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Abstract: Because of the efficient tradeoff in area–time complexities, digit-serial systolic multiplier
over GF(2m) has gained substantial attention in the research community for possible application in
current/emerging cryptosystems. In general, this type of multiplier is designed to be applicable to
one certain field-size, which in fact determines the actual security level of the cryptosystem and thus
limits the flexibility of the operation of cryptographic applications. Based on this consideration, in this
paper, we propose a novel hybrid-size digit-serial systolic multiplier which not only offers flexibility
to operate in either pentanomial- or trinomial-based multiplications, but also has low-complexity
implementation performance. Overall, we have made two interdependent efforts to carry out the
proposed work. First, a novel algorithm is derived to formulate the mathematical idea of the
hybrid-size realization. Then, a novel digit-serial structure is obtained after efficient mapping from
the proposed algorithm. Finally, the complexity analysis and comparison are given to demonstrate
the efficiency of the proposed multiplier, e.g., the proposed one has less area-delay product (ADP)
than the best existing trinomial-based design. The proposed multiplier can be used as a standard
intellectual property (IP) core in many cryptographic applications for flexible operation.

Keywords: digit-serial; hybrid-size; low-complexity; pentanomial; systolic structure; trinomial

1. Introduction

Finite field multipliers have gained substantial attentions recently due to their critical roles in
many cryptosystems such as elliptic curve cryptography (ECC), especially on hardware platforms [1].
Typically, there are three types of structuring related to the finite field multipliers, namely the bit-serial,
bit-parallel, and digit-serial. Because of the efficient tradeoff in area–time complexities, digit-serial
structures usually are more widely preferred than the other two in many applications [2].

Along with the recent advance in artificial intelligence technology, systolic structure has
becoming more and more attracting in high-performance hardware platforms [3]. Accordingly,
digit-serial systolization of finite field multipliers have the potential to be applied in high-performance
cryptosystems due to their superior features such as high-throughput rate and regularity and
modularity. Thus far, several efforts have been made on efficient implementation of digit-serial
systolic finite field multipliers: (i) an efficient systolic finite field multiplier is presented in [3], where its
complexity is significantly reduced compared with the previous reported one; (ii) a systolic-like
digit-serial multiplier is reported in [4] and it is found that the systolic structure proposed is specifically
suitable for Reed–Solomon Codec; (iii) an efficient digit-serial systolic multiplier is presented in [5];
(iv) the same authors reported a unified digit-serial systolic multiplier based on trinomials and
all-one-polynomials [6]; (v) a low-complexity systolic multiplier is given in [7], where its complexity is
optimized to be minimal; (vi) an efficient resource-sharing technique is employed in another digit-serial
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systolic multiplier to achieve low critical-path and high-performance operation [8]; and (vii) an efficient
systolic digit-serial multipliers is reported in [9], where the complexity is so far the least in the literature.
These designs, undoubtedly, represent the major advance in the field of systolic digit-serial multipliers.

On the other side, however, the existing digit-serial systolic finite field multipliers, more or less,
still have some drawbacks to be overcome: (i) although the digit-serial systolic multipliers have
relatively few processing elements (PEs), the register-complexity of the multipliers is still large; and (ii)
the current digit-serial multipliers are designed to be fixed field-size, and thus cannot provide enough
flexibility to meet the current technology trend, i.e., one cryptosystem can meet different security
level (field-size) need and the designers have to finalize different field-size multipliers with respect
to different application requirement, which is some sort of inefficient in integrated chip (IC) design.
Facing with these two challenges, in this paper, we have proposed a novel hybrid-size digit-serial
systolic multiplier with low-complexity implementation. The proposed work is carried out through a
combination of two coherent interdependent stages’ efforts: (i) a novel hybrid-size digit-serial systolic
multiplication algorithm is proposed which provides enough flexibility to both pentanomial- and
trinomial-based multipliers; and (ii) the proposed algorithm is then mapped into a novel systolic
structure through a series of optimization techniques. Thorough complexity analysis and detailed
comparison have also been made to confirm the efficiency of the proposed design, i.e., it not only offers
flexibility to be switched from one field-size to another one, but also has smaller area–time complexities
compared with the existing single field-size digit-serial systolic multipliers. The proposed design
can not only be used as a standard intellectual property (IP) core for various field-size cryptosystem,
but also can be employed as a core computation unit in reconfigurable cryptographic processor (where
demands flexible field-size choice).

The rest of the paper is organized as follows: Section 2 presents the mathematical formulation of
the proposed digit-serial multiplication algorithm. Section 3 shows the detailed steps of the proposed
systolic structure mapped from the algorithm. The analysis and comparison are provided in Section 4.
The conclusion is given in Section 5.

2. Mathematical Formulation of the Proposed Multiplication Algorithm

Let the three elements A, B, and C ∈ GF(2m) and let the polynomial basis be the {1, x, x2, . . .},
where x is the root of f (x) ( f (x) determines the field) [1]. Suppose for two field-sizes with m1 and m2,
and m1 < m2, we can first define that

A1 =
m1−1

∑
i=0

aixi, B1 =
m1−1

∑
i=0

bixi, C1 =
m1−1

∑
i=0

cixi, (1)

and

A2 =
m2−1

∑
i=0

aixi, B2 =
m2−1

∑
i=0

bixi, C2 =
m2−1

∑
i=0

cixi, (2)

where ai, bi, and ci ∈ GF(2) and it is clear that ai in both A1 and A2 are the same (for 0 ≤ i ≤ m2 − 1),
and the same applies to bi and ci.

Suppose in the field-size of m1, let C1 be the product of A1 and B1 (corresponding field polynomial
is f1(x)), we can have

C1 =A1B1 mod f1(x)

=
m1−1

∑
i=0

bi(xi · A1) mod f1(x)

=
m1−1

∑
i=0

bi A
(i)
1 ,

(3)
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where A(0)
1 = A1 and A(i)

1 = xi · A1 mod f1(x). Similarly, for the field-size of m2, we can have C2 as
the product of A2 and B2 (the field polynomial is f2(x)):

C2 =A2B2 mod f2(x)

=
m2−1

∑
i=0

bi(xi · A2)mod f2(x)

=
m2−1

∑
i=0

bi A
(i)
2 ,

(4)

where, similarly, we have A(0)
2 = A2 and A(i)

2 = xi · A2 mod f2(x). One can then have

C2 =
m1−1

∑
i=0

bi A(i)
2 +

m2−1

∑
i=m1

bi A(i)
2 (5)

Then, after comparing Equation (3) with Equation (5), we can have

Cj =
m1−1

∑
i=0

bi A(i)
j + k j ·

m2−1

∑
i=m1

bi A(i)
2 , (6)

where j = 1 or 2 according to Equations (3) and (5), respectively, and

k j = 0, if j = 1

k j = 1, if j = 2.
(7)

Then, we can have the following definitions:
For any integer of m2, we have m2 = w · d (meanwhile, one can have m1 = w · d1); then,

we can define

B1 = [b0, b1, . . . , bw−1]

B2 = [bw, bw+1, . . . , b2w−1]

· · · · · · · · ·
Bd = [bm2−w, bm2−w+1, . . . , bm2−1].

(8)

Similarly, we can have

A1 = [A(0)
j , A(1)

j , . . . , A(w−1)
j ]

A2 = [A(w)
j , A(w+1)

j , . . . , A(2w−1)
j ]

· · · · · · · · ·

Ad = [A(m2−w)
2 , A(m2−w+1)

2 , . . . , A(m2−1)
2 ],

(9)

where we assume m2 −m1 > w.
It is clear that we can now transfer Equation (6) into

Cj = A1BT
1 + A2BT

2 + · · ·+ k j AdBT
d

=
d

∑
u=1

ξ(k j)AuBT
u ,

(10)
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where ξ(k j) works for terms only when m1 ≤ i ≤ m2 − 1 and

ξ(k j) = 1, if j = 2

ξ(k j) = 0, if j = 1,
(11)

where we can see that Equation (10) can be used to perform two field-size finite field multiplications if
we select the control signal properly.

The above equations can thus be summarized as Algorithm 1.

Algorithm 1. Proposed multiplication algorithm for hybrid field-size-based implementation

Inputs: A1 and B1 (also A2 and B2) are the pair of elements (polynomial basis representation) in GF(2m) for
field-size of m1 and m2, respectively

Output: Cj = Aj · Bj mod f j(x) for j = 1 or 2 and f j(x) is the field polynomial

1. Initialization step

1.1 Define B1, B2, . . ., Bd for m2 = w · d according to (8)
1.2 Define A1, A2, . . ., Ad for m2 = w · d according to (9)
1.3 Define D = 0

2. Multiplication step

2.1 According to the field-size selection signal, determine the value of j
2.2 For 1 ≤ u ≤ d
2.3 D = D + ξ(kj)AuBT

u
2.4 End for

3. Final step

3.1 Get Cj = D

The detailed processes of Steps 2.2 and 2.4 are the key multiplication processes.
Note that, due to the difference of the field polynomial f j(x), the process of deriving A(i+1)

j from

A(i)
j is slightly different from each other. For instance, assume

A(i)
j =

mj−1

∑
v=0

a(i)j→vxv, (12)

where we can have

a(i+1)
j→0 = a(i)j→mj−1

a(i+1)
j→s = a(i)j→s−1 + a(i)j→m−1

a(i+1)
j→v = a(i)j→v−1, for 1 ≤ v ≤ mj − 1,

(13)

when f j(x) is a trinomial of f j(x) = xmj + xs + 1. While, for pentanomial f j(x) = xmj + xs1 + xs2 +

xs3 + 1, we can have

a(i+1)
j→0 = a(i)j→mj−1, a(i+1)

j→s1
= a(i)j→s1−1 + a(i)j→mj−1

a(i+1)
j→s2

= a(i)j→s2−1 + a(i)j→mj−1, a(i+1)
j→s3

= a(i)j→s3−1 + a(i)j→mj−1

a(i+1)
j→v = a(i)j→v−1, for 1 ≤ v ≤ mj − 1 and v 6= s1, s2, s3.

(14)

Besides that, one has to note that the National Institute of Standards and Technology (NIST) has
recommended five irreducible polynomials for ECC implementation [10,11] (three pentanomials and
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two trinomials). Without loss of generality, we can assume m1 is a pentanomial and m2 is a trinomial.
The corresponding structure presented below is also based on this assumption.

3. Proposed Hybrid-Size Digit-Serial Systolic Multiplier

In this section, we propose several optimization technique to successfully map the corresponding
algorithm into desired systolic structure. Specifically:

3.1. Novel Input Data Broadcasting Scheme

One major component of the register-complexity of a systolic finite field multiplier comes from the
input data broadcasting. In this subsection, we propose a novel input data broadcasting that the main
inputs to each PE are fed independent from each other and thus the relation of these data between the
PEs is reduced to minimum, which can significantly reduce the related register-complexity among
systolic array. In Figure 1, the proposed input data broadcasting technique is employed.

 …

1 11

PE-1 PE-2 PE-d

: selective connection

 …
PE-0Aj

b0

b1

...

bw-1

bw

bw+1

...

b2w-1

bm -w

bm -w+1

...

bm -12

2

2

Aj

(0)

...

Aj

(w-1)

Aj

(w)

...
Aj

(2w-1)

Aj

(m -w)

...

Aj

(m -1)

2

2

systolic array

Figure 1. The proposed input data broadcasting technique.

As shown in Figure 1, according to Step 2.3 of Algorithm 1, each PE in the systolic array is fed
with two inputs, namely the A(i)

j and the corresponding bi. The output of each PE is then transferred
to the next PE on its right. The complete output can be delivered after (d + w) cycles, with the help
of an extra accumulation cell. Since differences exist among all the A(i)

j , we have used the selective
connection to rightly connect each PE according to Algorithm 1. Because only one signal pipelining to
the next PE is used, the register-complexity of the systolic array is significantly reduced. The details of
the internal structures of these PEs are shown below. Note that, due to the simple internal structure
of the PEs, i.e., critical-path of the PE is quite small, the proposed broadcasting technique has very
limited influence on the overall time complexity.

3.2. Proper Arrangement on the Input Data Delivery

The two inputs, i.e., Aj and Bj, must be properly arranged to meet the data dependence
requirement for hybrid-size operation. For Bj, according to Algorithm 1, all bits are delivered in
a grouped-sequential way, which can be realized by the structure, as shown in Figure 2. One can see
that the shift-register is producing the required output bits to each PE of Figure 1 based on Algorithm 1,
while the hybrid-size selection is done by the inserting of an extra MUX (MUX is short for multiplexer)
in the shifting path such that the shift-register can be working under the field-size of either m1 or m2

through the proper control of the MUX (control signal).
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Bj shift-register

b0
... bw-1 bw b2w

... ... bm -1
... bm -121

...

control signal

b0

b1

...

bw-1

bw

bw+1

...

b2w-1

se
qu

en
ce

b2w

b2w+1

...

b3w-1

Figure 2. The proposed shift-register to deliver input data Bj.

The operand Aj, through the help of PE-0, delivers the correct output bits to each PE according
to Algorithm 1, which requires a more sophisticated structure, as shown in Figure 3a. From
Equations (13) and (14), one can observe that there are one XOR gate involved when obtaining
A(i+1)

2 from A(i)
2 (trinomial-based multiplication) while it requires three XOR gates when deriving

A(i+1)
1 from A(i)

1 . Thus, according to the data dependence requirement of Algorithm 1, one can
find that there are d number of operands being delivered from PE-0 at the same cycle period, i.e.,
A(wu)

j , A(wu+1)
j , . . . , A(wu+d−1)

j . These operands, in fact, involve multiple identical bits between each

other and thus can be shared. For simplicity of discussion, let assume f2(x) = x233 + x74 + 1
and f1(x) = x163 + x7 + x6 + x3 + 1, we can have (d1 = 13, d = 16, a0, a1, a2, . . . , a162 for A1,
and a0, a1, a2, . . . , a232 for A2)

[A(0)
1 A(1)

1 A(2)
1 · · · A(12)

1 ]

=



a0 a162 a161 · · · a151

a1 a0 a162 · · · a152

a2 a1 a0 · · · a153

a3 a2 + a162 a1 + a161 · · · a154 + a150

a4 a3 a2 · · · a155

a5 a4 a3 · · · a156

a6 a5 + a162 a4 + a161 · · · a157 + a150
...

...
...

. . .
...

a162 a161 a160 · · · a150


,

(15)

and

[A(0)
2 A(1)

2 A(2)
2 · · · A(15)

2 ]

=



a0 a232 a231 · · · a218

a1 a0 a232 · · · a219

a2 a1 a0 · · · a220

a3 a2 a1 · · · a221

a4 a3 a2 · · · a222

a5 a4 a3 · · · a223

a6 a5 a4 · · · a224
...

...
...

. . .
...

a232 a231 a230 · · · a217


,

(16)



Symmetry 2018, 10, 540 7 of 11

where we can see that the identical bits, e.g., a0, a1, . . ., can be shared among these A(i)
j (0 ≤ i ≤ 12),

as shown by the example in Figure 3b (where we have shown how the MUXes are located to obtain
hybrid-size implementation). Since other bits cannot be shared, we just use the MUX to connect with
the two bits at the same position (according to Equations (8) and (9)) such that, through the proper
working of these MUXes, the correct signals can be produced to the corresponding PE.

Aj

register

modular

.

Aj

(0)

...

Aj

(w-1)

Aj

(w)

...

Aj

(2w-1)

...

(a)

a0 a1 a2 a3 a4 a5

...
a162

...
a232

..
... ...

control signal output bits

(b)

Figure 3. The internal structure of PE-0 to deliver input data Aj: (a) internal structure; and (b) an example
of how the MUXes are inserted to obtain hybrid-size implementation for the modular cell in PE-0.

One can also notice that, according to Equations (9), (13), and (14), with the help of a modular
operation (done by the modular cell in Figure 3), the PE-0 delivers the corresponding output to each PE,
i.e., obtaining Au from Au−1 (for 1 ≤ u ≤ d/d1 ), which needs a delay time of 2TX (TX is the delay time
of an XOR gate, and it takes TX for trinomial-based multiplier and 2TX for pentanomial-based one [9]).
Besides that, one has to note that all the A(i)

j in one specific Au can be obtained through the sharing of
identical bits, as represented by the selective connection in Figures 1 and 3. Following this arrangement,
the proposed hybrid-size structure operates in an ordered form according to Algorithm 1.

3.3. Hybrid Accumulation

The accumulation of the digit-serial operation also needs adjustment when compared with the
conventional ones. As shown in Figure 4, where we have used a m1-bit MUX cell to obtain the
hybrid-size accumulation (where the accumulation cell is realized through the XOR cell connected with
the register cell in a back-loop style). Note that these m1 bit-level MUXes connect with the m1-bit output
of PE-d1, while the remaining (m2 −m1) bits of PE-d are directly connected with the accumulation cell.
According to Equations (8) and (9), and Algorithm 1, we can let the MUX determine the multiplier is
working under the condition of field-size of either m1 bits or m2 bits. Besides that, the number of output
bits is also selected according to the specific chosen field-size, as shown in Figure 4, i.e., after designated
number of cycle periods, the output is produced based on the value of the control signal.
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1 11

PE-1 PE-2 PE-d1

 …

2

systolic array

 … PE-d

m1

.

...

...
m1 bitsm2 bits

...

...

m
1 
bi

ts
: C

1

m
2 
bi

ts
: C

2

control signal

Figure 4. The detailed arrangement of how the accumulation cell operate to realize the hybrid-size
implementation (only m1 bit-level MUXes are employed and the remaining (m2−m1) bits of the output
of PE-d are directly connected with the accumulation cell), where the black box in the accumulation
cell denotes the register cell.

3.4. Final Structure

The internal structure of each PE is shown in Figure 5b, where it mainly consists of an AND cell,
an XOR cell, and a register cell. With the combination of all the optimization techniques introduced
above, we have presented the finalized proposed hybrid-size digit-serial structure, as shown in
Figure 5a. All the control signals connected with the inserted MUXes collaborate together to switch the
finite field multiplier from operating in one field-size to another. After designated cycle periods of
accumulation, the multiplier delivers the desired output.

 …

1 11

PE-1 PE-2 PE-d1

 …
systolic array

 … PE-d

m1

.
PE-0Aj

output

Bj shift-register

control signal

control signal
control signal

1 PE

(a) (b)

Figure 5. The final structure: (a) the proposed structure; and (b) the internal structure of a regular PE.

4. Complexity and Comparison

For simplicity of discussion, we just follow the assumption in Section 3 that m1 comes from
a pentanomial while m2 is the field-size of a trinomial. The detailed complexity of the proposed
multiplier is: (i) Systolic array: The systolic array has d number of PEs, where each PE has m2 AND
gates, m2 XOR gates, and m2 registers. (ii) Shift-register: The shift-register for Bj requires m2 registers
and one MUX. (iii) Accumulation cell: The accumulation cell requires m1 MUXes, m2 XORs, and m2

registers. (iv) PE-0: There are in total (3d1 + d− 4) XOR gates, (4d1− 4) MUXes, and (m2 + 3d1 + d− 4)
registers involved. Moreover, the proposed structure has a critical-path of (2TX + TM) (TM is the delay
time of an MUX), and it takes (d + w) cycles to produce the desired output for hybrid-size operation.

Overall, the complexity of the proposed design is listed along with the existing digit-serial
multipliers (trinomial- or pentanomial-based designs) in Table 1 in terms of logic gates number, register
number, latency (number of cycle periods), and critical-path. Note that the designs of [5,6] are based
on all-one-polynomials (or used all-one-polynomials as a computation core), we thus do not list them
in Table 1, just for a fair comparison. As shown in Table 1, one can see that the proposed hybrid-size
digit-serial multiplier has relatively better area–time complexities than the existing ones, especially
when considering that the proposed one can offer hybrid field-size operation (the existing ones are
all single field-size based). To have a detailed comparison, we have also used the NanGate’s Library
Creator and the 45-nm FreePDK Base Kit from North Carolina State University (NCSU) [12] to estimate
the area and time complexities of all the designs for m2 = 233, m1 = 163, d = 16, and d1 = 13.
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The obtained area, delay (latency time), power, area-delay product (ADP), and power-delay product
(PDP) are listed in Table 2 for a comparison. Again, we can observe that the proposed one has better
performance than the existing ones, e.g., it has at least 7.3% less ADP than the best trinomial one of [8],
while it offers the flexibility to execute the pentanomial-based multiplier. Compared with the existing
pentanomial ones, the proposed one still has better ADP when considering the scaling of the field-size.
The proposed one also has 41.5% less ADP and 34.6% less PDP than the conventional hybrid field-size
implementation (we have combined the best existing ones of [8,9] together to realize it).

Table 1. Comparison of Area–Time Complexities of Various Digit-Serial Systolic Multipliers.

Design AND XOR Register Latency Critical-Path

Digit-serial systolic structures (trinomial of size m2)

[7] 1 m2d d(2 + m2) + 1 2m2d + 3m2 d + w TA + TX

[8] 1 m2d m2d + m2 − d + 1 2m2d + 2m2 d + w TA + TX

Digit-serial systolic structures (pentanomial of size m1)

[4] 2 2m1d1 + m1 2m1d1
m1/d1(10d1+ 3m1/d1

d1(TA + TX+

1 + 9sd1/2 + s) TMUX)/(s + 1)

DS-I [9] m1d1
m1d1 + 3m1 2d1m1 + 2m1 d1 + w1 2TX−3m1/d1 + 3

Hybrid-size digit-serial systolic structures (pentanomial of size m1 and trinomial of size m2)

Proposed 3 m2d
m2d + m2 m2d + 2m2 d + w 2TX + TM

3d1 + d− 4 +3d1 + d− 4

TA, delay time of an AND gate; TM , delay time of an MUX; 1: For a fair comparison, the input bits of operand
Bj fed to each PE is finalized as 1 for [7,8] (a shift-register of m2 bits is also added). 2: (s + 1) refers to the
pipelined stage in the PE (here we choose s = 1), and 2m1 of MUX gates are not listed here. 3: There are also
(m1 + 4d1 − 3) MUXes involved.

Table 2. Comparison of Area–Time Complexities of Various Digit-Serial Systolic Multipliers.

Design Area (µm2) Delay (ns) 1 Power (µW/GHz) ADP (µm2× ns) PDP (µW/GHz× ns)

Digit-serial trinomial-based (m2 = 233, d = 16)

[7] 46,958 4.48 56,068 210, 372 251,185

[8] 46,174 4.48 55,726 206, 860 249,652

Digit-serial pentanomial-based (m1 = 163, d1 = 13)

[4] 22,675 45.63 35,412 1,034,660 1,615,850

[9] 26,998 4.16 33,139 112,312 137,858

Hybrid-size (m1 = 163 and m2 = 233)

Traditional 2 73,172 4.48 88,865 327,811 398,115

Proposed 29,961 6.4 40,672 191,750 260,301

1: delay = latency cycle number × critical-path. 2: Refers to the conventional implementation of two field-size
finite field multipliers; we have used the best existing ones of [8,9] to be combined together.

The proposed hybrid-size digit-serial systolic multiplier, undoubtedly, can be extended as a
standard IP core in various cryptosystems that demand different security levels. On the other hand,
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due to the low-complexity of the proposed design, it can also be used in cryptosystem for flexible
operation, in the case the user of that cryptosystem needs to change/upgrade the system. Moreover,
it is worth mentioning that the proposed hybrid field-size strategy can also be extended to multiple
filed-size implementation.

5. Conclusions

This paper presents a novel implementation of a hybrid field-size digit-serial systolic multiplier
over GF(2m). A novel digit-serial multiplication algorithm suitable for hybrid field-size realization
is proposed first. Then, through a series of optimization techniques, the proposed algorithm is
successfully mapped into a high-performance digit-serial systolic multiplier. The complexity analysis
and detailed comparison have been given to confirm the efficiency of the proposed design. Future
work may focus on the application of the proposed design in various cryptosystems.
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