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Abstract: Change recommendation improves the development speed and quality of software projects.
Through change recommendation, software project developers can find the relevant source files that
they must change for their modification tasks. In an existing change-recommendation approach
based on the change history of source files, the reliability of the recommended change patterns
for a source file is determined according to the change history of the source file. If a source file
has insufficient change history to identify its change patterns or has frequently been changed with
unrelated source files, the existing change-recommendation approach cannot identify meaningful
change patterns for the source file. In this paper, we propose a novel change-recommendation
approach to resolve the limitation of the existing change-recommendation method. The basic idea
of the proposed approach is to consider the change history of a test file corresponding to a given
source file. First, the proposed approach identifies the test file corresponding to a given source file
by using a source–test traceability linking method based on the popular naming convention rule.
Then, the change patterns of the source and test files are identified according to their change histories.
Finally, a set of change recommendations is constructed using the identified change patterns. In an
experiment involving six open-source projects, the accuracy of the proposed approach is evaluated.
The results show that the accuracy of the proposed approach can be significantly improved from
21% to 62% compared with the existing approach.
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1. Introduction

Software systems constantly evolve to improve their quality and extend their lifetime [1–3].
As a software system evolves, its source files are inevitably changed [4–8]. A new source file is added,
and the code of existing source files is modified. In modification tasks of software project developers,
a change of a source file may affect other source files according to dependent relationship among
the source files. If such change impacts cannot be immediately taken into account, software project
developers may face unexpected errors in the near future [9,10]. Hence, software project developers
should catch all the change impacts related to their modification tasks to avoid unexpected errors
and reduce maintenance costs of a software system. However, it is typically difficult to manually
identify all change impacts related to particular changes of source files in development of a large
software system.

Change recommendation can reduce the efforts for identifying the change impacts [11–15].
Through change recommendation, software project developers can immediately identify relevant
source files that they must change. The change-recommendation approach is based on a static analysis
or a change-history analysis. The basic idea of change-history analysis for change recommendation
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originates from the concept of association rule discovery [16–18]. Association rule discovery is a data
mining method and an unsupervised machine learning algorithm. Its objective is to extract association
patterns between items in a large dataset.

In previous studies [11,12], a change-recommendation approach based on association rule discovery
was proposed. Given a source file as a query for change recommendation, the change-recommendation
approach analyzes the change history of the source file to derive the change patterns of the source file.
In the change-recommendation approach, a change pattern indicates a change association between two
source files, and the reliability of a change pattern is determined by change coupling between source files.
The change coupling is typically computed by the co-change frequency of source files. For example,
two source files have high change coupling if they have been frequently changed together. In contrast,
two source files have low change coupling if they have been rarely changed together. According to
this concept, the change recommendation approach requires sufficient and also clear change history
for source files as much as possible to identify meaningful change patterns. This constraint is a
major cause of the degradation of the applicability of the change-recommendation approach [19–21].
For example, if a source file has insufficient change history that is very short to identify its change
patterns, meaningless change patterns of the source file may be identified. In addition, if a source file
has been accidentally changed with functionally unrelated source files, the reliability of the change
pattern extracted from the change history cannot be guaranteed in the change recommendation [22,23].

In this study, the co-evolution relationship between source and test files is taken into account
to resolve the limitation of the existing change-recommendation approach. Generally, in software
system development, source files and their corresponding test files evolve together [24–27]. When a
new source file is added or an existing source file is modified, the test files related to the added or
modified source files are modified to validate the added and modified code [28]. A test file is obligated
to test several related source files. Hence, we believe that some of the closely related change patterns
of a source files can also be identified in the change history of the corresponding test file. The existing
change-recommendation approach only considers the change histories related to given source files,
not the change histories of the test file corresponding to the given source files.

Based on the aforementioned idea, a novel change-recommendation approach is proposed.
The proposed change-recommendation approach considers not only the change history of a given
source file, but also the change history of a test file corresponding to the given source file to make
a change recommendation. Generally, in software development, source files are paired with their
corresponding test files according to a specific naming convention rule [29]. The naming convention
rule can be often used to trace pairs of source and test files that are explicitly related [30]. Given a
source file as a query for change recommendation, the proposed approach first identifies a test file
corresponding to the given source file by using a source–test traceability linking method based on
the naming convention rule. Then, the change histories related to the source and the test files are
extracted from a source-code repository. Finally, the change patterns of the source and the test files are
identified from the extracted change histories, and then a set of change recommendations is constructed
using the change patterns. In our experiment involving six open-source projects, we evaluated the
recommendation accuracy of the proposed change-recommendation approach. The experimental
result shows that the accuracy of the proposed change-recommendation approach can significantly
improve the accuracy of the existing change-recommendation approach in the open-source projects.
On average, the proposed change-recommendation approach improved the accuracy from 21% to
62% compared with the existing change-recommendation approach. Therefore, we believe that the
proposed change-recommendation approach is useful for real-world software project developments.

The remainder of the paper is organized as follows. Related works are introduced in Section 2.
The proposed change-recommendation approach is described in Section 3. The experimental results
are reported and discussed in Section 4. The study is concluded in Section 5.
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2. Related Work

2.1. Association Rule Discovery and Change Recommendation

Association rule discovery is a data-mining method for identifying meaningful association
patterns from a large-scale data set [16,17,31]. An association pattern indicates a specific association
between items [32]. A representative example of an association pattern is a purchasing pattern on
an online shopping site, such as Amazon.com. For example, a common purchasing pattern between
televisions and Blu-ray players can be inferred from the fact that televisions and Blu-ray players
are frequently purchased together by customers on Amazon.com. The common purchasing pattern
indicates that in general, customers who purchase a television also want to purchase a Blu-ray player.
Amazon.com can use this pattern to recommend a Blu-ray player to customers who add a television
product to their shopping cart.

Formally, an association pattern in association rule discovery is defined as follows:
Given a set of items I = {I1, I2, . . . , In} and a set of database transactions T = {t1, t2, . . . , tm},

where n and m are the total numbers of items and transactions, respectively, an association pattern
between two item sets is formed as {A→ B}, where ti =

{
Ii,1, Ii,2, . . . , Ii,l

}
, l is the total number of the

items involved in ti, Ii,j ∈ I. A and B are subsets of I, where A ∩ B = ∅.
In the aforementioned example for Amazon.com, a television and a Blu-ray player are included

in a set of items I. The purchasing pattern between televisions and Blu-ray players is formed as
an association pattern {television→ Blu-ray player}. The left-side and right-side itemsets in an
association pattern are called antecedent and consequent, respectively.

An association pattern is evaluated according to support and confidence. Support is an indication
of how frequently an itemset occurs in given database transactions. The support value of an itemset
A is computed with the number of transactions involving the itemset A in the transaction database,
as follows:

support(A) = |ti|A ⊆ ti, ti ∈ T| (1)

Confidence is an indication of the reliability of an identified association pattern. The confidence of
an association pattern is computed by dividing the support value of the union set of the antecedent and
consequent by the support value of the antecedent in an association pattern. It is defined as follows:

con f idence(A→ B) =
support(A ∪ B)

support(A)
(2)

The reliability of an association pattern is judged according to its confidence value. A higher
confidence value indicates higher reliability of an association pattern; in contrast, a lower confidence
value indicates lower reliability of an association pattern.

The concept of association rule discovery can be applied to identify change patterns between
source files from a source-code repository of a software system. A source-code repository such
as Git records the change history of all the source files of a software system. Ying et al. [11] and
Zimmerman et al. [12] presented a change-recommendation approach based on change patterns
that can be identified by mining software repositories. Given a set of source files as a query for
change recommendation, the change-recommendation approach identifies the change patterns of the
given source files according to the change history of the given source files. The identified change
patterns that have confidence value more than the threshold are recommended as a set of change
recommendations. The change-recommendation approach has a limitation for identifying meaningful
change patterns for source files that have a significantly short change history or have been frequently
co-changed with functionally unrelated source files [22,23]. In an experiment involving six large
software systems, the change-recommendation approach found that only 25% of the change patterns
were meaningful [19].
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This study began to resolve the limitation of the existing change-recommendation approach.
We found a solution in the co-evolution relationship between source and test files.

2.2. Coevolution of Source and Test Files

Software testing is essential to develop high quality software systems [24]. Unit tests and
integrated tests are used to receive feedbacks and identify potential bugs immediately. In addition,
written test code allows software project developers to understand a software system [26]. For such
advantages, the software testing is widely utilized in many recent software project developments.

A source file and its corresponding test file co-evolve [32]. When a new source file is added
or an existing source file is modified, their corresponding test files are created and modified.
Testing comprises 30%–50% of the efforts in software project development. Previous studies [24,27,28]
investigated the change impacts between source and test files. Zaidman et al. developed a visualization
tool for displaying the change relations among source and test files and then analyzed the evolution
history of source and test files in two open-source projects using the tool [24,27]. They showed that
the evolution of the source and test files may differ according to the testing strategy employed in the
software project. Marsavina et al. investigated the fine-grained code evolution of source and test files
in five open-source projects using ChangeDistiller [33]. Their experiments showed that the change of a
source file is often followed by the changes of its corresponding test files. In addition, they observed
that closely-related source files often evolve with the same test file.

This study is inspired by the previous works. We believe that it is reasonable to consider the
change history of the corresponding test file for identifying the change patterns of a source file. In our
study, we focus on extracting file-level change patterns that can be obtained from white-box testing
changes not module-level change pattern that can be obtained from black-box testing changes. We did
not consider black-box testing changes in our approach due to the following two reasons:

• Typically, it is thought that file-level change patterns are more appropriate for assisting software
project developers’ tasks than module-level change patterns because a file is a basic task unit of
developers in software project development.

• In a software project that has very few modules, file-level change patterns are more applicable
than module-level change patterns.

3. Our Approach

In this section, we describe the overall steps of the proposed change-recommendation approach.
The workflows of the proposed change-recommendation approach are briefly presented in Section 3.1,
and each step is detailed in the following subsections.

3.1. Overview of Proposed Change-Recommendation Method

The basic idea of the proposed change-recommendation approach is to consider not only the
change patterns of a given query source file, but also the change patterns of a test file corresponding to
the given source file. Figure 1 shows the overall workflows of the proposed change-recommendation
approach. The proposed change-recommendation approach consists of four steps: identifying a
source–test pair, extracting commit histories, identifying change patterns, and comprising change
recommendations. Given a source file as a query for a change recommendation, the proposed approach
first identifies a test file corresponding to the source file using a heuristic method based on the naming
convention rule between source and test files and then extracts the change histories of the source and
test files by tracing the entire commit history of a Git repository. Then, the change patterns of the
source and test files are identified according to the extracted change histories. Finally, a set of change
recommendations is constructed using the identified change patterns.
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Figure 1. Workflows of the proposed change-recommendation approach.

3.2. Identifying Corresponding Test File

Software project developers typically follow a naming convention rule to identify specific test files.
Under the naming convention rule, a test file is named by combining the name of its corresponding
source file and the string literal “Test”. For example, a test file corresponding to a source file “Foo.java”
is named with a name “FooTest.java”. The naming convention rule allows linking a source file and
its corresponding test file easily. Several studies [29,30] presented a source-test traceability linking
method that is based on the naming convention rule and validated the accuracy of the source-test
traceability linking method.

The proposed change recommendation approach employs the source-test traceability linking
method to identify a test file corresponded to a given query source file. The source-test traceability
linking method considers name and path of source and test files to identify a corresponded pair of
a source and test file. For example, given a source file “org/java/main/model/data/foo.java” as
an input, then a test file “org/java/test/model/data/fooTest.java” is identified as the corresponded
test file.
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3.3. Extracting Commit Histories

Once a corresponding test file is identified, the change histories of the given query source and the
corresponding test file are extracted from commit history of a source code repository of a software
system such as Git repository. Git repository is a distributed version control system and is commonly
used to manage changes of files in a software system.

In a Git repository, a commit history is represented by a commit metadata involving change
information of several files. A commit metadata consists of a SHA-1 (Secure Hash Algorithm) hash
value, committed date, commit author, a commit message and diff information. The SHA-1 hash value
is an identifier for distinguishing between commits. The diff information represents several pieces of
change information for changed files such as change type, previous path, new path, and textual content
of changed code. Figure 2 shows an example of commit metadata represented by JSON (JavaScript
Object Notation) format.
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For this study, we implemented a Git commit history extractor using JGit API (Application
Programming Interface) [34] to extract specific commit histories from a Git repository. The JGit API is
a java library implementing all the commands of the Git. Given a set of files as input, the Git commit
history extractor extracts all the commit histories related to the changes of the given files by retrieving
a Git repository from the most recent commit to the first commit. For each file in the given files, if
a commit contains the entire path of the file in diff information of its commit metadata, the commit
is extracted. The proposed change-recommendation approach uses the Git commit history extractor
to extract all the commit histories related to the changes of the query source and the corresponding
test file.

3.4. Identifying Change Patterns

The basic concept of the association rule discovery can be applied to change recommendation [11].
An association pattern of an itemset is interpreted as another itemset that has been frequently occurred
in database transactions. Similarly, in the context of the change recommendation, a change pattern of a
source file is interpreted as another source file that has been frequently co-changed in change history
of the source file.

The existing change-recommendation method was developed based on the basic concept of the
association rule discovery. The existing change-recommendation method analyzes all commit history
of a Git repository to make a change recommendation for given source files, which may be unpractical
in software development because it is time-consuming to identify many unrelated change patterns
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of the given source files. To avoid this shortcoming, we consider only the commit histories extracted
from the previous step to identify the change patterns of the query source and corresponding test file.

To ease understanding the identification of the sets of the change patterns of the query source
and corresponding test file, we first introduce a few basic definitions. Although a commit contains
changes of various types of files such as source, test, text, binary file, we focus on the changes of source
files in this paper. Thus, a commit is defined as a set of source files that were changed in the commit
as follows:

c = { f1, f2, . . . , fn} (3)

where fi is a source file changed in a commit c and n is the total number of the changed source files in
c. For example, if source files f1, f2 and f3 were changed in a commit c, the commit c is represented as
a set of the source files { f1, f2, f3}.

Let the commits extracted at the previous step be C, we can classify the commits in C into two
sets of commits for the query source file and the corresponding test file. For example, the commits
c ∈ C that contains the query source file are classified into a set of commits for the query source file,
and the commits that contains the corresponding test file are classified into a set of commits for the
corresponding test file. It is defined as follows:

Cs = {c|s ∈ c}, Ct = {c|t ∈ c} (4)

where s and t refer to the query source file and the corresponding test file, respectively. Based on the
above definitions, the co-changed source files with the query source and the corresponding test file are
defined as the change patterns of the query source and corresponding test file as follows:

CPs = { fi| fi ∈ ca, ca ∈ Cs, s 6= fi},
CPt =

{
f j
∣∣ f j ∈ cb, cb ∈ Ct, t 6= f j

} (5)

where ca and cb are a commit involved in the Cs and Ct, respectively. CPs and CPt are considered to
be co-changeable source files with the query source file and the corresponding test file, respectively.
Figure 3 shows the overall process of identifying CPs and CPt.Symmetry 2017, 9, x 8 of 15 
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3.5. Constructing Change-Recommendation Set

A change-recommendation set for the given source file is constructed according to the CPs and CPt

identified in the previous step. The proposed change-recommendation approach first selects k change
patterns from CPs in the order of their confidence values and includes the selected change patterns in a
change-recommendation set. It then adds all the change patterns in CPt to the change-recommendation
set. Similar to association patterns, the confidence of a change pattern is determined by the co-change
frequency of the source files involved in a change pattern. For a change pattern {s→ fi} in CRs,
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the co-change frequency of the given source file s and the other source file fi is the number of commit
histories in Cs that involve the source file fi. It is defined as follows:

co-changes, fi
=
∣∣{cj

∣∣ fi ∈ cj, cj ∈ Cs
}∣∣ (6)

For example, if a source file f1 is contained in three commits c1, c2, and c3 ∈ Cs, co-changes, f1 is
computed by 3 (|{c1, c2, c3}|). Using Equation (6), the confidence of the change pattern {s→ fi} is
computed by dividing the co-change frequency of s and fi by the number of commits in the entire
commit history of the query source file s, as follows:

CPs→ fi
=

co-changes, fi

|Cs|
(7)

For example, if Cs has five commits {c1 , c2, c3, c4, c5}, the confidence of a change pattern CPs→ f1

is computed by 0.6. Using the Equation (7), the confidences of all the change patterns in CPs are
computed and a set of change recommendations is constructed by selecting the top k change patterns
from CPs in the order of the confidence values. Then, all the change patterns in CPt are added to the
change-recommendation set. Finally, the change-recommendation set for the given source file s is
determined as follows:

ChgRecs = CPs,k ∪ CPt (8)

Here, CPs,k comprises the k change patterns selected from CPs. The value of k can be arbitrarily
chosen. If the value of k is high, meaningless change patterns may be recommended, on the other hand,
if the value of k is extremely low, meaningful change patterns may be missing. Therefore, the value of
k should be determined between 10 and 30. For example, change patterns of the given query source
file and the corresponding test file are given as CPs = { f1,0.8, f2,0.8, f3,0.6, f4,0.5, f5,0.2}, where f1,0.8 is
abbreviation of CPs→ f = 0.8, and CPt = { f6, f7}, respectively, and the value of k is chosen by three,
CPs,k is determined as { f1, f2, f3} and then ChgRecs is determined as { f1, f2, f3, f4, f5}.

ChgRecs involves not only the change patterns of the given query source file but also the change
patterns of its corresponding test file. Although the proposed change-recommendation approach
cannot identify any change patterns from CPs,k owing to the short change history of the given source
file, it can recommend alternative change patterns from CPt.

4. Experiment

In this section, we report the results of an experiment performed to evaluate the performance
of the proposed change-recommendation approach. The objective of the experiment is to investigate
whether the proposed change-recommendation approach has higher performance than the existing
change-recommendation approach. The data used for the experiment and the experiment settings
are described in Sections 4.1 and 4.2, respectively. The metric for evaluating the performance of
the change-recommendation approaches is introduced in Section 4.3. The experimental results are
presented in Section 4.4.

4.1. Experimental Data

For this experiment, the several software projects that employ at least one test framework in their
development and allow public access to their Git repository are required. We chose the following
projects for the experiment: commons-lang [35], commons-math [36], JGit [34], Maven [37], Flink [38],
and Wicket [39]. Commons-lang and commons-math are utility libraries for Java application project
development; JGit is a Java library implementing the commands of the Git; Maven is a tool for software
project management and integration; Flink is an open-source framework for stream processing; and
Wicket is an open-source web application framework based on components. These projects are
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developed using the JUnit test framework [40] and allow access to their Git repository. Hence, we
selected these open-source projects for the experiment.

To collect the experimental dataset from the aforementioned open source projects for our change
recommendation experiment, we first cloned the Git repositories of the open source projects from
GitHub [41]. We then extracted the commits that contain the changes of source files or test files from
the cloned Git repositories. In the cloned Git repositories of the open source projects, we determined
the pairs of the source and test files that can be used as the queries for the change recommendations
in the experiment. First, we identified the corresponding source and test files using the source-test
linking method mentioned in Section 3.2. We then excluded the pair of the source and test files that
have insufficient commit histories to identify their change patterns. The pairs of the source and test
files with less than five commits were excluded from the identified source-test pairs. Table 1 shows the
experimental dataset collected from the open source projects. For each open source project, the column
of #. Commits refers to the number of commits submitted by developers within the Commit period.
The columns of #. Changed Source Files and #. Changed Test Files refer to the numbers of source and
test files that have been changed in the number of commits (#.Commits), respectively. The column of #.
Pairs of Source and Test refers to the number of paired source and test files in the changed source and
test files (#. Changed Source Files and #. Changed Test Files). The column of #. Related Commits refers
to the number of commits in which the source files or the test files has been changed. The dataset in
Table 1 varies across the open source projects. This is because the open source projects are different in
development period, functionality implemented, and testing strategy that they adopted.

Table 1. Experimental datasets.

Project Commit Period #. Commits #. Changed
Source Files

#. Changed
Test Files

#. Pairs of
Source and Test

#. Related
Commits

commons-lang 2002-07-19 ~ 2018-03-11 5632 320 452 101 234
commons-math 2003-05-13 ~ 2018-03-18 7231 2954 1735 510 501

Jgit 2009-09-30 ~ 2018-03-28 5836 1037 437 192 1490
Maven 2003-09-02 ~ 2018-03-21 12,218 767 925 49 442
Flink 2010-12-16 ~ 2018-07-25 17,289 754 396 78 173

Wicket 2004-09-22 ~ 2018-07-25 32,366 1401 2455 167 659

4.2. Experimental Setting

In the experiment, we compare the proposed approach with the existing method developed by
Ying et. al [11]. The existing method is based on the association rule mining. Given a query source file
and a number of change patterns to be recommended (k) as input, the existing method first extracts
the commits of the given query source file from a source code repository. Change patterns are then
formed by applying association rule mining algorithm. Finally, k change patterns are recommended
according to the confidence value of the change patterns.

To make a change recommendation, the proposed and existing change-recommendation
approaches require several arguments, such as a query source file, training commits, and a number of
recommended patterns, k, from a set of the change patterns of the query source file. In this experiment,
we used the source files involved in the identified source–test pairs as the query source files and
used all of the commits related to the source-test pairs in each project for training and evaluation.
The proposed approach usually employs more commits for training than the existing approach. For a
source–test pair and an evaluation commit, the existing approach uses the commits that precede
the evaluation commit in a set of commits of the source for training, while the proposed approach
uses the commits that precede the evaluation commit in both sets of the commits of the source
and test. For example, given a source–test pair 〈s, t〉, their commit history {cs,1, ct,1, cs,2, ct,2, cs,3}
and an evaluation commit cs,2, the existing approach and proposed approach choose the commits
{cs,1, cs,2} and {cs,1, ct,1, cs,2, ct,2} for training, respectively. We set the value of k to 10 according to
the previous work related to recommendation system [42]. Thus, for each change recommendation,
the existing approach makes only 10 change recommendations from the change patterns of a query
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source file, while the proposed approach makes 10 change recommendations and additional change
recommendations from the change patterns of a query source file and the corresponding test file.

4.3. Evaluation Metric

To evaluate the performance of the proposed change-recommendation approach, we used an
accuracy measurement method. Accuracy measurement is widely used to evaluate various information
retrieval methods and recommendation systems [20,42–46]. In this study, the accuracy of a change
recommendation is computed as follows:

Accuracy =
|ChgRecs|
|ACs|

× 100% (9)

where ACs is a set of actually co-changed source files with a given query source file s. The accuracy
ranges from 0 to 1. If none of the recommended source files is included in the set of actually-changed
source files, the accuracy is 0. In contrast, if all the recommended source files are involved in a set of
actually-changed source files, the accuracy is 1. For example, in a change recommendation, given a
set of recommended source files CRs,5 =

{
fa, fc, fe, f f , fg

}
and a set of actually-changed source files

ACs = { fa, fb, fc, fd, fe}, the accuracy for the change recommendation is 60%.

4.4. Result

Table 2 shows the average accuracy of the proposed and existing approaches in the experiment
projects. For all the projects, the proposed approach obtained a significantly higher average accuracy
than the existing approach. For the projects, as listed in Table 2, the proposed approach obtained
average accuracies of 82%, 70%, 58%, 48%, 56%, and 50%, while the existing approach obtained average
accuracies of 20%, 13%, 11%, 27%, 16%, and 16%. On average, the accuracy of the proposed was
improved by 43% compared with the existing approach. Comparing the average accuracy between the
proposed and existing approaches for each project reveals that the proposed approach improved the
accuracy by 62%, 56%, 47%, 21%, 40%, and 34%.

To find out how the proposed approach obtains the improved results, we investigated the
change-recommendation results of the proposed and existing approaches. Through the investigation,
we observed that even for query source files that have relatively few commit histories, the proposed
approach can make correct change patterns from the commit histories of corresponding test files,
while the existing approach cannot identify any change patterns.

Table 2. Results for the accuracy and improvements of the proposed approach.

Project
Accuracy

Existing Proposed Improvement

commons-lang 20% 82% 62%

commons-math 13% 70% 56%

JGit 11% 58% 47%

Maven 27% 48% 21%

Flink 16% 56% 40%

Wicket 16% 50% 34%

Avg. 17% 61% 43%

We summarized the root-causes of the incorrect change pattern identification. Figure 4 shows the
four types of categories of the root-causes, such as Development environment, Project, Testing and
Commit activity. ‘Short development period’ categorized in ‘Development environment’ is a major
cause of lacking commit history to identify change patterns. ‘Absence of guide’ and ‘Absence of
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manual’ categorized in ‘Project’ may cause mistakes of developers in committing. The mistakes may
be major causes on ‘Missed commit’, ‘Overlapped commit’, and ‘Delayed commit’. ‘Absence of testing
strategy’ and ‘Absence of testing framework’ may also affect the quality of commit history.

Symmetry 2017, 9, x 11 of 15 

 

the proposed approach can make correct change patterns from the commit histories of 

corresponding test files, while the existing approach cannot identify any change patterns. 

Table 2. Results for the accuracy and improvements of the proposed approach. 

Project 
Accuracy 

Existing Proposed Improvement 

commons-lang 20% 82% 62% 

commons-math 13% 70% 56% 

JGit 11% 58% 47% 

Maven 27% 48% 21% 

Flink 16% 56% 40% 

Wicket 16% 50% 34% 

Avg. 17% 61% 43% 

We summarized the root-causes of the incorrect change pattern identification. Figure 4 shows 

the four types of categories of the root-causes, such as Development environment, Project, Testing 

and Commit activity. ‘Short development period’ categorized in ‘Development environment’ is a 

major cause of lacking commit history to identify change patterns. ‘Absence of guide’ and ‘Absence 

of manual’ categorized in ‘Project’ may cause mistakes of developers in committing. The mistakes 

may be major causes on ‘Missed commit’, ‘Overlapped commit’, and ‘Delayed commit’. ‘Absence of 

testing strategy’ and ‘Absence of testing framework’ may also affect the quality of commit history. 

 

Figure 4. Fishbone diagram for root-causes of Incorrect change pattern identification. 

Furthermore, we performed a pairwise t-test statistical analysis to evaluate the difference of the 

results. A null hypothesis and its alternative hypothesis for the statistical analysis are presented as 

follows. 

H𝑛𝑢𝑙𝑙 : There are no statistically significant differences between the proposed and existing 

approaches. 

H𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 : There are statistically significant differences between the proposed and existing 

approaches. 

We performed a pairwise t-test for all of the paired recommendation results by using the 

student's t-test function in the R package. Table 3 shows the p-values obtained in the statistical 

analysis. For all of the experiment projects, the p-values are less than 0.01. It means that the null 

hypothesis is rejected with 99% confidence. Thus, it is shown that there are statistically significant 

differences between the proposed and existing approaches in accuracy. This means that the average 

accuracy obtained by the proposed approach is statistically better than the average accuracy 

obtained by the existing approach. 

Figure 4. Fishbone diagram for root-causes of Incorrect change pattern identification.

Furthermore, we performed a pairwise t-test statistical analysis to evaluate the difference of
the results. A null hypothesis and its alternative hypothesis for the statistical analysis are presented
as follows.

Hnull : There are no statistically significant differences between the proposed and existing approaches.
Halternative : There are statistically significant differences between the proposed and

existing approaches.
We performed a pairwise t-test for all of the paired recommendation results by using the student’s

t-test function in the R package. Table 3 shows the p-values obtained in the statistical analysis. For all
of the experiment projects, the p-values are less than 0.01. It means that the null hypothesis is rejected
with 99% confidence. Thus, it is shown that there are statistically significant differences between the
proposed and existing approaches in accuracy. This means that the average accuracy obtained by the
proposed approach is statistically better than the average accuracy obtained by the existing approach.

Table 3. Results of the statistical t-test.

Project p-Value Hnull

commons-lang <2.2× 10−16 Reject

commons-math <2.2× 10−16 Reject

JGit <2.2× 10−16 Reject

Maven <2.2× 10−16 Reject

Flink <2.2× 10−16 Reject

Wicket <2.2× 10−16 Reject

5. Discussion, Implications, Limitations, and Conclusion

5.1. Discussion and Implications

The experimental results shown in Section 4.4 demonstrate that the proposed approach can obtain
better performance than the existing method. In this section, we discuss why the proposed approach
can achieve the performance. The significant difference between the proposed approach and the
existing method is Equation (8). The proposed approach contains the change patterns of the query
source and corresponding test file while the existing method contains only the change patterns of the
query source file into a set of change recommendations. The benefit of the difference is that the change
history of the corresponding test file can be considered to discover appropriate change patterns of the
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query source file when a query source file has short change history. We believe that the advantage of
the proposed approach can complement the limitation of the existing method.

This study is impressed by the nature of evolution of test files revealed in previous
studies [24,26–28,31,47]. In general, source and test files co-evolve in software project development.
Modifications of a source file affect several related test files. A test file is needed to verify several
related source files. Thus, the change history of a test file reflects the changes of source files that are
explicitly related to each other. Hence, we consider that when identifying change patterns of a source
file, it is reasonable to consider the change history of the test file explicitly related to the source file.
The experimental results in Section 4.4 emphasize that change history of test files should be considered
when identifying change patterns of corresponding source files. We believe that this study can progress
further studies on change recommendations, and also that the proposed approach in this study can
significantly contribute to real-world software project development, especially for young software
projects where most source files have a short commit history.

5.2. Limitation

The internal validity of this study is related to the identification of source and test pairs.
The proposed approach requires the change history of a test file that is related to a given source
file. If an incorrect test file is identified, the change patterns obtained from the identified test file may
be unreliable. Source–test traceability linking is an important research field. An approach that can
perfectly identify traceability links between source and test files has not yet been reported. In this study,
we used a source–test traceability linking approach based on the naming convention rule between
source and test files to identify test files corresponding to given source files. Then, we manually verified
whether the identified pairs were correct in the experiment. Typically, software project developers
write test files by following the naming convention rule in most software projects [29,30]. Therefore,
in this study, it is believed to minimize the bias by using the source-test traceability linking approach
in this study.

The external validity of this study is related to the generalization of the experimental results.
As the experimental results are obtained from six open-source projects, it cannot be generalized to
all software projects. Therefore, it is required to conduct additional experiments on various software
projects to reduce the bias. However, the experiment projects have different scales and involve different
domains. Thus, we believe that the bias is reduced.

5.3. Conclusion

In this study, we proposed a novel change-recommendation approach that considers not only the
change history of a given source file but also the change history of a test file corresponding to the given
source file. Given a source file as a query, the proposed approach identifies a corresponding test file by
using a source–test linking approach based on the naming convention rule between source and test files
and extracts the commit histories of the given source file and the identified test file from a Git repository.
Then, the change patterns of the source and test files are identified according to the extracted commit
histories. Finally, a set of change recommendations is constructed using the identified change patterns
of the source and the test files. The proposed change-recommendation approach is evaluated for six
open-source projects. For the open-source projects, the proposed change-recommendation approach
obtained significantly better accuracy than the existing change-recommendation approach.

In future works, we plan to conduct additional experiments with various software projects
to reduce the bias. In addition, we will study to employ our approach for functional change
recommendation. We believe that the proposed change recommendation approach can be extended
to make functional change recommendations. For instance, if changes of source files are classified
into functional changes of a software system, the functional change recommendations can be made by
considering functional change history and corresponding testing history of a software system.
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