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Abstract: Classification is a kernel process in the standardization, grading, and sensory aspects of
coffee industries. The chemometric data of fatty acids and crude fat are used to characterize the
varieties of coffee. Two category classifiers were used to distinguish the species and roasting degree
of coffee beans. However, the fatty acid profiling with normalized data gave a bad discriminant
result in the classification study with mixed dimensions in species and roasted degree. The result of
the predictive model is in conflict with the context of human cognition, since roasted coffee beans
are easily visually distinguished from green coffee beans. By exploring the effects of error analysis
and information processing technologies, the lost information was identified as a bias–variance
tradeoff derived from the percentile normalization. The roasting degree as extensive information was
attenuated by the percentile normalization, but the cultivars as intensive information were enhanced.
An informational spiking technique is proposed to patch the dataset and block the information loss.
The identified blocking of informational loss could be available for multidimensional classification
systems based on the chemometric data.

Keywords: chemometrics; dimension reduction; discriminant analysis; extensive property;
normalization

1. Introduction

Various classification techniques are widely used in the identification of cultivars or species, as well
as in the standardization and the grading of products for commercial and agricultural production [1–3].
Classification is also a kernel process for accurate decision-making after measurements in observation,
survey, clinical diagnosis, and industrial quality management [4–7].

Green coffee is one of the most traded agricultural commodities in the world. The species of
commercial coffee consist almost entirely of Coffea arabica (Arabica) and Coffea canephora (Robusta).
Arabica is generally more prominent and expensive in the market [8].

Green beans of both species can be distinguished by featured appearances and different
compositions that affect the sensory qualities of coffee products [5]. However, most commercial
roasted and ground coffees are actually blends of the two species. The molecular genetics approach
was applied to differentiate two coffee species in green beans for the quantification of any adulteration
of Arabica with Robusta beans [9]. After roasting and grinding, more advanced analytical methods are
required as indicators of subtle differentiation between the coffee species [10] because these biological
features would be diminished after roasting at high temperature (>200 ◦C) [11].

Within this realm, several works have successfully distinguished the coffee varieties by using
their chemometric data, such as amino acids, metals, sucrose, organic acids, and sterols [6,12,13].
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However, acquisition of measured data should be readily available, assured, and inexpensive for
a good predictive model. Otherwise, a good predictor derived from measured data must be associated
with sensory evaluations [14–17]. The sensory descriptors could also be established using regression
approaches based on the chemometric data [3,10,18]. Fatty acid profiling is most often evaluated to
achieve discrimination among the varieties of coffee beans because the sensory qualities of coffee are
complicated and affected by multiple factors [19].

Different types of compositional data have been applied to characterize green beans (cultivars as
a nominal variable) or investigate the roasting degree of coffees (in a ratio scale). The first two principal
components of visible micro-Raman spectra reveal different chlorogenic acid and lipid compositions
when comparing Arabica and Robusta green coffee [20]. Dong et al. reported the effect of different
drying techniques on the molecular composition of green Robusta [21]. Wei et al. used an NMR-based
prediction model to evaluate roasted coffee bean extracts [22]. Han et al. and Frank et al. used specific
chemical compounds to assess the toxic risk [23] and bitter taste [24] in roasted coffees, respectively.
Romano et al. used the specific fatty acids ratio to determine the relative amounts of Arabica and
Robusta in a green coffee blend [1]. Martin et al. obtained a classification result with residual errors for
green and roasted Arabica and Robusta coffees by using linear discriminant analysis [25]. Recently,
Dias and Benassi proposed a two-step discrimination among coffee species and roasted degrees
carried out using heat-labile compounds [11]. All of these studies demonstrate that multidimensional
discrimination would be a challenging task in classification.

As shown in Figure 1, chemometric protocols applied to the fatty acid composition data
of specimens provide an approach to extract information on coffee quality. In this study,
a discriminant system was developed with a learning model to achieve predictive functions.
Two linear classifiers—LCRG (roasted, green) and LCAR (Arabica, Robusta)—are used to establish
four independent groups. Thus, any one specimen (Si) can be placed into one of the groups, as the
logic expression Si ∈ {(Roasted ∪ Green) ∩ (Arabica ∪ Robusta)} indicates. The performances of the
classifiers with chemometric data were evaluated and validated by their correctness.
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result of the prediction model is in conflict with the context of human cognition, since roasted coffee 
beans are easily distinguished from the green ones by their brown color. A similar bias–variance 
dilemma was also observed in the early classification study [25]. The bias–variance tradeoff has also 
been applied to explain the effectiveness of heuristics in human learning, even if it is a problem in 
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As technology progresses, classifications are used across every discipline, and the data 
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Figure 1. Information conversion frames are associated with the real individuals, the chemometric
data, and the sensory recognitions in this study.

However, information loss causing mislabeling was found when the reliability of the data
processing was evaluated. The LCRG operator has poorer accuracy than LCAR, showing that the
result of the prediction model is in conflict with the context of human cognition, since roasted coffee
beans are easily distinguished from the green ones by their brown color. A similar bias–variance
dilemma was also observed in the early classification study [25]. The bias–variance tradeoff has also
been applied to explain the effectiveness of heuristics in human learning, even if it is a problem in
supervised learning.

As technology progresses, classifications are used across every discipline, and the data structures
are evolving into a more complex form [26,27]. In this study, the source of the information loss was
identified as an obvious pattern of classification errors derived from percentile normalization. Further,
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the accuracy of the classification system would be successfully enhanced by patching of the breach
using other featured data with the same properties as the lost information, as shown in Figure 2.
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2D classification.

The use of regression analysis aims to find independent latent variables for advanced classification.
Simultaneously, some leaks would be produced by the structural normalization of the dataset. Thus,
the data integrity and quality must be considered in a preprocessing phase before extracting knowledge
from raw data [28]. The preprocessing phase takes over half of the knowledge discovery process.
Our study demonstrates informational extraction achieved based on the patching of data structures in
a multimodal classification.

2. Materials and Methods

2.1. Sample Collection and Preparation

Green coffee beans of Arabica and Robusta cultivars were purchased from coffee suppliers who
guaranteed the origins and were verified by our experts. Portions of green beans were roasted and
collected for further analysis and cupping with reliable and traceable filing.

The roasting and grinding levels of these coffee beans were arbitrary and without specific
requirements. We expect that the samples were similar to those obtained in daily life. All of the coffee
beans, including green and roasted beans, were stored under steady conditions to avoid oxidation or
compositional changes. Then, 200 g of each portion of ground coffee beans (powdered) was sampled
and labelled as a specimen in this study.

2.2. Lipid Extraction and Crude Fat

The Soxhlet solid–liquid extraction method [29] (Association of Official Analytical Chemists
(AOAC) Official Method 2003.05/920.39) was used to extract the lipid fraction from the ground coffee
beans. All of the glass apparatus were rinsed using petroleum ether and dried in an oven at 102 ◦C.
Ten grams of ground coffee sample were weighed and placed in the thimble. A quantity of 90 mL of
petroleum ether was placed in a 150 mL round-bottom flask. We continued the extraction process for
5 h, and a defatted residue was obtained after distillation. Almost all the solvent was collected and
placed in the oven and then removed using a desiccator. The weight of the sample was then noted.
As a result, the crude fat (%) = (W − T)/S × 100% was calculated, where W, T, and S are the weights
of the thimble with ether extract, the empty thimble, and the sample, respectively.

2.3. Preparation of Fatty Acid Methyl Esters

Fatty acid methyl esters (FAMEs) were prepared by a method modified from the IUPAC standard
method [30,31]. Briefly, 200 mg of crude fat (lipid extraction) in a screw-capped glass tube was
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hydrolyzed with 1 mL of 1 M KOH in 70% ethanol (Sigma–Aldrich, St. Louis, MO, USA) at 90 ◦C
for 1 h. The reaction mixture was acidified with 0.2 mL of 6 M HCl, and then 1 mL of water was added.
The free fatty acids (FAs) were extracted with n-hexane to be methylated with 1 mL of 10% BF3 in
methanol at 37 ◦C for 20 min. A quantity of 3 mL of 6% potassium carbonate solution was added to
the solution, and then FAMEs were extracted with 1 mL of hexane. Of the n-hexane top layer, 200 µL
was transferred into a vial and crimped.

2.4. Fatty Acids Profile by GC–FID Analysis

The FAMEs were determined using gas chromatography (TRACE GC Ultra, Thermo Fisher
Scientific, Rodano-Milan, Italy) equipped with a flame ionization detector (FID) and liquid auto-injector
(AI-3000, Thermo Fisher Scientific, Rodano-Milan, Italy). Separation was carried out in an Rtx-WAX
capillary column (60 m × 0.53 mm id × 1 µm, Resteck Corporation, Bellefonte, PA, USA). Injection
volume was 1 µL in split mode, and inlet temperature was 250 ◦C. Nitrogen was used as the carrier gas
(flow rate of 1.2 mL/min), and the oven temperature was programmed as follows: initial temperature
50 ◦C, held for 2 min; then increased by 10 ◦C/min to 280 ◦C, where it was held for 5 min. All data
of FAMEs were recorded and quantitatively integrated using Chrom-Card data system (version 2.3,
Thermo Fisher Scientific, Rodano-Milan, Italy) with an external standards calibration curve.

In addition to this, the individual peaks of FAMEs were also identified using Agilent gas
chromatography and mass spectrometric detector (models 6890N GC and 5973 MSD, Agilent
Technologies, Santa Clara, CA, USA) under the same chromatographic conditions. Scan acquisition
(m/z 45-550) for MSD in the EI mode was carried out using HP Chemistation B.04.03 (Agilent
Technologies, Santa Clara, CA, USA) and the NIST 17 Mass Spectral Library (Scientific Instrument
Services, Ringoes, NJ, USA).

2.5. Statistics Software and Calculations

Statistical calculations and analysis were performed using Excel 2010 (Microsoft Corporation,
Santa Rosa, CA, USA) and PASW Statistics 18.0.3.25 (International Business Machines Corporation,
Armonk, NY, USA). The normalized and standardized data are re-calculated to a new data matrix.
The discriminant analysis was carried in the direct mode, and all variables passing the tolerance criteria
(0.001) were entered simultaneously with equal prior probabilities. The discriminant displays a max
variance pattern (and structure) matrix without rotated transformation.

3. Results and Discussion

3.1. Fatty Acids Analysis by GC–FID

Fats and oils are important ingredients in many foods. Fat contributes to the texture, flavor,
mouthfeel, and aroma of foods. The fatty acid composition was determined by the GC–FID method
with a calibration curve after methyl esterification and extraction. All quantitative data are listed in
Table 1.
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Table 1. The measured data of the contents of crude fat (cFAT) and eight fatty acids (FAs) listed for
34 samples of coffee beans.

ID GR AR
cFAT C16:0 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1 C22:0

mg/g

01 Roasted Arabica 159 45.342 8.985 10.610 62.466 2.109 3.691 0.508 0.714
02 Green Arabica 67 20.736 4.118 4.792 27.942 0.947 1.797 0.232 0.408
03 Roasted Arabica 155 37.909 7.301 9.247 47.871 1.603 2.952 0.427 0.563
04 Green Arabica 88 20.512 4.002 4.848 25.234 0.911 1.921 0.245 0.399
05 Roasted Arabica 153 36.507 7.242 11.355 47.960 1.552 2.788 0.414 0.556
06 Green Arabica 102 25.639 4.984 7.582 32.942 1.116 2.075 0.299 0.425
07 Roasted Arabica 148 36.101 8.461 10.067 46.857 1.539 3.436 0.412 0.644
08 Green Arabica 94 30.897 6.971 8.341 39.461 1.257 2.967 0.345 0.675
09 Roasted Arabica 203 44.440 10.410 13.355 59.340 1.683 4.243 0.554 0.905
10 Green Arabica 98 25.490 5.650 6.501 32.136 1.023 2.366 0.280 0.631
11 Roasted Arabica 203 54.853 13.219 17.271 74.899 2.461 4.691 0.647 1.060
12 Green Arabica 88 23.757 5.644 7.224 31.549 1.113 2.169 0.288 0.636
13 Roasted Arabica 173 41.413 9.778 12.421 55.083 1.777 3.408 0.451 0.749
14 Green Arabica 98 22.405 5.184 6.245 28.209 1.000 2.012 0.243 0.476
15 Roasted Arabica 175 50.168 9.712 12.828 66.230 2.067 3.439 0.564 0.713
16 Roasted Arabica 166 49.224 9.548 12.642 65.296 2.168 3.579 0.587 0.771
17 Green Arabica 127 34.747 6.697 8.720 45.076 1.524 2.336 0.383 0.471
18 Roasted Arabica 156 40.016 7.953 9.955 53.152 1.727 3.051 0.411 0.606
19 Green Arabica 79 19.075 3.779 4.780 25.878 0.852 1.466 0.194 0.321
20 Roasted Arabica 150 49.182 9.066 12.606 62.721 2.259 3.807 0.587 0.850
21 Roasted Arabica 156 49.529 9.303 12.610 63.325 2.308 3.890 0.599 0.789
22 Green Arabica 79 22.622 4.185 5.751 28.787 1.078 1.794 0.278 0.368
23 Roasted Robusta 135 33.076 6.439 8.844 38.228 0.694 2.510 0.340 0.306
24 Roasted Robusta 119 29.308 5.971 8.068 34.897 0.756 2.503 0.353 0.316
25 Green Robusta 55 16.041 3.236 4.584 18.805 0.391 1.482 0.188 0.271
26 Green Robusta 50 15.729 3.129 4.634 18.589 0.436 1.555 0.205 0.239
27 Roasted Robusta 100 23.971 5.272 8.634 31.999 0.656 2.247 0.343 0.288
28 Green Robusta 49 10.410 2.248 3.598 13.947 0.310 1.026 0.141 0.157
29 Roasted Robusta 120 31.304 6.863 11.588 40.807 0.796 3.198 0.500 0.484
30 Roasted Robusta 115 30.900 6.753 11.288 39.856 0.793 3.111 0.466 0.633
31 Green Robusta 61 16.730 3.943 5.936 21.800 0.466 1.792 0.243 0.322
32 Green Robusta 60 15.400 3.598 5.472 19.844 0.404 1.620 0.223 0.363
33 Roasted Robusta 98 23.786 5.277 8.634 31.356 0.665 2.247 0.333 0.269
34 Green Robusta 51 10.46 2.248 3.598 13.958 0.325 1.021 0.131 0.171

Regression analysis is widely used to estimate the relationships among variables for prediction
models in the field of machine learning [32]. The performance of regression analysis methods in
practice depends on the form of the data generating process and on the probability distributions of the
dependent variables around the prediction of the regression function.

The majority of the composition of coffee beans is contributed by the fatty acids C18:2 and C16:0,
and the smaller parts (<1%) were accounted for by C20:1 and C22:0. While the absolute measurement
uncertainties are a constant value, the fatty acids of the smaller parts would have greater relative
uncertainty than would those occurring in larger proportion. For instance, the relative deviation (RSD)
of fatty acid C20:1 is 13.7%, greater than the 0.126% of fatty acid C18:2, since the limit of quantitation
(LOQ) is 50 ppm (0.05 mg/g).

As the featured variables, the distributions of fatty acids were compared to fit the normally
distributed populations in Figure 3. However, highly symmetrical variances are not sensitive to the
varieties of coffee beans. The dataset was not directly used as input variables for the classification
algorithm. The similar distributions among these variables imply that the variances of fatty acids
are constrained patterns within the dataset. This pattern may refer to the relationship of continuous
variables, as opposed to the discrete variables used in classification.
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Figure 3. The measured data of 34 coffee samples were pooled and profiled for the variances of
cFAT and fatty acids, as unsupervised data. The boxes and lines present as the mean ±2s (standard
deviations, 95%), the median, and the quartiles (Q1 and Q3) for specific variables after standardization.
The numbers below (underlined) present the average composition for each fatty acid as a percentage of
total free fatty acids (100%).

3.2. Normalization (Percentile) and Standardization (Z-Score)

Many data processing techniques were utilized to reformat the data framework as normalized,
including percentages, standardization (Z-score), logarithms, and inverse measured data. Generally,
normalization removes the physical units of a measured dataset to make it a dimensionless dataset.

The fatty acids C18:0 and C18:2 are used to describe the structural characteristics of the system in
Figure 4. The correlation with the original measured data has a strong linearity, which is 5 times the
absolute quantities of fatty acids. The groups of roasted Arabica and green Robusta are at the ends of
the line, and the other two groups are superposition in the middle zone of the line. The high correlation
of two fatty acids implies the variables dependence in the quantitative data. Thus, the composition of
fatty acids could be considered as an intensive property for individual specimens.
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Figure 4. A restructured correlation of fatty acids (C18:0 and C18:2) is presented with the normalized
data in percentiles and juxtaposed with the correlation of fatty acids with the pooled measured data.

After normalization by percentiles, the percentile data shows a scattering pattern without
an obvious correlation in six times the dimensional quantities of the fatty acids. The results indicate
that the structures of the original dataset are ordered and become disrupted and more varied by
normalization. Percentile normalization can enhance the variability of quantitative data, but it also
amplifies the uncertainty (bias) to add on to the variances at the same time.
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3.3. Discrimination Analysis

The raw data of pooled specimens were calculated using the linear classifiers (LCRG and LCAR) to
obtain the scores dFRG and dFAR, respectively. Further, the discriminant scores were scattered into the
groups (quadrants), as shown in Figure 5A. The target of classification was successfully achieved by
the linear discriminant algorithm. The percentile data were also given scores by the linear classifiers,
and the resulting scatter plot is shown in Figure 5B.
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Figure 5. Linear discriminant analysis plotted with the raw data (A) or the percentile data (%) (B) of
the fatty acids in 34 coffee beans.

It is worth noting that there are five cases of error in the classification, which are noted in the
confusion matrix in Table 2. The classifier of coffee species (LCAR) has perfect correctness, but the
classifier of roasting degree (LCRG) only has 85% correctness. The classification errors in roasting
degree occur in two ways: green mistaken as roasted or roasted mistaken as green. The LCRG has
poorer discriminability than the LCAR in the training model; this is in conflict with the predictive
model using human cognition.

Table 2. Classification accuracy is assessed using a confusion matrix based on the discriminant functions
with the normalized (percentile) data and classification into the four groups (2 × 2). The correctness is
used to describe the performance of the individual classifiers (LCRG or LCAR).

Categories Green Roasted LCAR

Arabica 8/10 10/12 22/22 (100)
Robusta 6/6 5/6 12/12 (100)

LCRG 14/16 (87.5) 15/18 (83.3) Correct (%)

In sensory testing, it is easier to differentiate the roasting degrees than to distinguish coffee
species. Therefore, some information associated with the roasting categories must be attenuated in
the percentile normalization. The dimensional reduction of the dataset matrix, which is rescaled as
a reference standard, perhaps causes the information loss. For instance, the freedom of the eight fatty
acids in percentage is 7 because the total composition must be 100%.

Discriminant analysis deals with the taxonomic classification (supervised learning) so that
the cases are partitioned into the labeled groups. Partial least squares discriminant analysis has
demonstrated great success in modelling high-dimensional datasets for versatility. Despite that,
the user needs to optimize a wealth of parameters before reaching reliable and validated outcomes [26].
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Unlike in principle component analysis and cluster analysis, the algorithms are used to explore
unknown patterns in prior (unsupervised) learning.

3.4. Information Loss in Data Processing

For supervised learning, the training dataset was reviewed according to the distributions of
labeled categories. We examined the differences in labeled categories for each classifier using Student’s
t-test, as shown in Figure 6. Interesting, the Z-scored data differed significantly for discrimination of
green and roasted coffees, which is the function of LCRG. However, the percentile data suppressed
the significant difference between the Arabica and Robusta coffees, as shown in Figure 6A. Only the
percentile data of fatty acids C20:0 and C22:0 have significance (t value > 2) at the 95% confidence level
because the fatty acid C22:0 is the smaller part in the composition of fatty acids with average levels less
than 1.0 %, as shown in Figure 3. The bias–variance tradeoff is a serious problem in this classification.
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Figure 6. Comparison of the effects of the Z-scored or percentile (%) data on the t values of fatty acids
for discrimination of (A) Green and Roasted or (B) Arabica and Robusta coffees.

Otherwise, the Z-scored data have significance for the discrimination of Arabica and Robusta
coffees, and the percentile data are enhanced in significance for fatty acids C18:1, C18:2, C18:3, C20:0,
and C20:1 in Figure 6B. Thus, the percentile normalization is better suited to distinguishing the Arabica
and Robusta coffees.

These results demonstrate that the discrimination of roasting degree is dominated by the extensive
property of the raw data, and the discrimination of coffee species is dominated by the intensive
property of the percentile data, as it is relative scale invariant. The majority of the lost information has
an extensive property within the raw data. The percentile normalization reduces the dimensions of the
data matrix and shrinks the contained information by erasing part of the extensive information.

3.5. Patching the Breach in the Classification System

The lost information has the extensive property and is erased in data processing. If related data
with extensive property was spiked into the smaller normalized data pool, the discrimination could be
enhanced, allowing higher correctness. As shown in our proposal in Figure 2, the crude fat content
was used to patch the informational breach, forming a patching process for the classification system
with normalized data.

In Figure 7A, the crude fat contents without normalization are distributed into the four labelled
groups, and the confusion errors are shown in the grey area. The crude fat content with the extensive
property of specimen information was not associated with the percentile fatty acids in order to avoid
artificial containment derived from the normalization.
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Figure 7. Group distributions of the crude fat contents (A) in green and roasted coffee beans are
compared using raw data. Further, linear discriminant analysis (B) is plotted with the percentile data
of the fatty acids patched with the crude fat content (cFAT) of the 34 coffee bean samples.

Obviously, the patched dataset can be well partitioned by the two classifiers; the results are
shown in Figure 7B. The source of information loss is evidenced by the informational spiking with the
extensive property of crude fat content (cFAT). These results demonstrate that the system performance
of machine learning depends on the input informational integrity and type. Data processing perhaps
enhances one system function, but suppresses another.

4. Conclusions

All kinds of data are used as a medium for transmitting information in modern life. Different
professional explanations are often added in the processes of data transfer and expression. We have
shown that if there is no mutual crossover between the two sets of data, the percentile process will
be more effective for the classification of coffee beans. The source and the property of information
loss in this classification were identified as the normalization processing and the extensive quantity.
The loss of information is noted in the quantitative features of coffee beans that have gone through
the roasting process. The performance of this coffee classification is enhanced and validated by
our patching technique with the traceable informational processing. Furthermore, our results will
promote correctness and avoid the bias–variance tradeoff in classification systems with multiple
classifiers. For industrial applications, effects of different processing and materials could be associated
with the food quality and consumers’ preference by the accurate discriminant exploring based on
chemometric data.
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