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Abstract: In this paper, we propose a new covering-based set in which the lower and the upper
approximation operations are defined by neighborhood systems. We systematically discuss this new type
of covering-based set in two steps. First, we study the basic properties of this covering-based set, such as
normality, contraction, and monotone properties. Second, we discuss the relationship between the new
type of covering-based set and the other ten proposed sets.
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1. Introduction

Pawlak proposed the rough-set concept in 1982, and wrote many works on the subject [1,2].
It is a powerful mathematical tool for handing uncertainty. It has been widely used in many fields,
such as medical diagnosis, process control, biology, economics, biochemistry, chemistry, psychology,
environmental science, and conflict analysis. It can also be combined with fuzzy sets. Comparing with
other methods, classical rough-set theory has its merits. For instance, it does not add information in
the process of processing information data. Since then, many scholars have made many significant
contributions to developing rough theory [3–17]. However, classical rough-set theory is based on
partition or equivalence relation. The definition of the lower and upper approximations, which
is based on these relationships, is limited. Partition or equivalence relation is hard to be satisfied
since it has its limitations, and it was only used for dealing with complete information systems.
In order to solve this issue, one approach was to extend equivalence relations to tolerance or general
relations [18]. Another important approach was to relax the equivalence relation to a covering and
receive covering-based rough sets [19–21]. In 1983, Zakowski first proposed the concept of covering
rough sets, which generalized classical rough-set theory by using a covering relation instead of a
partition or equivalence relation [22]. This generalization is very useful because it disposes of classical
rough-set limitations. Subsequently, many scholars defined approximation operators that are based on
coverings. These covering approximation operators play an important role in theoretical and practical
fields [23–25]. The relationships among covering-based approximation operators have attracted
intensive research. There are also many scholars investigating various coverings. How to obtain
this useful information and deal with uncertain data has become a widely studied problem. In the
process of solving the problem, many scholars proposed certain methods, for example, rough-set
theory, fuzzy-set theory [26,27], statistical methods, and computing words [28].

In the following, Bonikowski et al. studied covering-based rough sets from the viewpoint of
formal concepts. At this time, covering-based rough sets, as a more powerful tool, can be used
to deal with problems that cannot be solved by classical rough-set theory, such as granularity
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problems in information systems. Up to now, about ten types of covering-based rough sets have
been proposed and studied [8,10,29], and there are many scholarly studies on the subject. T. Yang et al.
discuss covering reduction [30], while J. Zhan et al. investigated two types of covering-based
multigranulation rough fuzzy sets, and certain types of soft covering-based rough sets [31–33].
L. Zhang et al. investigated the class of fuzzy soft β-covering-based fuzzy rough sets and their
applications; they also did work on multicriteria fuzzy group decision making [34]. D′eer et al. studied
neighborhood operators for covering-based rough sets [35,36]. José et al. considered fuzzy techniques
for decision making and formal relationships among soft sets, fuzzy sets, and their extensions [37,38].
Przemyslaw Grzegorzewski discussed the separability of fuzzy relations [39] and Alcantud, J.C used
fuzzy techniques for Decision making [40].

In this paper, a new type of covering-based rough set is proposed. This paper is arranged as
follows: In Section 2, properties such as normality, contraction, and monotone are studied. If a property
does not hold, the necessary and sufficient conditions of a neighborhood system in which this property
holds are researched. In Section 3, the condition that the type of covering-based rough set equals the
other ten sets proposed by other scholars is evaluated and discussed.

2. Definition and Properties of Covering-Based Approximation Operators

Let U be a finite and nonempty set, called a universe; R be an equivalence relation on U, then the
partition induced by R is denoted by U/R = {X1, X2, · · ·Xn}. For any X ⊆ U, two subsets of U are
given as follows:

R(X) = ∪{Xi ∈ U/R : Xi ⊆ X}
R(X) = ∪{Xi ∈ U/R : Xi ∩ X 6= ∅}

The first subset R(X) and the second R(X) are the lower and upper approximation of X,
respectively.

Obviously, a partition of U is a covering of U, but a covering of U is not necessarily a partition of
U, so the definition of covering approximation space has been introduced. Before defining the new
type of covering-based rough set, it is necessary for us to give some basic definitions about covering
approximation space.

Definition 1 (Covering approximation space [8]). Let U be a universe, C a covering of U, then we call U
with covering C a covering approximation space, denoted by (U, C).

Definition 2 (Membership of a point x [12]). Let (U, C, N) be a covering approximation space. For a point
x ∈ U, FM(x) = {K ∈ C : x ∈ K}, called the membership of x.

Definition 3 (Minimal description of a point x [12]). Let (U, C, N) be a covering approximation space.
The minimal description of a point x is defined as

Md(x) = {K ∈ C : x ∈ K ∈ C ∧ (∀S ∈ C ∧ x ∈ S ⊆ K ⇒ K = S)}

Definition 4 (Neighborhood of point x [13]). Let (U, C) be a covering approximation space. For any
x ∈ U, we call N(x) = ∩{K ∈ C : x ∈ K} the neighborhood of point x.

Definition 5 (Neighborhood system [13]). Let (U, C) be a covering approximation space. We call
N = {N(x) : x ∈ U} the neighborhood system induced by (U, C).

Definition 6 (Covering [14]). Let U be a universe, a set of nonempty subsets C = {Ki ⊆ U : i ∈ I} is called
a covering of U if it satisfies ∪C = U, and Ki 6= ∅ for each i ∈ I.
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From now on, the symbol (U, C, N) is used to represent covering approximation space (U, C),
and N is the neighborhood system induced by (U, C).

Lemma 1. [13] Let (U, C, N) be a covering approximation space. If x, y ∈ U, such that x ∈ N(y),
then N(x) ⊆ N(y).

Proposition 1. Let (U, C, N) be a covering approximation space. N forms a partition of U⇔, there does not
exist a pair x, y ∈ U, such that x ∈ N(y) and y /∈ N(x).

Proof. Necessity is simple, we only need to prove sufficiency. Suppose there does not exist a pair
x, y ∈ U, such that x ∈ N(y) and y /∈ N(x), but N is not a partition of U. We take two conditions
into consideration: (1) ∃x0, y0 ∈ U, such that x0 ∈ N(y0) and y0 /∈ N(x0). This is a contradiction
to the assumption. (2) ∃x1, y1 ∈ U such that N(x1) ∩ N(y1) 6= ∅, x1 /∈ N(y1) and y1 /∈ N(x1).
Select z1 ∈ N(x1) ∩ N(y1), since y1 /∈ N(x1), by Lemma 1, we obtain a pair y1, z1 ∈ U, such that
z1 ∈ N(y1) and y1 /∈ N(z1). It is also a contradiction to the assumption. From Conditions (1) and (2),
the proof of the sufficiency is completed.

Definition 7. Let (U, C, N) be a covering approximation space. For X ⊆ U, the covering-based lower
approximation operation N : 2U → 2U is defined as

N(X) = ∪{N(x) : N(x) ⊆ X}

Tthe covering-based upper approximation operation N : 2U → 2U is defined as

N(X) = N(X) ∪ {x ∈ U : N(x) ∩ (X− N(X)) 6= ∅}

Definition 8. Let (U, C, N) be a covering approximation space. For X ⊆ U,
(1) If N(X) = X, then X is called an inner definable subset.
(2) If N(X) = X, then X is called an outer definable subset.
(3) If N(X) = X = N(X), then X is called a definable subset.

The following theorem describes what the essence of an inner definable, outer definable, and
definable subset is.

Theorem 1. Let (U, C, N) be a covering approximation space. For X ⊆ U,
(1) X is an inner definable subset⇔ ∃A ⊆ U such that X = ∪{N(x) : x ∈ A}.
(2) X is an outer definable subset⇔ ∀x /∈ X ⇒ (N(x) ∩ X) ⊆ N(X).
(3) X is a definable subset⇔ X is an inner definable subset.

Proof. The proof is simple.

Remark 1. X is a definable subset⇔ X is an inner definable subset⇒ X is an outer definable subset, but X is
an outer definable subset; X is an inner definable subset.

Example 1. If let U = {1, 2, 3, 4, 5}, C = {{1, 2}, {3, 4}, {4}, {5}}, X0 = {1, 2, 3}, then N(X0) = {1, 2} 6=
X0, but N(X0) = {1, 2, 3} = X0.



Symmetry 2018, 10, 539 4 of 12

Proposition 2. Let (U, C, N) be a covering approximation space. ∀X, Y ⊆ U, we have:

(1) N(U) = U(Conormality)

(2) N(U) = U(Conormality)

(3) N(∅) = ∅(Normality)

(4) N(∅) = ∅(Normality)

(5) N(X) ⊆ X ⊆ N(X)(Contraction− Extension)

(6) N(X ∩Y) = N(X) ∩ N(Y)(Multiplication)

(7) X ⊆ Y ⇒ N(X) ⊆ N(Y)(Monotone)

(8) N(N(X)) = N(X)(Idempotency)

(9) N(N(X)) = N(X)(Idempotency)

(10) N(X) ∪ N(Y) ⊆ N(X ∪Y)

(11) N(X ∪Y) ⊆ N(X) ∪ N(Y).

Proof. The proofs of (1)–(7), (10), and (11) are obvious. We only prove (8) and (9).
Firstly, we prove (8). From Proposition 2, Property (5), N(N(X)) ⊆ N(X) holds. ∀y ∈ N(X),

since N(X) = ∪{N(x) : N(x) ⊆ X}, so N(y) ⊆ N(X). By the definition of N(N(X)), we have
y ∈ N(N(X)). This means N(X) ⊆ N(N(X)), combining N(N(X)) ⊆ N(X), the proof of Property (8)
is completed.

Secondly, we prove Property (9). From Proposition 2 Property (5), N(X) ⊆ N(N(X)) holds.
∀x ∈ N(N(X)), we take two conditions into consideration: (a) x ∈ N(N(X)), we have x ∈ N(X)).
(b) N(x) ∩ (N(X) − N(N(X))) 6= ∅, select x0 ∈ N(x) ∩ (N(X) − N(N(X))). Since x0 ∈ N(X) −
N(N(X)), so x0 /∈ N(X) and N(x0) ∩ (X − N(X)) 6= ∅. On the other hand, from the condition that
x0 ∈ N(x) and Lemma 1, we have N(x) ∩ (X− N(X)) 6= ∅. This means that x ∈ N(X). According to
(a)(b), the proof of (9) is completed.

Generally speaking, suppose (U, C, N) is a covering approximation space. (\)X ⊆ Y ⊆ U ;
N(X) ⊆ N(Y), (]) N(X ∪Y) = N(X) ∪ N(Y) does not always hold.

Example 2. Let U = {1, 2, 3, 4, 5, 6}, C = {{1}, {2}, {3}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5, 6}}, X0 =

{1, 2, 3, 4}, Y0 = {1, 2, 3, 4, 5}, then X0 ⊆ Y0, N(X0) = {1, 2, 3, 4, 5, 6} * N(Y0) = {1, 2, 3, 4, 5} and
N(X0 ∪Y0) = {1, 2, 3, 4, 5} 6= N(X0) ∪ N(Y0) = {1, 2, 3, 4, 5, 6}.

Theorem 2. Let (U, C, N) be a covering approximation space. ∀X∀Y[(X ⊆ Y ⊆ U)⇒ (N(X) ⊆ N(Y))]⇔
∀X∀Y(N(X ∪Y) = N(X) ∪ N(Y))

Proof. “⇒”. ∀X, Y ⊆ U, since X, Y ⊆ (X ∪ Y), so N(X) ∪ N(Y) ⊆ N(X ∪ Y). By Proposition 2 (11),
we have N(X ∪Y) = N(X) ∪ N(Y).

“⇐”. ∀X ⊆ Y ⊆ U, since X ∪ Y = Y, so N(Y) = N(X ∪ Y) = N(X) ∪ N(Y). This means that
N(X) ⊆ N(Y)).

Theorem 3. Let (U, C, N) be a covering approximation space. ∀X∀Y[(X ⊆ Y ⊆ U) ⇒ (N(X) ⊆ N(Y))]
⇔ There does not exist a pair x, y[(|N(x)| > 1) ∧ (|N(y)| > 1) ∧ (x ∈ N(y)) ∧ (y /∈ N(x))].

Proof. “⇒”, proof by contradiction. Suppose ∃x0∃y0[(|N(x0)| > 1)∧ (|N(y0)| > 1)∧ (x0 ∈ N(y0))∧
(y0 /∈ N(x0))]. Select z0 ∈ N(x0) and x0 6= z0, let X0 = N(x0)− {z0} and Y0 = N(x0). We can learn
that X0 ⊆ Y0, y0 ∈ N(X0) and y0 /∈ N(Y0). This means N(X0) * N(Y0), contradicts the necessity
assumption.
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“⇐”, proof by contradiction. Suppose ∃X0∃Y0∃p0[(X0 ⊆ Y0) ∧ (p0 ∈ N(X0)) ∧ (p0 /∈ N(Y0))].
Since p0 /∈ N(Y0), p0 /∈ Y0 and p0 /∈ X0. From the fact that p0 ∈ N(X0), we have N(p0) ∩ (X0 −
N(X0)) 6= ∅. Select q0 ∈ N(p0) ∩ (X0 − N(X0)), take the conditions p0 /∈ X0 and p0 /∈ N(Y0) into
consideration, and we have p0 6= q0, q0 ∈ N(p0), |N(q0)| > 1 and p0 /∈ N(q0). This means that
p0, q0[(|N(p0)| > 1) ∧ (|N(q0)| > 1) ∧ (q0 ∈ N(p0)) ∧ (p0 /∈ N(q0))], contradicting the assumption
of sufficiency.

Corollary 1. By using Theorems 2 and 3, we obtain the fact that ∀X∀Y(N(X ∪ Y) = N(X) ∪ N(Y)) ⇔
There does not exist a pair x, y[(|N(x)| > 1) ∧ (|N(y)| > 1) ∧ (x ∈ N(y)) ∧ (y /∈ N(x))].

Proposition 3. Let (U, C, N) be a covering approximation space. The properties below hold:

(1)N(U − N(X)) ⊆ U − N(X)

(2)N(U − X) ⊆ U − N(X)

Generally speaking, equality N(U − N(X)) = U − N(X) and N(U − X) = U − N(X) does not
always hold.

Example 3. Let U = {1, 2, 3, 4}, C = {{1}, {2}, {3}, {3, 4}}, X0 = {1, 2, 3}. We have N(U − N(X0)) =

∅ 6= U − N(X0) = {4}

Example 4. Let U = {1, 2, 3, 4, 5}, C = {{1}, {2}, {3}, {1, 2, 3, 4}, {5}}, X0 = {1, 2, 3}. We have N(U −
X0) = {5} 6= U − N(X0) = {4, 5}.

Theorem 4. Let (U, C, N) be a covering approximation space. ∀X[N(U − N(X)) ⊆ (U − N(X))] ⇔
N forms a partition of U.

Proof. “⇒”, proof by contradiction. Suppose N does not form a partition of U. From Proposition 1,
we can obtain x0, y0 ∈ U, such that x0 ∈ N(y0) and y0 /∈ N(x0). If we choose X0 = N(x0), then
y0 ∈ U − N(X0) and y0 /∈ N(U − N(X0)). This means N(U − N(X0)) 6= U − N(X0), contradicts the
assumption of necessity.

“⇐” is simple.

Theorem 5. Let (U, C, N) be a covering approximation space.
(1) ∀X[N(U − N(X)) = U − N(X)]⇔ N forms a partition of U.
(2) ∀X[N(U − X) = (U − N(X))]⇔ N forms a partition of U.

Proof. (1)“⇒”, proof by contradiction. Suppose N does not form a partition of U. From Proposition 1,
we can obtain x0, y0 ∈ U, such that x0 ∈ N(y0) and y0 /∈ N(x0). If we choose X0 = N(x0), then y0 ∈
U − N(X0) and y0 /∈ N(U − N(X0)). This means N(U − X0) 6= N(U − N(X0)), contradicting the
assumption of necessity.

“⇐” is simple.
(2)“⇒”, proof by contradiction. Suppose N does not form a partition of U. From Proposition 1,

we can obtain x0, y0 ∈ U, such that x0 ∈ N(y0) and y0 /∈ N(x0). If we choose X0 = N(x0),
then y0 ∈ U− N(X0) and y0 /∈ N(U− X0). This means N(U− X0) 6= (U− N(X0)), contradicting the
assumption of necessity.

“⇐” is simple.
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3. Relationships between the New Lower and Upper Approximation Type Operations and
Other Types

For a covering of U, there are about ten types of lower and upper approximation operations.
A common question is what the relationship among them is. To answer this question, we need to
outline the definitions of the ten types of lower and upper approximation operations.

Definition 9. Let (U, C, N) be a covering approximation space. For each n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, Cn and
Cn are called the n-th lower approximation operation and upper approximation operation, respectively, defined
as follows:

(1) C1(X) = ∪{K : K ∈ C ∧ K ⊆ X},
C1(X) = C1(X) ∪ (∪{∪Md(x) : x ∈ X− C1(X)}).

(2) C2(X) = ∪{K : K ∈ C ∧ K ⊆ X},
C2(X) = ∪{K : K ∈ C ∧ K ∩ X 6= ∅}.

(3) C3(X) = ∪{K : K ∈ C ∧ K ⊆ X},
C3(X) = ∪{∪Md(x) : x ∈ X}.

(4) C4(X) = ∪{K : K ∈ C ∧ K ⊆ X},
C4(X) = C4(X) ∪ (∪{K : K ∈ C ∧ K ∩ (X− C4(X) 6= ∅}).

(5) C5(X) = ∪{K : K ∈ C ∧ K ⊆ X},
C5(X) = C5(X) ∪ (∪{N(x) : x ∈ X− C5(X)}).

(6) C6(X) = {x ∈ U : N(x) ⊆ X},
C6(X) = {x ∈ U : N(x) ∩ X 6= ∅}.

(7) C7(X) = {x ∈ U : ∀K ∈ C(x ∈ K ⇒ K ⊆ X)},
C7(X) = ∪{K : K ∈ C ∧ K ∩ X 6= ∅}.

(8) C8(X) = ∪{K : K ∈ C ∧ K ⊆ X},
C8(X) = U − C8(U − X).

(9) C9(X) = {x ∈ U : ∀u(x ∈ N(u)⇒ N(u) ⊆ X)},
C9(X) = ∪{N(x) : x ∈ U ∧ N(x) ∩ X 6= ∅}.

(10) C10(X) = {x ∈ U : ∀u(x ∈ N(u)⇒ u ∈ X)},
C10(X) = ∪{N(x) : x ∈ X}.

Remark 2. Cn and Cn(n = 1, 2, 3) can be found from Reference [19], C4 and C4 can be found from
Reference [21], C5 and C5 can be found from Reference [18], C6 and C6 can be found from Reference [21],
C7 and C7 can be found from Reference [25], and Cn and Cn(n = 8, 9, 10) can be found from Reference [10].

Proposition 4. Let (U, C, N) be a covering approximation space. The properties below hold, but all the “⊆”
symbols cannot be replaced by the “=” symbol.

(1) ∀X(C1(X) ⊆ N(X)),

(2) ∀X(N(X)) ⊆ C2(X)),

(3) ∀X(N(X)) ⊆ C4(X)).

Example 5. Let U = {1, 2, 3, 4, 5}, C = {{1, 2}, {3, 4}, {5}, {3, 5}}, X0 = {1, 2, 3}. We have N(X0) =

{1, 2, 3} 6= C1(X0) = {1, 2}.
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Example 6. Let U = {1, 2, 3, 4, 5}, C = {{1, 2, 3}, {3, 4, 5}}, X0 = {3}. We have N(X0) = {3} 6=
C2(X0) = {1, 2, 3, 4, 5} = C4(X0).

Theorem 6. Let (U, C, N) be a covering approximation space.
(1) ∀X(C1(X) = N(X))⇔ ∀x(|Md(x)| = 1),
(2) ∀X(C1(X) = N(X))⇔ [∀x(|Md(x)| = 1) ∧ N forms a partition of U],
(3) ∀X(C2(X) = N(X))⇔ C forms a partition of U,
(4) ∀X(C3(X) = N(X))⇔ [∀x(|Md(x)| = 1) ∧ N forms a partition of U],
(5) ∀X(C4(X) = N(X)) ⇔ {[∀x(|Md(x)| = 1)] ∧ ∀K ∈ C[∀y ∈ K({y} ∈ C) ∨ ∀z ∈

K(Md(z) = {K})]}.

Proof. (1)“⇒”, proof by contradiction. Suppose ∃x0(|Md(x0)| > 1), we find K1, K2 ∈ Md(x0),
such that x0 ∈ K1 ∩ K2, K1 ∩ K2 ( K1, and K1 ∩ K2 ( K2. If we choose X0 = K1 ∩ K2, then N(X0) =

K1 ∩ K2 6= C1(X0) = ∅. This contradicts the assumption of necessity.
“⇐” is simple.
(2)“⇒”, proof by contradiction. Firstly, we prove ∀x(|Md(x)| = 1). Suppose ∃x0(|Md(x0)| > 1),

select K1, K2 ∈ Md(x0), such that x0 ∈ K1 ∩ K2, K1 ∩ K2 ( K1, and K1 ∩ K2 ( K2. Without loss
of generality, if we choose y0 ∈ K2 and y0 /∈ K1, then y0 /∈ N(K1 ∩ K2). Since K ∈ C does not
exist, such that x0 ∈ K ⊆ K1 ∩ K2, x0 ∈ K1 ∩ K2 − C1(K1 ∩ K2) and y0 ∈ C1(K1 ∩ K2). This means
N(K1 ∩ K2) 6= C1(K1 ∩ K2), contradicting the assumption of necessity.

Secondly, we prove that N forms a partition of U. Suppose N is not a partition of U,
by Proposition 1, ∃x1, y1 ∈ U such that x1 ∈ N(y1) and y1 /∈ N(x1). If we choose X0 = N(y1)− N(x1),
then x1 /∈ N(X0). Since x1 ∈ N(y1), K ∈ C does not exist, such that y1 ∈ K ⊆ X0. Thus,
y1 ∈ X0 − C1(X0) and x1 ∈ ∪Md(y1) ⊆ C1(X0). This means C1(X0) 6= N(X0), contradicting the
assumption of necessity.

“⇐”, ∀X ⊆ U, by Theorem 6 (1) and ∀x(|Md(x)| = 1), we have C1(X) = N(X) and ∀y(N(y) =
∪Md(y)). For ∀z ∈ C1(X), we take two conditions into consideration, (]) z ∈ C1(X) ⊆ X, and we have
z ∈ N(X). (\) ∃z0 ∈ X − C1(X) such that z ∈ ∪Md(z0) = N(z0). Since N is a partition of U,
so N(z) = N(z0). This means z0 ∈ N(z) ∩ (X− C1(X)) = N(z) ∩ (X− N(X) 6= ∅. By the definition
of N(X), we have z ∈ N(X). Coming (]) with (\), C1(X) ⊆ N(X). On the other hand, for ∀p ∈
N(X), we also take two conditions into consideration, (]])p ∈ N(X) ⊆ X,and we have p ∈ C1(X).
(\\)N(p) ∩ (X − N(X)) 6= ∅, We can choose p0 ∈ N(p) ∩ (X − N(X)) = N(p) ∩ (X − C1(X)),
consider that N is a partition of U, thus p ∈ N(p0) = ∪Md(p0). By the definition of C1(X), we have
p ∈ C1(X). Combining (])(\) with (]])(\\), N(X) = C1(X) holds.

(3) the proof of (3) is simple.
(4) the proof of (4) is similar to (2).
(5) “⇒”, proof by contradiction. Firstly, we prove ∀x(|Md(x)| = 1). Suppose ∃x0(|Md(x0)| > 1),

select K1, K2 ∈ Md(x0), so that x0 ∈ K1 ∩ K2, K1 ∩ K2 ( K1 and K1 ∩ K2 ( K2. Without loss of
generality, if we choose y0 ∈ K2 and y0 /∈ K1, then y0 /∈ N(K1 ∩ K2). Since K ∈ C does not exist, then
x0 ∈ K ⊆ K1 ∩ K2, so x0 ∈ K1 ∩ K2 − C4(K1 ∩ K2), and y0 ∈ C4(K1 ∩ K2). This means N(K1 ∩ K2) 6=
C4(K1 ∩ K2), contradicting the assumption of necessity.

Secondly, we prove ∀K ∈ C[∀y ∈ K({y} ∈ C) ∨ ∀z ∈ K(Md(z) = {K})]. For ∀K ∈ C, we take
two conditions into consideration: (]) ∃p0 ∈ K({p0} ∈ C) ⇒ ∀y ∈ K({y} ∈ C). Otherwise, ∃q0 ∈
K(Md(q0) = {K3} ∧ |K3| > 1). If we select q′ ∈ K3, q′ 6= q0 and let Y0 = K3−{q′, p0}, then p0 /∈ N(Y0)

and p0 ∈ C4(Y0). This means N(Y0) 6= C4(Y0), contradicting the assumption of necessity. (\) ∀m ∈
K({m} /∈ C)⇒ ∀n ∈ K(Md(n) = {K}). Otherwise, ∃m0 ∈ K such that Md(m0) = {K4}, |K4| > 1 and
K4  K. By selecting n0 ∈ K − K4, m′ ∈ K4, m′ 6= m0 and let Z0 = {n0}, we obtain that m0 /∈ N(Z0)

and m0 ∈ C4(Z0). This means C4(Z0) 6= N(Z0), contradicting the assumption of necessity.
“⇐” is simple.
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Proposition 5. Let (U, C, N) be a covering approximation space. The properties below hold, but all the “⊆”
symbols cannot be replaced by the “=” symbol.

(1) ∀X(C7(X) ⊆ N(X)),

(2) ∀X(N(X)) ⊆ C6(X)).

Example 7. Let U = {1, 2, 3, 4}, C = {{1, 2, 3}, {1, 2, 4}}, X0 = {1, 2}. We have N(X0) = {1, 2} 6=
C7(X0) = ∅.

Example 8. Let U = {1, 2, 3, 4}, C = {{1}, {2}, {3, 4}, {4, 5}}, X0 = {4}. We have N(X0) = {4} 6=
C6(X0) = {3, 4, 5}.

Theorem 7. Let (U, C, N) be a covering approximation space.
(1) ∀X(C7(X) = N(X))⇔ C forms a partition of U,
(2) ∀X(C5(X) = N(X))⇔ N forms a partition of U,
(3) ∀X(C6(X) = N(X))⇔ N forms a partition of U.

Proof. (1) the proof of (1) is simple.
(2) “⇒”, proof by contradiction. Suppose N is not a partition of U, by Proposition 1, ∃x0∃y0(x0 ∈

N(y0) ∧ y0 /∈ N(x0)). If we let X0 = N(y0)− N(x0), then x0 /∈ N(X0) and x0 ∈ C5(X0). This means
C5(X0) 6= N(X0), contradicting the assumption of necessity.

“⇐”, ∀X ⊆ U. Firstly, we prove N(X) ⊆ C5(X). For ∀x ∈ N(X), we take two conditions
into consideration: (]), x ∈ N(X), and we have x ∈ X ⊆ C5(X). (\)N(x) ∩ (X − N(X)) 6= ∅,
take x0 ∈ N(x) ∩ (X − N(X)), from Proposition 4 (1), and x0 ∈ X − N(X) ⊆ X − C5(X) holds.
By the assumption that N is a partition of U, we have N(x0) = N(x). According to the definition
of C5(X), we have x ∈ C5(X), which means N(X) ⊆ C5(X). Secondly, we prove C5(X) ⊆ N(X).
For ∀y ∈ C5(X), we also take two conditions into consideration: (]]) y ∈ X, and we have y ∈ N(X).
(\\) y ∈ C5(X)− X, ∃y0 ∈ X− C5(X) such that y ∈ N(y0). By the assumption that N is a partition of
U, we have N(y) = N(y0). That is to say, y0 ∈ X − N(X) and y0 ∈ N(y) ∩ (X − N(X)) 6= ∅. By the
definition of N(X), we have y ∈ N(X). This means C5(X) ⊆ N(X). Therefore, C5(X) = N(X) holds.

(3) “⇒”, proof by contradiction. Suppose N is not a partition of U, by Proposition 1, ∃x0∃y0(x0 ∈
N(y0) ∧ y0 /∈ N(x0)). If we let X0 = N(x0), then y0 ∈ C6(X0) and y0 /∈ N(X0), which means
C6(X0) 6= N(X0), contradicting the assumption of necessity.

“⇐” is simple.

Proposition 6. Let (U, C, N) be a covering approximation space. The properties below hold, but all the “⊆”
symbols cannot be replaced by the “=” symbol.

(1) ∀X(C9(X) ⊆ N(X)),

(2) ∀X(N(X)) ⊆ C8(X)),

(3) ∀X(N(X)) ⊆ C9(X)).

Example 9. Let U = {1, 2, 3, 4, 5}, C = {{1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4, 5}}, X0 = {1, 2, 3}. We have
N(X0) = {1, 2, 3} 6= C9(X0) = ∅.

Example 10. Let U = {1, 2, 3, 4, 5}, C = {{1, 2}, {1, 2, 3, 4, 5}}, X0 = {1, 2}. We have N(X0) = {1, 2} 6=
C8(X0) = {1, 2, 3, 4, 5}.

Example 11. Let U = {1, 2, 3, 4}, C = {{1}, {2}, {3, 4}, {4}}, X0 = {3}. We have N(X0) = {3} 6=
C9(X0) = {3, 4}.
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Theorem 8. Let (U, C, N) be a covering approximation space.
(1) ∀X(C9(X) = N(X))⇔ N forms a partition of U,
(2) ∀X(C8(X) = N(X))⇔ [∀x(|Md(x)| = 1) ∧ N forms a partition of U],
(3) ∀X(C9(X) = N(X))⇔ N forms a partition of U,
(4) ∀X(C10(X) = N(X))⇔ N forms a partition of U.

Proof. (1) “⇒”, proof by contradiction. Suppose N is not a partition of U, by Proposition 1,
∃x0∃y0(x0 ∈ N(y0) ∧ y0 /∈ N(x0)). If we let X0 = N(x0), then x0 ∈ N(X0) and x0 /∈ C9(X0).
This means N(X0) 6= C9(X0), contradicting the assumption of necessity.

“⇐” is simple.
(2) “⇒”, proof by contradiction. Firstly, we prove ∀x(|Md(x)| = 1). Suppose ∃x0(|Md(x0)| > 1),

we can find K1, K2 ∈ Md(x0), such that x0 ∈ K1 ∩ K2, K1 ∩ K2  K1, and K1 ∩ K2  K2. By the
assumption that ∀X(C8(X) = N(X)), and the fact that N(K1 ∩K2) = K1 ∩K2, ∃L1, L2, · · · Ln ∈ C, such
that U− (K1 ∩K2) = L1 ∪ L2 ∪ · · · ∪ Ln. Since N(L1 ∪ L2 ∪ · · · ∪ Ln) = L1 ∪ L2 ∪ · · · ∪ Ln = U− (K1 ∩
K2), so ∃L1, L2, · · · Lm ∈ C, such that K1 ∩ K2 = L1 ∪ L2 ∪ · · · ∪ Lm. This means ∃i0 ∈ {1, 2, · · · , m},
such that x0 ∈ Li0 ⊆ K1 ∩ K2  K2, contradicting the fact that K2 ∈ Md(x0). Secondly, we prove
that N is a partition of U. Otherwise, by Proposition 1, ∃y0∃z0(y0 ∈ N(z0) ∧ z0 /∈ N(y0)). If we let
X0 = N(y0), then z0 ∈ C8(X0) and z0 /∈ N(X0). This means C8(X0) = N(X0), contradicting the
assumption of necessity.

“⇐”. ∀X ⊆ U, by Proposition 3.3(2), we only need to prove C8(X) ⊆ N(X). For ∀x ∈ C8(X),
we take two conditions into consideration, (]) x ∈ X, and we have x ∈ N(X). (\) x ∈ C8(X)− X,
since ∀y(|Md(y)| = 1), so ∪Md(x) = N(x) and N(x) ∩ X 6= ∅. We can select x0 ∈ N(x) ∩ X, by the
condition that N is a partition of U, and we have N(x) = N(x0) and N(x) = N(x0) * X. This means
x0 /∈ N(X) and x0 ∈ N(x) ∩ (X − N(X)) 6= ∅. From the definition of N(X), we have x ∈ N(X).
According to (])(\), we finally have C8(X) ⊆ N(X).

(3) “⇒”, proof by contradiction. Suppose N is not a partition of U, by Proposition 1, ∃x0∃y0(x0 ∈
N(y0) ∧ y0 /∈ N(x0)). If we let X0 = N(x0), then y0 ∈ C9(X0) and y0 /∈ N(X0). This means
C9(X0) 6= N(X0), contradicting the assumption of necessity.

“⇐” is simple.
(4) “⇒”, proof by contradiction. Suppose N is not a partition of U, by Proposition 1, ∃x0∃y0(x0 ∈

N(y0) ∧ y0 /∈ N(x0)). If we let X0 = N(y0)− N(x0), then x0 ∈ C10(X0) and x0 /∈ N(X0). This means
C10(X0) 6= N(X0), contradicting the assumption of necessity.

“⇐” is simple.

In order to more clearly show the structures of N(X) and N(X), we introduce the conception of an
Alexander topological space. Let (U, C, N) be a covering approximation space. As a topological base,
N can induce a topology T on U. Topological space (U, T) is called an Alexander topological space.

For ∀X ⊆ U, let symbol int(X) represent the interior of X, and cl(X) represent the closure of
X, then

N(X) = int(X),

N(X) = int(X) ∪ cl(X− int(X))

As the end, we introduce definitions of n-th inner and outer accuracy to show the reason why we
introduce this type of covering-based generalized rough set.

Definition 10. Let (U, C, N) be a covering approximation space. For a subset X of U, denote ρi(X) =
|Ci(X)|
|X| (i ∈ {1, 2, · · · , 10}), the n-th inner accuracy of X, and ρi(X) = |Ci

(X)|
|X| (i ∈ {1, 2, · · · , 10}), the n-th

outer accuracy of X, where symbol |.| represents the cardinality of a set. For i = 0, denote ρ0(X) =
|N(X)|
|X| and

ρ0(X) =
|N(X)|
|X| .
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From Definition 10, we easily see that ρi(X) 6 1 for each i and X, and ρi(X) > 1 for each i and X.
For a fixed subset X of U, if ρi(X) > ρj(X),we say that the i-th inner accuracy of X is higher than the
j-th inner accuracy of X; similarly, if ρi(X) 6 ρj(X), we say that the i-th outer accuracy of X is higher
than the j-th outer accuracy of X.

Theorem 9. Let (U, C, N) be a covering approximation space.

(1) ∀X(ρ0(X) > ρ7(X)),

(3) ∀X(ρ0(X) > ρ9(X)),

(4) ∀X(ρ0(X) 6 ρ2(X)),

(5) ∀X(ρ0(X) 6 ρ4(X)),

(6) ∀X(ρ0(X) 6 ρ6(X)),

(7) ∀X(ρ0(X) 6 ρ8(X)),

(8) ∀X(ρ0(X) 6 ρ9(X)).

Proof. Straightforwardly by Propositions 4–6.

Definition 10 and Theorem 9 indicate that the type of covering-based rough set possesses good
inner and outer accuracy; this is the meaning we propose for this kind of covering-based rough set.

4. Conclusions

In this paper, we have presented a new type of covering-based generalized rough set, and proved
some properties of N(X) and N(X). Here, we could not obtain the sufficient and necessary condition
for ∀X(N(U − N(X)) = U − N(X)). We mainly discussed the sufficient and necessary conditions for
∀X(Ci(X) = N(X)) and ∀X(Ci(X) = N(X))(i = {1, 2, · · · , 10}). The most important sufficient and
necessary condition is that N forms a partition of U. This article introduces two interesting questions:
(1) Which conditions of C should be satisfied to infer that N is a partition of U, and (2) which conditions,
N(X) or N(X), should be satisfied to infer that N is a partition of U? Solving Problems (1) and (2) will
be our future work.
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