any µ 6= λ. Moreover,
|µ| ≥ |λ|, since 〈λ1, . . . , λN−k, 0k〉 = [qλ1 tN−1, . . . , qλN−k tN−k, tk−1, . . . , 1]. Therefore, P(x1, . . . , xN−k)

has the same vanishing properties as MS[λ1,...,λN−k ]
(t−kXN−k; q, t). This proves the first equality and,

as a direct consequence of Proposition 2, we get the second equality.

Example 1. We illustrate the principle of the proof with λ = [32000]. By its vanishing properties,
MS[32000](x1, x2, t2, t, 1; q, t) vanishes for the following values of (x1, x2): (q5t4, t3), (q4t4, qt3), (q4t4, t3),
(q3t4, qt3), (q2t4, q2t3), (q3t4, t3), (q2t4, qt3), (q2t4, t3), (qt4, qt3), (qt4, t3) and (t4, t3).

Since MS[32000](x1, x2, t2, t, 1; q, t) is a degree 5 symmetric polynomial in two variables, these vanishing
properties completely characterize it up to a global factor. Indeed, there are exactly 12 independent symmetric
functions of degree at most 5 in 2 variables. The basis of the space spanned by these functions is generated
by the polynomials MS[50](x1, x2; q, t), MS[41](x1, x2; q, t), MS[32](x1, x2; q, t), . . . , MS[00](x1, x2; q, t).
The polynomial MS[32000](x1, x2, t2, t, 1; q, t) is symmetric and so is a linear combination of the 12 polynomials
above. It follows that a series of 11 vanishing properties is sufficient to produce a system of linear equations
characterizing the coefficients of this combination.

The following table compares the vanishing properties characterizing MS[32] by listing the partitions µ of
length `(µ) = 2 with |µ| ≤ 5, together with their reciprocal vector:

〈50〉 〈41〉 〈32〉
[q5t, 1] [q4t, q] ×
〈40〉 〈31〉 〈22〉
[q4t, 1] [q3t, q] [q2t, q2]
〈30〉 〈21〉
[q3t, 1] [q2t, q]
〈20〉 〈11〉
[q2t, 1] [qt, q]
〈10〉
[qt, 1]
〈00〉
[t, 1]

We deduce that the polynomials MS[32000](X2 + t2 + t + 1; q, t) and MS[32](t−3X2; q, t) are proportional.
Since these two polynomials have low degree, they are easy to compute with the help of the Yang–Baxter graph:

MS[32](X2; q, t)
(∗)
=

(
q2t + q2 − x1 − x2

)
(x2 − 1) (x1 − 1) (−x2 + q) (−x1 + q) , and

MS[32000](X2 + t2 + t + 1; q, t)
(∗)
=

(
t3 − x2

) (
t3 − x1

) (
qt3 − x2

) (
qt3 − x1

) (
q2t3 + q2t4 − x1 − x2

)
.

Corollary 1. For a partition λ,

MSλ

(
Xmλ

+ *λmλ+1, . . . , λN−1, λN+; q, t
) (∗)
=

max λ−1

∏
j=0

mλ

∏
i=1

(xi − qjtbλcj).

Proof. We prove the property by induction on N + |λ|. First, we consider the case λN > 0.
By Proposition 2, we have
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MSλ

(
Xmλ

+ *λmλ+1, . . . , λN−1, λN+; q, t
) (∗)
=

λN−1

∏
j=0

mλ

∏
i=1

(xi − qj)×

MS[λ1−λN ,...,λN−1−λN ,0]

(
q−λN

(
Xmλ

+ *
[
λmλ+1, . . . , λN−1, λN

]
+
)

; q, t
)

.

Setting λ̃ = [λ1 − λN , . . . , λN−1 − λN , 0], we have *λ̃+ = q−λN * λmλ+1, . . . , λN−1, λN+ and,
by induction:

MSλ̃

(
q−λNXmλ

+ *λ̃+; q, t
) (∗)
=

max λ̃−1

∏
j=0

mλ̃

∏
i=1

(xi − qj+λN tbλ̃cj). (3)

Using that bλ̃cj = bλcj+λN ,

λN−1

∏
j=0

mλ

∏
i=1

(xi − qj)
max λ̃−1

∏
j=0

mλ̃

∏
i=1

(xi − qj+λN tbλ̃cj)

=
λN−1

∏
j=0

mλ

∏
i=1

(xi − qj)
max λ−1

∏
j=λN

mλ

∏
i=1

(xi − qjtbλcj) =
max λ−1

∏
j=0

mλ

∏
i=1

(xi − qjtbλcj),

as expected.
If λN = 0, then we set λ = [λ1, . . . , λN−k, 0k], with λN−k 6= 0, and, by Proposition 3, we obtain

MS[λ1,...,λN−k ,0k ]

(
XN−k +

1− tk

1− t
; q, t

)
(∗)
= MS[λ1,...,λN−k ]

(t−kXN−k; q, t).

We conclude the proof by induction and applying (3) since λN−k 6= 0.

We conclude this section with an example.

Example 2. Consider λ = [664331110]; we alternatively use Propositions 2 and 3 for computing
MS664331110(X2 + *4331110+; q, t). In each step, the expression we obtain is the product of a polynomial
in the X alphabet with coefficients in C(q, t) and a symmetric shifted Macdonald polynomial indexed by a
smaller partition. The process finishes when MS664331110(X2 + *4331110+; q, t) is described as a polynomial in
the X alphabet with coefficients in C(q, t), up to some coefficient of the form qatb.

MS664331110(X2 + *4331110+; q, t)
l Proposition 3

MS66433111(t−1X2 + *433111+; q, t)
l Proposition 2

(t−1x1 − 1)(t−1x2 − 1)MS55322000(t−1q−1X2 + *322000+; q, t)
l Proposition 3

(t−1x1 − 1)(t−1x2 − 1)MS55322(t−4q−1X2 + *322+; q, t)
l Proposition 2

2

∏
i=1

(t−1xi − 1)(t−4q−1xi − 1)(t−4q−1xi − q)MS33100(t−4q−3X2 + *100+; q, t)

l Proposition 3
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l Proposition 3
2

∏
i=1

(t−1xi − 1)(t−4q−1xi − 1)(t−4q−1xi − q)MS331(t−6q−3X2 + *1+; q, t)

l Proposition 2
2

∏
i=1

(t−1xi − 1)(t−4q−1xi − 1)(t−4q−1xi − q)(t−6q−3xi − 1)MS220(t−6q−4X2 + *0+; q, t)

l Proposition 3
2

∏
i=1

(t−1xi − 1)(t−4q−1xi − 1)(t−4q−1xi − q)(t−6q−3xi − 1)MS22(t−7q−4X2; q, t)

l Proposition 2
2

∏
i=1

(t−1xi − 1)(t−4q−1xi − 1)(t−4q−1xi − q)(t−6q−3xi − 1)(t−7q−4xi − 1)(t−7q−4xi − q).

As expected, the last polynomial is proportional to
2

∏
i=1

(xi − t)(xi − qt4)(xi − q2t4)(xi − q3t6)

(xi − q4t7)(xi − q5t7).

5. Specializations of the Type taqb = 1 and Quasistaircase Partitions

In this section, we focus in the quasistaircase partitions for a concrete specialization of the
parameters q and t.

Definition 5. Consider the integers 1 ≤ k ≤ `, s ≥ 2, and β, r ≥ 0, such that r `+1
s−1 is an integer. We define

the quasistaircase partition as the following partition

QS(`, k; s, r; β) :=
[
((β + 1)s + r)k, (βs + r)`, . . . , (s + r)`, 0r `+1

s−1 +`
]

.

5.1. Admissible Specializations

We start defining the specialization that we consider as in [10].

Definition 6. A (s, `)-admissible specialization is one of the form (t, q) =

(
u

s−1
g , ω1u−

`+1
g

)
where

g = gcd(`+ 1, s− 1) and ω
s−1

g
1 is a primitive gth root of the unity.

From now on in this section, and unless specifying otherwise, these parameters defining the
quasistaircase partition satisfy the conditions stated below and the parameters q and t are specialized.

Example 3. Let us illustrate the notion of (s, `)-admissible specialization by giving a few examples
and counter-examples.

• (t, q) = (u, u−3) is (2, 2)-admissible.

• (t, q) = (u2, u−5) and (t, q) = (u2,−u−5) are (3, 4)-admissible.

• (t, q) = (u,−u−2) is (3, 3)-admissible while (t, q) = (u, u−2) is not (3, 3)-admissible.

• (t, q) = (u, e
2iπ

3 u−2) and (t, q) = (u, e
2iπ

3 u−2) are (4, 5)-admissible but (t, q) = (u, u−2) is not.

• (t, q) = (u, iu−2) and (t, q) = (u,−iu−2) are (5, 7)-admissible, while (t, q) = (u, u−2) and
(t, q) = (u,−u−2) are not (5, 7)-admissible.

We finish this subsection with the following result that highlights the relevance of ω1.
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Lemma 1. Suppose tαqγ = 1, t = ub, and q = ω1u−a, with gcd(a, b) = 1. Then, α = p (`+ 1) and
γ = p (s− 1), for some p ∈ N.

Proof. By hypothesis ω
γ
1 uαb−γa = 1. From gcd (a, b) = 1, it follows that α = ca and γ = cb, for some

c ∈ N. Thus,
(

ωb
1

)c
= 1 and c = pg, for some p ∈ N, because ωb

1 is a primitive gth root of unity. Hence,
α = pga = p (`+ 1) and γ = pgb = p (s− 1).

5.2. On the Reciprocal Sum *QS(`, k; s, r; β)+

In this section, we prove that the intersection of the eigenspace of ξ, with eigenvalue
*QS(`, k; s, r; β)+q−1,t−1 , and the space generated by Pµ, with µ ⊆ QS(`, k; s, r; β), has dimension 1.

We start with the following technical lemma.

Lemma 2. Let λ be the partition λ =
[
(βs + r)k, ((β− 1)s + r)`, . . . , (s + r)`, 0`+α

]
, where α is an integer

such that 0 ≤ α ≤ r `+1
s−1 . Consider another partition µ ⊆ λ such that there exists i satisfying 〈µ〉[i] = 〈λ〉[k].

Then, i = k and λ and µ have the same k first entries, i.e., µ[j] = λ[j], for j = 1, . . . , k.

Proof. First, we notice that ω
µ[i]
1 u

1
g ((N−i)(s−1)−µ[i](`+1))

= ω
βs+r
1 u

1
g ((s−1)(N−k)−(βs+r)(`+1),

which means that (i, µ[i]) lies on the line

y = βs + r +
s− 1
`+ 1

(k− x), (4)

and that k− i = (µ[i]− (βs + r)))
`+ 1
s− 1

. Since µ ⊂ λ, µ[i] ≤ βs + r and, so, k ≤ i.

If λ[i] > 0, then i ≤ β`+ k and the point (i, λ[i]) lies on or below the line

y = βs + r +
s
`
(k− x). (5)

Hence,

0 ≥ µ[i]− λ[i] ≥ s + `

`(`+ 1)
(i− k), (6)

That is, i ≤ k and, so, i = k.
Now, suppose that i > k + (β− 1)`. In this case, µ[i] = 0 and, from Equation (4), we obtain

i = k + (βs + r)
`+ 1
s− 1

= r
`+ 1
s− 1

+ β +
s

s− 1
(`+ 1) + k > r

`+ 1
s− 1

+ β`+ k.

Then, i is strictly greater than the size of µ, which is impossible.
The only remaining possibility is k = i, and so µ[k] = λ[k]. Since µ ⊂ λ, we deduce also that

µ[1] = λ[1], . . . , µ[k] = λ[k].

Example 4. In Figure 4, we illustrate the proof of Lemma 2 for the parameters s = 4, ` = 4, k = 3, β = 5 and
r = 3. The shaded area illustrates the inequality in Equation (6), which is defined by the lines in Equations (4)
(top) and (5) (bottom). Below it, we include the partition λ.
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Figure 4. Illustration of the proof of Lemma 2.

The following result shows that the reciprocal sum characterizes the quasistaircase partitions.

Proposition 4. Consider a partition µ such that µ ⊆ QS(`, k; s, r; β) and *µ+ = *QS(`, k; s, r; β)+. Then,
µ = QS(`, k; s, r; β).

Proof. Denote by λ the quasistaircase partition, λ = QS(`, k; s, r; β). Then, there exists i such that
〈µ〉 [i] = 〈λ〉 [k]. Otherwise, µ is completely contained in λ and *µ+ = *QS(`, k; s, r; β)+ is impossible.

By Lemma 2, i = k and 〈µ〉 [j] = 〈λ〉 [j], for 1 ≤ j ≤ k. Now, define two new partitions λ′ and µ′

as the partitions obtained by deleting the first k entries of λ and µ, respectively. That is, λ′[j] = λ[j + k]
and µ′[j] = µ[j + k], for j ≥ 1. Then, either λ′ = QS(l, l; s, r, β− 1), and the above argument is applied
to α′ and µ′, or else λ′ = [0`+α], where α is defined in the statement of Lemma 2, and therefore
µ′ = [0`+α]. The proof is complete by noticing that the process must stop because λ has only finitely
many steps.

Example 5. The following table contains all the reciprocal sums *µ+ associated to the partitions µ ⊆ [420]:

*420+ *320+ *220+ *110+
q4t2 + q2t + 1 q3t2 + q2t + 1 q2t2 + q2t + 1 qt2 + qt + 1

*410+ *310+ *210+ *100+
q4t3 + qt + 1 q3t2 + qt + 1 q2t2 + qt + 1 qt2 + t + 1

*400+ *300+ *200+ *000+
q4t2 + t + 1 q3t2 + t + 1 q2t2 + t + 1 t2 + t + 1

Under the (2, 2)-admissible specialization (t, q) = (u, u−2), the table becomes:

*420+ *320+ *220+ *110+
u−6 + u−3 + 1 u−4 + u−3 + 1 u−3 + u−2 + 1 u−1 + 2

*410+ *310+ *210+ *100+
u−6 + u−1 + 1 u−4 + u−1 + 1 u−2 + u−1 + 1 2 + u

*400+ *300+ *200+ *000+
u−6 + 1 + u u−4 + 1 + u u−2 + 1 + u 1 + u + u2

We observe that the only partition whose reciprocal sum equals u−6 + u−3 + 1 is [420].

Notice that Proposition 4 can be alternatively stated as follows.
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Corollary 2. Suppose that µ ⊆ λ = QS(`, k; s, r; β) is a partition such that 〈µ〉 is a permutation of 〈λ〉. Then,

• µ = λ,
• The intersection of the eigenspace of ξ with eigenvalue *λ+q−1,t−1 , and the space generated by Pµ, with µ ⊆

λ, has dimension 1.
• The intersection of the eigenspace of Ξ with eigenvalue *λ+q−1,t−1 , and the space generated by MSµ,

with µ ⊆ λ, has dimension 1.

Proof. It is easy to see that for a specialization of type (t, q) = (ub, ω1ua) the following four assertions
are equivalent: 〈µ〉 is a permutation of 〈λ〉, 〈µ〉q−1,t−1 is a permutation of 〈λ〉q−1,t−1 , *µ+ = *λ+,
and *µ+q−1,t−1 = *λ+q−1,t−1 . Proposition 4 allows us to complete the proof.

5.3. On the Reciprocal Vector 〈QS(`, k; s, r; β)〉

In this section, we prove that, under a (s, `)-admissible specialization, all the entries of
〈QS(`, k; s, r; β)〉 are distinct. For simplicity, we denote QS (`, k; s, r; β) by λ and the specialization

(t, q) =
(

u
s−1

g , ω1u−
`+1

g

)
by (t, q) =

(
ub, ω1u−a

)
.

Define the utility function h (w, z) = bz− aw, so that, for a partition µ, 〈µ〉 [i] = ω
µ[i]
1 uh(µ[i],N−i).

Define also a decreasing sequence as j1 = N − n0, with n0 = (`+ 1) r
s−1 + `; jm = k + (β−m + 1) `,

for 2 ≤ m ≤ β + 1; and jβ+2 = 0. Notice this sequence splits the interval [0, N] into β + 2 pieces.
If jm+1 < i ≤ jm, for 1 ≤ m ≤ β + 1, then λ[i] = r + ms and 〈λ〉 [i] = ωr+ms

1 uh(r+ms,N−i).
If j1 < i ≤ N, λ[i] = 0 and 〈λ〉 [i] = uh(0,N−i).

Let c ∈ N such that n0 = (`+ 1) c− 1 and r = (s− 1)(c− 1). Then,

−m(s+`)
g = h (r + ms, N − jm) ≤ h (r + ms, N − i) ≤ h (r + ms, N − jm + `− 1)

= 1
g [−m (s + `) + (s− 1) (`− 1)] .

(7)

Here is an example showing that the utility function h alone does not suffice to separate the
〈λ〉 values.

Example 6. Let ` = 5, s = 3, N = 15, n0 = 5. Then, g = 2, r = 0, and the relation 15 = k + 10β implies
that k = 5 and β = 1. This corresponds to the quasistaircase partition λ =

[
65, 35, 05], for which the values of

the sequence are j1 = 10, j2 = 5 and j3 = 0. Then, the vector of values of h(λ[i], N − i) is

[−4,−5,−6,−7,−8, 0,−1,−2,−3,−4, 4, 3, 2, 1, 0] .

There are two pairs of equal entries, however the corresponding entries of 〈λ〉 are different. For the value 0,
〈λ〉 [6] = ω3 6= 1 = 〈λ〉 [15], where ω = −1. In addition, for the value −4, 〈λ〉 [1] = ω6u−4 6= ω3u−4 =

〈λ〉 [10].

Proposition 5. The entries of 〈λ〉 are pairwise distinct.

Proof. Take two indices i1 and i2 and assume without lost of generality that 1 ≤ i1 < i2 ≤ N.
We check that the values of 〈λ〉 [i1] and 〈λ〉 [i2] are distinct. For that, it is enough to check that
h(λ[i1], N− i1) 6= h(λ[i2], N− i2) or h(λ[i1], i1) 6= h(λ[i2], i2). Let us analyze the differences by looking
at the indices in the division of the interval [1, N] given by the sequence {jm}.

If jm+1 < i1 < i2 ≤ jm, then h (r + ms, N − i1) − h (r + ms, N − i2) = b (i2 − i1) > 0. Thus,
〈λ〉 [i1] 6= 〈λ〉 [i2]. The same happens if j1 < i1 < i2 ≤ N since h (0, N − i1) − h (0, N − i2) =

b (i2 − i1) > 0.
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Now, suppose jm1+1 < i1 ≤ jm1 ≤ jm2+1 < i2 ≤ jm2 , then (7) shows that

h (r + m2s, i2)− h (r + m1s, i1) ≥
1
g
{(m1 −m2) (s + `)− (s− 1) (`− 1)} .

Thus, if m1 −m2 >
(s− 1) (`− 1)

s + `
, then 〈λ〉 [i1] 6= 〈λ〉 [i2].

Consider the case 1 ≤ m1 − m2 ≤
(s− 1) (`− 1)

s + `
; then, 〈λ〉 [i1] = ωr+m1s

1 uh(r+m1s,N−i1) and

〈λ〉 [i2] = ωr+m2s
1 uh(r+m2s,N−i2). There are two different arguments depending on whether ω1 6= 1.

If ω1 6= 1, suppose that 1 =
〈λ〉 [i1]
〈λ〉 [i2]

= q(m1−m2)sti2−i1 . By Lemma 1, (m1 −m2) s = p (s− 1),

for some p ∈ N, but 1 ≤ m1 − m2 ≤
(s− 1) (`− 1)

s + `
< s − 1 and gcd (s, s− 1) = 1, which is a

contradiction.
If ω1 = 1, or equivalently gcd (s− 1, `+ 1) = 1, then h (λ [i] , N − i) ≡ − (`+ 1) λ [i]mod (s− 1).

If jm+1 < i ≤ jm, then h (λ [i] , N − i) ≡ m (s + `)mod (s− 1) and gcd (s + `, s− 1) = 1. In the case

jm1+1 < i1 ≤ jm1 ≤ jm2+1 < i2 ≤ jm2 , with 1 ≤ m1 −m2 ≤
(s− 1) (`− 1)

s + `
, it follows that

h (r + m2s, i2)− h (r + m1s, i1) ≡ (m1 −m2) (s + `)mod (s− 1) .

This implies h (r + m2s, i2) − h (r + m1s, i1) 6≡ 0 mod (s− 1), since 1 ≤ m1 − m2 < s − 1.
The similar argument applies when j1 < i2 ≤ N.

Suppose jm+1 = jm < i1 ≤ jm and j1 < i2 ≤ N. By (7), and the fact that h (0, N − i2) ≥ 0,

h (0, N − i2)− h (r + m1s, N − i1) ≥ −h (r + m1s, N − jm1 + `− 1) =
1
g
{m1 (s + `)− (s− 1) (`− 1)} .

If m1 > (s−1)(`−1)
s+` , then h (0, N − i2)− h (r + m1s, N − i1) > 0 and 〈λ〉 [i1] 6= 〈λ〉 [i2]. Otherwise,

suppose 1 =
〈λ〉 [i1]
〈λ〉 [i2]

= qm1s+rti2−i1 and m1s + r = p (s− 1). Then, m1s = (s− 1) (p− c + 1), which is

impossible for 1 ≤ m1 < s− 1.

6. Factorizations and Wheel Condition

In this section, we investigate the case of the staircase partitions that are a particular case of
quasistaircase partitions of the form

St(`, k; s; β) := QS(`, k; s, 0; β) = [((β + 1)s)k, (βs)`, . . . , s`, 0`],

for any ` ≥ 1, 0 ≤ k < `, s ≥ 2 and β ≥ 1. We also assume that the parameters q and t specialize as

(t, q) =
(

u
s−1

g , ω1u−
`+1

g

)
,

where g = gcd(`+ 1, s− 1) and ω
s−1

g
1 is a primitive gth root of the unity.

6.1. Wheel Condition and Admissible Partitions

We start recalling the main results of [10].

Definition 7. A symmetric polynomial p(x1, . . . , xN) satisfies the (s, `)-wheel condition if{
x2

x1
, . . . ,

x`+1
x`

,
x1

x`+1

}
⊂ {t, tq, . . . , tqs−1}
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implies that p(x1, . . . , xN) = 0. It is easy to check that the set of the symmetric polynomials satisfying the wheel
condition is an ideal, denoted by J`,s

N in [10]. A (`, s, N)-admissible partition is a partition λ = [λ1, . . . , λN ]

satisfying λi − λi+` ≥ s for any i = 1, . . . , N − `.

The following theorem summarizes two results that relates both concepts.

Theorem 1 ([10]). The ideal J`,s
N is generated by the Macdonald polynomials indexed by admissible partitions,

J`,s
N = span {Pλ(XN ; q, t) : λ is (`, s, N)- admissible partition} .

Moreover, J`,s
N is stable under the action of L+

q,t = (1− q)(ξ − Ξ).

Remarking that PSt(`,k;s;β)(X(β+1)`+k; q, t) is a minimal degree polynomial belonging to J`,s
(β+1)`+k,

by applying Theorem 1 we get the following result.

Proposition 6.

PSt(`,k;s;β)(X(β+1)`+k; q, t)
(∗)
= MSSt(`,k;s;β)(X(β+1)`+k; q, t).

Proof. Since MSSt(`,k;s;β)(X(β+1)`+k; q, t) is in the kernel of L+
q,t, PSt(`,k;s;β)(X(β+1)`+k; q, t) and

MSSt(`,k;s;β)(X(β+1)`+k; q, t) are in the same eigenspace of ξ with reciprocal sum

*St(`, k; s; β)+ = q(β+1)s ·
(

k

∑
i=1

tN−i+1

)
+

β

∑
j=0

qjs ·
(

`

∑
i=1

tN−k−(β−j)`−i+1

)
.

Recall that, for some coefficients cµ(q, t),

MSSt(`,k;s;β)
(∗)
= PSt(`,k;s;β) + ∑

µ⊂St(`,k;s;β)
cµ(q, t) · Pµ.

Consider the spaces generated by the polynomials Pµ, with µ ⊆ St(`, k; s; β). This space splits
into several eigenspaces, and each of them is associated with a reciprocal sum *µ+. From Corollary 2,
the subspace of the eigenspace associated with the reciprocal sum *St(`, k; s; β)+ generated by the
polynomials MSµ, with µ ⊆ St(`, k; s; β), has dimension 1. Therefore, PSt(`,k;s;β)(X(β+1)`+k; q, t) and
MSSt(`,k;s;β)(X(β+1)`+k; q, t) are proportional.

Example 7. For instance, observe that the shifted Macdonald polynomial

MS[20]

(
x1, x2; q =

1
u

, t = u2
)
=

(
x2x1u + x2

1u + x2
2u− x2x1

u + x1u2x2 − x2
1 − x2

2 − x2x1
)

(1− u−2) (1− u−1)
2

is homogeneous and equal to P[20]

(
x1, x2; q = 1

u , u2
)

up to a multiplicative factor.

6.2. Factorizations

From Proposition 6, the polynomial MSSt(`,k;s;β) is homogeneous for (`, s)-admissible
specializations. Moreover,

MSSt(`,k;s;β)

(
Xk+β` +

1− t`

1− t
y; q, t

)
= y

`sβ(β−1)
2 +ks(β+1)MSSt(`,k;s;β)

(
Xk+β`

y
+

1− t`

1− t
; q, t

)
.
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Applying Proposition 3,

MSSt(`,k;s;β)

(
Xk+β` +

1− t`

1− t
; q, t

)
(∗)
= R

(
Xβ`+k; t`

1− qs

1− q

)
MSSt(`,k;s;β−1)

(
q−st−`Xk+β`; q, t

)
.

Again, Proposition 6 shows that the polynomial MSSt(`,k;s;β−1)

(
Xk+β`; q, t

)
is homogeneous.

Proposition 7.

MSSt(`,k;s;β)

(
Xk+β` +

1− t`

1− t
y; q, t

)
(∗)
= R

(
Xk+β`; yt`

1− qs

1− q

)
MSSt(`,k;s;β−1)

(
q−st−`Xk+β`; q, t

)
.

Example 8. Consider the partition [42200] = St(2, 1; 2; 1) and the specialization (t, q) = (u, u−3). Then,

MS[42200](x1, x2, x3, yt, y)
MS[200](q−2t−2x1, q−2t−2x2, q−2t−2x3)

(∗)
=

3

∏
i=1

(xi − u2y)(x1 − u−1y).

Set Yi,β = yi + yi+1 + · · ·+ yβ, for any 0 ≤ i ≤ β, and consider the polynomial which is symmetric
in both alphabets Xk and Y0,β:

P`,k;s;β(Xk;Y0,β) := MSSt(`,k;s;β)

(
Xk +

1− t`

1− t
Y0,β; q, t

)
.

By Proposition 7,

PSt(`,k;s;β)(Xk;Y0,β)
(∗)
= R

(
Xk +

1− t`

1− t
Y1,β; t`

1− qs

1− q
y0

)
PSt(`,k;s;β−1)(q

−st`Xk; q−st`Y1,β).

Iterating, one finds

PSt(`,k;s;β)(Xk;Y0,β)
(∗)
=

β−1

∏
α=0
R
(
Xk +

1− t`

1− t
Yα+1,β; t`

1− qs

1− q
yα

)
PSt(`,k;s;0)(q

−βst−β`Xk; yβq−βst−β`),

withPSt(`,k;s;0)(Xk; yβ) = MSSt(`,k;s;0)

(
Xk + yβ

1− t`

1− t
; q, t

)
.

Once again, applying Propositions 6 and 3, one gets the following result.

Theorem 2.

PSt(`,k;s;β)(Xk;Y0,β)
(∗)
=

β

∏
α=0
R
(
Xk +

1− t`

1− t
Yα+1,β; t`

1− qs

1− q
yα

)

=
β

∏
α=0

s−1

∏
j=0

[
k

∏
i=1

(xi − t`qjyα)
β

∏
i=α+1

`−1

∏
a=0

(tayi − t`qjyα)

]
.

Example 9. For (t, q) = (u, u−3), we have

MS[42200](x1, ty1, y1, ty0, y0)
(∗)
=(x1 − u2y0)(x1 − u−1y0)(x1 − u2y1)(x1 − u−1y1)

× (y1 − u2y0)(y1 − u−1y0)(uy1 − u2y0)(uy1 − u−1y0).
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7. Beyond the Wheel Condition

First, we recall that, for some specializations of (q, t), the quasistaircase polynomials satisfy
the HW condition, [11]. Using an argument of dimension of eigenspaces, we show that the shifted
Macdonald are homogeneous.

Theorem 3 ([11]). For β, s, r, k, ` ∈ N, with k ≤ `, consider λ = [((β + 1)s + r)k, (βs + r)`, . . . , (s + r)`]
and the specialization

(t, q) =
(

u
s−1

g , u−
`+1

g ω1

)
,

where g = gcd(`+ 1, s− 1) and ω1 is a rth root of the unity such that ω
s−1

g
1 is a gth primitive root of the unity.

The polynomial Pλ(x1 + · · ·+ xn; q, t) is in the kernel of L+
q,t when n = `+1

s−1 r + `(β + 1) + k is an integer.

The shifted symmetric polynomial MSQS(`,k;s,r;β) is an eigenfunction of Ξ having the same
eigenvalue as PQS(`,k;s,r;β). However, from Corollary 2, the corresponding eigenspace has dimension 1,
which proves the following result.

Corollary 3.

PQS(`,k;s,r;β)(X; q, t)
(∗)
= MSQS(`,k;s,r;β)(X; q, t).

Moreover, this implies that MSQS(`,k;s,r;β)(X; q, t) is homogeneous.

By Corollary 3, we have

MSQS(`,k;s,r;β)

(
Xk+β` +

1− tr `+1
s−1 +`

1− t
yβ; q, t

)

= y
1
2 (β+1)(`β+2k)s+r(k+lβ)
β MSQS(`,k;s,r;β)

(
Xk+β`

yβ
+

1− tr `+1
s−1 +`

1− t
; q, t

)
.

Applying Proposition 3, we obtain

MSQS(`,k;s,r;β)

(
Xk+β` +

1− tr `+1
s−1 +`

1− t
; q, t

)
(∗)
=

R
(
Xk+β`; t

`+1
s−1 r+` 1− qs+r

1− q

)
MSQS(`,k;s,0;β)

(
q−r−st−r `+1

s−1−`Xk+β`; q, t
)

.

Again, by Corollary 3, MSQS(`,k;s,0;β) is an homogeneous polynomial, and then,

MSQS(`,k;s,r;β)

(
Xk+β` +

1− tr `+1
s−1 +`

1− t
yβ; q, t

)
(∗)
=

R
(
Xk+β`; t

`+1
s−1 r+` 1−qs+r

1−q yβ

)
MSQS(`,k;s,0;β−1)

(
q−r−st−r `+1

s−1−`Xk+β`; q, t
)

.

(8)

Theorem 2 completes the proof of the following theorem.
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Theorem 4.

MSQS(`,k;s,r;β)

(
Xk +

1− t`

1− t
Y0,β−1 +

1− tr `+1
s−1 +`

1− t
yβ; q, t

)
(∗)
=

R
(
Xk +

1− t`

1− t
Y0,β−1; t

`+1
s−1 r+` 1− qs+r

1− q
yβ

)
β−1

∏
α=0
R
(
Xk +

1− ts

1− t
Yα+1,β−1; t`

1− qs

1− q
yα

)
.

Let us show this result with an example.

Example 10. For (t, q) = (u, u−3),

MS[533](x1 + (1 + t)y0 + (1 + t + t2 + t3 + t4)y1; q = u−3, t = u)
(∗)
= R(x1 + (1 + t)y0; t5(1 + q + q2)y1)MS2(x1 + (1 + t)y0; q = u−3, t = u)

(∗)
=

R(x1 + (1 + t)y0; t5(1 + q + q2)y1)R(x1; t2(1 + q)y0)

=
2

∏
i=0

[
(x1 − t5qiy1)(y0 − t5qiy1)(ty0 − t5qiy1)

]
(x1 − t2y0)(x1 − t2qy0).

8. Conclusions and Perspectives

In this last section, we explore the second clustering property conjectured by Bernevig and
Haldane and we present some examples that illustrate future work that can be done in this direction.

8.1. The Second Clustering Property

Most of the different variants of Macdonald polynomials presented in this paper specialize to
Jack polynomials by sending u to 1 when `+ 1 and s− 1 are coprime, which corresponds to setting
t = qα and sending α to 1. Moreover, this implies also that s− 1 divides r. In that context, Proposition 7
gives that

J(
− `+1

s−1 )
St(`,k;s;β)

(
Xk+β` + `y

) (∗)
=

β`

∏
i=1

(xi − y)s J(
− `+1

s−1 )
St(`,k;s;β−1)(Xk+β`).

By Equation (8),

J(
− `+1

s−1 )
QS(`,k;s,r;β)

(
Xk+β` +

(
r
`+ 1
s− 1

+ `

)
y
)

(∗)
=

β`

∏
i=1

(xi − y)s+r J(
− `+1

s−1 )
St(`,k;s;β−1)(Xk+β`). (9)

The fact that
β`

∏
i=1

(xi− y)s+r divides the polynomial J(
− `+1

s−1 )
QS(`,k;s,r;β)

(
Xk+β` +

(
r `+1

s−1 + `
)

y
)

is a special

case of a result of [4] [Theorem 1.1]. The following table contrasts Bernevig and Haldane notation
(B-H notation) with our notation in order to transcribe the second clustering property into our notation.
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Our notation B-H notation
` k
k 0
s r

r
s−1 + 1 s

s + r s(r− 1) + 1
St(`, 0; s; β) λ

β
k,r,1

QS(`, 0; s, r; β) λ
β
k,r,s

r `+1
s−1 + ` n0
Xk+β` zn0+1 + · · ·+ zN

y Z = z1 = · · · = zn0

We recover the equality in Equation (1) by setting k = 0 in Equation (9). This proves the second
clustering property conjectured by Bernevig and Haldane [2]. Furthermore, Equation (8) is more
general than those conjectured in [2] for two reasons. First, we consider quasistaircase partitions
QS(`, k; s, r; β), with 0 ≤ k < `, while only the case k = 0 was investigated in [1,2]. It should be
interesting to know if some of these polynomials can be interpreted as wave functions in FQHT.
In addition, when ω1 6= 1, the Macdonald polynomial does not degenerate to a Jack polynomial when
u tends to 1.

More generally, the following equality is obtained from Theorem 4:

J(
− `+1

s−1 )
QS(`,k;s,r;β)

(
Xk + `Y0,β−1 +

(
r
`+ 1
s− 1

+ `

)
yβ

)
(∗)
=

k

∏
i=1

(xi − yβ)
r+s

β

∏
α=0

[
(yα − yβ)

(s+r)`
k

∏
i=1

(xi − yα)
s

β−1

∏
i=α+1

(yi − yα)
`s

]
.

We finish this subsection by presenting more general identities involving partitions which are not
quasistaircase for the considered specialization. For instance,

J(−3)
[43210](x + 2y1 + 2y2)

(∗)
= y1y2(y1 − y2)

4(x− y1)
2(x− y2)

2.

This formula is in fact a specialization of

P[43210]

(
x + (1 + t)y1 + (1 + t)y2; q = t−3, t

)
(∗)
= y1y2(y1 − ty2)(y1 − t2y2)(y2 − ty1)(y2 − t2y1)(tx− y1)(x− t2y1)(tx− y2)(x− t2y2).

Notice that this polynomial does not satisfy the HW condition. This suggests that there exists a
Macdonald version of the result of [4], Theorem 1.1.

8.2. Other Clustering and Factorizations Properties

The first and third clustering conjectures suggest that there exist many ways to factorize HW
Macdonald polynomials by specializing the variables involved. Let us illustrate this remark by giving
an example.

For a partition λ = [λ1, λ2, λ3], consider the alphabet Xλ = 1−uλ1
1−u x1 +

1−uλ2
1−u x2 +

1−uλ3
1−u x3. Let ρi

be the operator that adds 2 to the ith entry of λ if, after this operation, the resulting vector is still a
partition. We set also Ri;k = ∏

1≤j≤N
j 6=i

(ukxi − xj).
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Starting with MS[420](X111; q = u−2, t = u), and by X111ρ1 = X311, one obtains

MS[5304](X311; q = u−2, t = u) = R1;3MS[420](X111; q = u−2, t = u).

The next step is more interesting because there are two kinds of specializations that provide
nice factorizations:

MS[6406](X511; q = u−2, t = u)
(∗)
= R1;5MS[5304](X311; q = u−2, t = u), and

MS[6406](X331; q = u−2, t = u)
(∗)
= R2;3MS[5304](X311; q = u−2, t = u).

Continuing, we get other new nice factorizations:

MS[7508](X711; q = u−2, t = u)
(∗)
= R1;7MS[6404](X511; q = u−2, t = u),

MS[7508](X333; q = u−2, t = u)
(∗)
= R3;3MS[6404](X331; q = u−2, t = u),

MS[7508](X531; q = u−2, t = u)
(∗)
= R2;3MS[6404](X511; q = u−2, t = u),

MS[7508](X531; q = u−2, t = u)
(∗)
= R1;5MS[6404](X331; q = u−2, t = u).

The computation can be graphically represented as in Figure 5.

MS[420](X111)

MS[5303](X311)

MS[6405](X511) MS[6405](X331)

MS[7507](X711) MS[7507 ](X531) MS[7507](X333)

×R1,3

×R1,5 ×R2,3

×R1,7 ×R2,3 ×R1,5 ×R3,3

Figure 5. Computation of MS[4+r,2+r,01+2r ](Xλ; q = u−2, t = u).

Using vanishing properties, it is not too difficult to show that, when λ1+λ2+λ3−3
2 = r,

MS[4+r,2+r,01+2r](Xλ; q = u−2, t = u) factorizes nicely, and that, if λρi is well defined, one has

MS[4+(r+1),2+(r+1),01+2r](Xλρi ; q−2, t)
(∗)
= Ri,λρi [i]MS[4+r,2+r,01+2r](Xλ; q = u−2, t = u).

This kind of formula takes place in a wider picture which will be investigated in a future paper.

8.3. More Factorizations of Nonsymmetric Macdonald Polynomials

In the preparation of this paper, the authors used experiments with symbolic computation with
Maple [43] to develop conjectures, for which the proofs presented in this paper are constructed
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with mathematical rigor and do not depend on computers. The experiments also resulted in some
fascinating examples which as yet have not led to any guesses at possible underlying structure.

We finish this paper presenting some specializations of nonsymmetric Macdonald polynomials
that factorize nicely and that are not included in the results presented.

E[210](x1, x2, x3; q = u−2, t = u)
(∗)
=(ux2 − x1)(ux3 − x1)(ux3 − x2),

E[630](x1, x2, x3; q = u−2, t = u3)
(∗)
= (x2u− x3) (−ux3 + x2)

(
x2 − u3x3

)
(x1u− x3)

× (−ux3 + x1)
(

x1 − u3x3
)
(x1u− x2) (x1 − x2u)

(
x1 − x2u3) ,

E[420](x1, x2, x3; q = −t, t)
(∗)
= t(x2 + x3)(−tx3 + x2)(x3 + x1)(−tx3 + x1)(x1 + x2)(x1 − x2t),

E[221100](x1, x2, y1, ty1, y2, ty2; q = t−3, t)
(∗)
=(y1 − y2t2)(y1 − y2t)(x2 − y2t2)(x2 − t2y1)(x1 − y2t2)(x1 − t2y1)

E[42200](x1, y1, y1u2, y2, y2u2; q = u−3, t = u2)
(∗)
=(y1 − y2u4)(y1 − y2u)(y1u− y2)

×(y1 − y2u2)(x1 − y2u4)(x1 − y2u)(x1 − y1u4)(x1 − y1u),

E[0022](ty, y, x3, x4; q = t−3, t) =(∗)(tx4 − y)(tx3 − y)x4x3.

Notice that the last example is not singular and we have

E[0022](ty, y, x3, x4; q = t−3, t)
(∗)
6= M[0022](ty, y, x3, x4; q = t−3, t)

(∗)
=(tx4 − y)(tx3 − y)(x4 − 1)(x3 − 1).

However, it is deduced from the singular polynomial E[1100](ty, y, x3, x4; q = t−3, t)
(∗)
=(tx4 −

y)(tx3 − y), by applying the affine step twice.
Some other examples involving vectors which are not partitions are more interesting. For instance,

the polynomial E1010(x1, x2, x3, x4; q = t−3, t) is singular and we have

E[1010](ty, x2, y, x4; q = t−3, t)
(∗)
=(tx4 − y)(tx2 − y).

More general formulas for quasistaircases are also observed. For instance,

E[32000](x1, x2, y, ty, t2y; q = t−2, t) =(∗) (x2 − yt3) (x2 − yt)
(
x1 − yt3) (x1 − yt) (x1 − tx2) ,

E[4300000](x1, x2, y, ty, t2y, t3y, t4y; q = t−2, t)
(∗)
= (x2 − ty)

(
x2 − yt3

) (
x2 − yt5

)
(x1 − yt)

×
(

x1 − yt3) (x1 − yt5) (x1 − tx2) .

Numerical evidence suggests that one has a formula very close to those of Theorem 4 but for a
specialization under the form

(t, q) =
(

u
s
g , u−

`+1
g ω1

)
,

where g = gcd(`+ 1, s) and ω
s
g
1 is a gth primitive root of the unity.
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In addition, as in Section 8.2, we observe factorizations for other specializations of the variables
xi’s. For instance

E[4300000](x1, t2y1, y1, ty1, y2, ty2, t2y2; q = t−2, t)
(∗)
= (y1 − ty2)

(
y1 − t3y2

)
(ty1 − y2)

× (x1 − ty2)
(

x1 − t3y2

)
(x1 − ty1)

(
x1 − t3y1

)
.

The precise statements, proofs, and connection with the factorizations of symmetric Macdonald
polynomials remain to be investigated.
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