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Abstract: In banks, governments, and Internet companies, inconsistent data problems may often
arise when various information systems are collecting, processing, and updating data due to human
or equipment reasons. The emergence of inconsistent data makes it impossible to obtain correct
information from the data and reduces its availability. Such problems may be fatal in data-intensive
enterprises, which causes huge economic losses. Moreover, it is very difficult to clean inconsistent
data in databases, especially for data containing conditional functional dependencies with built-in
predicates (CFDPs), because it tends to contain more candidate repair values. For the inconsistent
data containing CFD"’s to detect incomplete and repair difficult problems in databases, we propose
a dependency lifting algorithm (DLA) based on the maximum dependency set (MDS) and a reparation
algorithm (C-Repair) based on integrating the minimum cost and attribute correlation, respectively.
In detection, we find recessive dependencies from the original dependency set to obtain the MDS and
improve the original algorithm by dynamic domain adjustment, which extends the applicability to
continuous attributes and improves the detection accuracy. In reparation, we first set up a priority
queue (PQ) for elements to be repaired based on the minimum cost idea to select a candidate element;
then, we treat the corresponding conflict-free instance (I,;,) as the training set to learn the correlation
among attributes and compute the weighted distance (WDis) between the tuple of the candidate
element and other tuples in I, according to the correlation; and, lastly, we perform reparation based
on the WDis and re-compute the PQ after each reparation round to improve the efficiency, and use
a label, flag, to mark the repaired elements to ensure the convergence at the same time. By setting up
a contrast experiment, we compare the DLA with the CFD's based algorithm, and the C-Repair with
a cost-based, interpolation-based algorithm on a simulated instance and a real instance. From the
experimental results, the DLA and C-Repair algorithms have better detection and repair ability at
a higher time cost.

Keywords: inconsistent data; CFDs with built-in predicates; maximum dependency set; minimum
cost; attribute correlation; machine learning

1. Introduction

With the development of social informatization, data storage, data analysis, and aid
decision-making, relying on various information systems, have occupied a very important position
in information society. In the era of the Internet, the data scale has expanded unceasingly due to
increasing data requirements and constant shortening of data acquisition and the updating cycle.
How to solve data quality problems accompanying big data is an urgent problem for government
departments, enterprises, and institutions.

In the field of data quality, data consistency refers to the degree to which a given data set satisfies
constraints or the consistency to which the same thing is expressed in the case of multi-source data
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fusion [1] (pp. 7-18). In this paper, inconsistent data means that a data set does not satisfy the
given constraints (such as functional dependencies (FDs) [2] (pp. 426—431), conditional functional
dependencies (CFDs) [3] (pp. 537-540), and CFDs with built-in predicates (CFDPs) [4] (pp. 3274-3288)).
Inconsistent data cannot correctly express the true state of data elements, destroys the relationship
between objective things, and greatly reduces the value of data [5] (pp. 1727-1738). For inconsistent
data problems in databases, most of the current detection and reparation methods are based on
functional dependencies or conditional functional dependencies, which do reparation through the idea
of manual intervention, deletion inconsistent tuples, and minimum repair cost.

Currently, the detection and reparation of inconsistent data mainly face two challenges [6]
(pp- 41-74): (1) With the gradual expansion of data scale and data constraints, the difficulty of
detecting and repairing inconsistent data is multiplied. In this case, there are higher requirements on
the convergence and complexity of algorithms. (2) The inconsistent data reparation algorithms are
designed to find an optimal result that satisfies the dependencies and conforms to existing rules in
data sets as much as possible. However, the candidate repair values of data elements explode with the
data scale increasing, which bring great difficulties in the detecting and repairing process.

1.1. Inconsistent Data Cleaning Status

Relevant research [7] (pp. 143-154) has proved that the repair process of inconsistent data
is an NP-Complete problem in the case of specified dependencies in data sets, and there are no
optimal repair results at a minimum time cost. The existing research results mainly focus on a series
of optimization algorithms for databases in various specific fields (such as spatial databases [8]
(pp. 280-304) and XML [9] (pp. 1-19)). The general ideas can be divided into the following categories.

Paper [10] (pp. 232-236) proposed an inconsistent data detection and reparation algorithm based
on primary key constraints in relational databases, which is a very simple method. The author first
defines the primary key and related FDs in the database. The inconsistent data is detected through
the uniqueness of the primary key and the given FDs, and then does reparation by deleting tuples
with inconsistent data. The advantages of this algorithm are that it is simple and efficient, and it
can ensure the rest tuples do not contain any inconsistent elements. However, by deleting tuples to
ensure consistency, the data set may lose some critical information, which makes the application field
greatly limited.

Another idea to detect and repair inconsistent data is based on CFDs and minimum cost principles.
When it comes to repair costs, it is similar to the sorting idea and there are also two totally different
ways. Paper [11] considers the smallest difference between original data and repaired data, and chooses
their distance (including Euclidean-distance of numbers and Edit-distance of characters) as the repair
cost to find a target value with a minimum distance and conflict resolution at the same time. However,
the minimum distance is not necessarily the best candidate values. The results obtained only by
considering the distance between candidate repair values and original values may not be satisfactory.
Paper [12] (pp. 1685-1699) also proposes a method to compute the repair cost; it chooses a value
for repair based on the change amount of conflict elements before and after updating all candidate
values. All candidate values need to be traversed once before each repair process, which results in
high computational complexity in data sets with many candidate values; in this case, the algorithm
cannot be applied to large-scale data.

In general, there are several problems in detecting and repairing inconsistent data at present:
(1) The detection and reparation algorithms mainly focus on FDs or CFDs, paying less attention to
CFDPs, while it is much more difficult to detect and repair data violating with CFD"’s; (2) in the repair
process, more consider only RHS (right hand side) of dependencies [13] (pp. 2664-2669), which is
obviously unreasonable. The location of error in data sets is often random, so only repairing RHS
is more limited; and (3) when selecting a candidate repair value, there is less consideration to the
correlation existing in attributes, which means the repaired results may satisfy the given dependencies
well, but their authenticity needs further discussion.
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We hold the opinion in this paper that it is more credible to repair inconsistent data elements
by the existing values in data sets under unsupervised circumstances [14] (pp. 547-554). The main
idea is: For given data sets and CFD's, the maximum dependency set (MDS) is obtained to detect and
locate the inconsistent elements by finding recessive dependencies contained in CFD'’s. The dynamic
domain adjustment is proposed to improve the original algorithm’s shortcomings to the continuous
attributes [15] (pp. 1-18). Then, the priority queue (PQ) of candidate repair values is established based
on the located inconsistent elements, selecting the data to be repaired according to the minimum
cost idea and computing the correlation among attributes through symmetric uncertainty (SU) in
the information theory. At last, the improved KNN algorithm is used to repair the inconsistent data.
This algorithm integrates the minimum cost idea and correlation among attributes, and it can be
applied to inconsistent data that violates CFD's.

1.2. Purpose and Structure of This Paper

The purpose of this paper is to propose a detection and reparation algorithm for data that violates
the CFDPs in data sets. The main contributions and innovations are:

(1) We propose a heuristic algorithm for inconsistent data detection and reparation, which can repair
inconsistent data violating the CFDPs in data sets under unsupervised circumstances;

(2) For inconsistent data detection, the maximum dependency set is used to detect them. By finding
recessive dependencies from original dependency sets, we improve the detection accuracy and
apply the algorithm to continuous attributes; and

(3) For inconsistent data reparation, we use unsupervised machine learning to learn the correlation
among attributes in data sets, and integrate the minimum cost idea and information theory
to repair, which makes the repair results most relevant to the initial values with minimum
repair times.

The rest of the paper is structured as follows:

In Section 2, after formally describing the inconsistency in databases, we propose an inconsistent
data cleaning framework and give an example for readers to understand and reproduce. Then, we
design the detection and reparation algorithms and analyze the convergence and complexity of them.
In Section 3, to verify the effectiveness of our algorithms, we compare them with other algorithms
through different data scales and inconsistent proportions, and then analyze the experimental results.
In Section 4, we analyze the advantages and disadvantages of two algorithms in detail, explain the
reason why our algorithms perform better, and put forward the subsequent improvement direction.
At last, in Section 5, we summarize the contributions of this paper.

2. Materials and Methods

In this Section, we first formally describe the inconsistency in databases, then we propose
an inconsistent data cleaning framework and design the detection and reparation algorithms according
to it. In detection, we use the MDS to improve the detection accuracy and extend the algorithm
to continuous attributes. In reparation, we first set up the PQ based on the minimum cost idea,
then we learn the correlation among attributes in the corresponding conflict-free data instance using
an unsupervised machine learning method. Finally, we do reparation according to the learned
correlation. Moreover, the algorithm does not require manual intervention in the repair process and
can be applied to special cases violating CFD"s.

2.1. Problem Description

Data consistency means the degree to which elements in a data instance, I, satisfy a dependency
set, D. Different from the “equality constraints” of CFDs [16] (pp. 864-868), the CFDFs are special forms
of dependencies containing predicates [4] (pp. 3274-3288). Intuitively, CFD"s are actually extending
the “equality constraints” of CFDs to “predicate constraints”. For any tuple, t;, t; € R, the form
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of a CFDY is like “t;[X] > a — t;[Y] > b”, and this dependency type is also common in data sets.
Compared with “equality constraints” of CFDs, “predicate constraints” are more difficult to detect and
repair because they often contain more candidate values.

In semantics, if the X and Y attributes of a tuple, t; in I ({; € I) violates the given dependencies,
cfd®”, which means the X attribute of t; satisfies the LHS (left hand side) of cfd?, but the Y attribute
violates the RHS, expressed as t;[X] # cfd” and t;[Y] # cfd”. When describing the inconsistent
data elements of X attribute, we still express it as t;[X] # cfd", because the location of error data is
often random.

For the inconsistent data elements detected and located, the following quadruple is used to
describe them in this paper:

VefdP : (i, ti[Am], tilAnl, cfdl) (1)

where ¢; is the unique identification of a tuple in data instances; t;[A;;] and t;[A,] represents the my,
and ny, attributes of t;, which violate the given dependencies respectively; and cfd’ means the ky,
dependency in the dependency set. The location problem of inconsistent data can be solved through
Expression (1), which can also facilitate subsequent reparation work.

The following relation schema is given to describe the inconsistent problem in a data set:

staff (id, name, age, excellent_staff, work_seniority, work_place, marry_status,
monthly_salary, department)

The meanings, value types, and abbreviations of each attribute in the relation schema are shown
in Table 1.

Table 1. Staff attributes description.

Attributes Meanings Value Types Abbreviations

id staff number numeric ID

name staff name text NM

age staff age numeric AGE
excellent_staff excellent staff status boolean ES
work_seniority years of work numeric WS
work_place branch office text wp
marry_status marry status boolean MSs

monthly_salary monthly salary numeric MSy
department work department text DM

For description convenience, subsequent attributes” descriptions are all represented by the
abbreviations in this paper, for example, the ES and MSs respectively indicate excellent staff status and
marry status, and the values are T and F.

Selecting part data tuples in the data set, a data instance in the staff relation schema is shown
in Table 2.

Table 2. Staff data instance.

ID NM AGE ES WS wpP MSs MSy DM
1 Kitty 25 T 4 branch#1 T 3825 security
2 Ming 20 F 2 branch#7 F 4718 manager
3 Wong 18 T 0.5  branch#5 F 3264 personnel
4 Lity 36 F 3.5  branch#1 F 7560 manager
5 John 41 T 5 branch#3 T 5300 communication
6 Li Lei 25 F 4 branch#4 T 3750 sale
7 Lucy 36 T 3 branch#2 F 4103 market
8 Xie Feng 26 F 2 branch#3 T 3520 sale
9 Jack 19 F 15 branch#2 F 5030 culture
10 Kai 41 T 5 branch#1 T 7263 manager
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The following possible dependencies are given to describe the inconsistent data problem in Table 2:
cfd): ES = T—WS>3

cfdé7 : DM = manager — MSy > 6300
cfdy: WS>1— AGE > 19

where cfd! indicates the seniority of an excellent staff should be at least three years; cfd} means the
basic salary of a manager is 6300 RMB; and cfd’ shows the age of employees whose seniority exceeds
one year should be no less than 19 years old. These three dependencies are partial dependencies that
may exist in the data instance according to the staff characteristics in a company, and are used to
constrain the data in Table 2.

Based on the given cfd”, inconsistent data elements existing in Table 2 can be located and
expressed by the quadruple in Expression (1). For example, the MSy and DM values of tuple 2
violate the cfd}, and the ES and WS values of tuple 3 violate the cfd”, which can be expressed
as (t2, MSy, DM, ¢ fdg ) and (t3, ES, WS, ¢ fdf ), respectively. In fact, this method, which detects
inconsistent data directly through the given cfd”, is flawed. We will explain these faults in Section 2.2.1
and use the maximum dependency set to do detection.

2.2. Inconsistent Data Cleaning Framework

In this section, we propose a framework for inconsistent data detection and reparation.
The framework takes a data instance, I, and a dependency set, D, as input, and repaired results, I’ as
output, which can detect and repair the inconsistent data in I. It can be divided into two sub-modules:
Detection and reparation, as shown in Figure 1. In the framework, the detection module is the
foundation of the repair module, taking the detected inconsistent data-elements set (IDS) as input to
participate in the repair process, and recalculating the IDS after every reparation round, the repair
results will be obtained until the IDS is empty.

‘ ’// I\ 1
|/ [\
‘ | datainstancel | | ‘
\ \
[\ \/ | r********‘
‘ } input ‘ J/ J; \\\ |
\ || . [
dependency | repaired datal” | |
‘ set D | |\ \ ‘ output
\ \ A VA
_——m - =4 e e e—e— e = = = -
original input IDS is empty
| T \ . r T |
Recomputing IDS after | ‘
‘ acquiring related ‘ every round reparation ‘ candidate repair data
| dependencies | ‘ priority queue |
| | | |
\ \ \
| | | , y |
| acquiring MDS | | attribute correlation |
‘ computing ‘
\ \
\
\ \ \
| |
| location and ‘ .
¢ ‘ attribute values \
\ representation of ‘ | reparation
| inconsistent data | Obtaining IDS ‘ |
L, _ o ————__ |
Inconsistent data detection module Inconsistent data reparation module

Figure 1. Inconsistent data detection and reparation framework.
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In the detection module, referring to the method of obtaining the MDS proposed in [15] (pp. 1-18),
we propose the dynamic domain adjustment to improve the original algorithm by setting pointers
of a numerical change direction, and extend the algorithm to continuous attributes. As a result,
the ability to detect inconsistent data is improved. In the reparation module, we first delete tuples
with inconsistent elements to get a conflict-free data instance, I, as the training set based on the
located inconsistent data; at this point, there is no inconsistent data in I,;;. Then, we consider the
correlation among attributes in I,,, which is computed by the symmetric uncertainty method in
information theory, and select a candidate repair data element according to the established PQ. At last,
the improved KNN algorithm is used to do reparation.

2.2.1. Inconsistent Data Detection Module

The inconsistent data detection module detects inconsistent elements in a data instance by
obtaining the MDS of a given cfd”, and uses the quadruple in Expression (1) to represent and locate.
In Section 2.1, we mentioned that the algorithm, which detects inconsistent data directly through the
given cf d? is flawed. Then, we will describe these kinds of faults in detail.

Taking the staff data instance in Table 2 and the three cfd” as an example, the inconsistent data
elements in staff can be represented as (tp, MSy, DM, ¢ fdg )and (t3, ES, WS, ¢ fdf ) through the three
dependencies, cfd}, cfd}, and cfd}. In fact, by analyzing the cfd} and cfd}, it is easy to get a new
cfd®, called recessive CFD"s (RCFD"s):

refd] : ES = T — AGE > 19

The rcfd? is a new dependency obtained by the cfd! and cfdL, which do not exist in the original
dependency set. According to the rcfd}, we can find the AGE and ES attributes in tuple 3 are
inconsistent too, expressed as (t3, AGE, ES, rc fd{J ), and this inconsistent data element cannot be
detected by the original dependency set. At this point, the cfd}, cfd}, cfds, and rcfd} constitute
the MDS of the original dependency set. In this paper, we propose a dependency lifting algorithm
(DLA) based on the MDS, which discovers the rcfd” contained in cfd” to obtain the MDS, and do
detection by the acquired MDS. Generally, it can be divided into three sub-stages: Acquiring related
dependencies, acquiring the MDS and location, and representation of the inconsistent data.

Acquiring Related Dependencies

The process of obtaining the rcfd! from the cfd?, cfdy, and cfdL in Table 2 is used as an example.
The DLA first select one attribute in the attribute set (Attr(R)) as the start attribute (start_attr), and then
computes the rcfd® from all cfd” related to the start_attr. The algorithm ends when all attributes in
the data instance, I, are traversed once.

Paper [15] (pp. 1-18) proposed a method to find the rcfd” from the cfd”, which defined explicit
constraint dependencies through domain knowledge, and got the closed set by mathematical ways [17]
(pp. 69-71). This algorithm does set operations by enumerating attribute values, which performs well
in discrete data whose attribute values are finite. However, there are two defects in practical application
processes: (1) Because the algorithm needs to enumerate all attribute values that do not satisfy the
dependencies, it takes a lot of time and space resources to compute in data instances with a large
number of dependencies, causing a waste of memory; and (2) since the variance step of continuous
attribute values cannot be measured, the algorithm is not suitable for data instances with continuous
attributes. We propose a method instead of the enumeration process, and extend the original algorithm
to continuous attributes by setting forward pointers (L) and backward pointers (U).

Selecting the ES attribute as the start_attr, the dependencies containing the start_attr are cfd?}
and cfdy:

cfd]: ES = T— WS >3

cfdy: WS>1— AGE > 19
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Noting the vio(cfd?) is a value space that does not satisfy the cfd?, the value spaces that do not
satisfy the cfd? and cfd% are shown as follows:

vio(cfdy) = {ES:T} x {WS:3,L} x {AGE : all}

vio(cfdy) = {WS:1,U} x {AGE :19,L} x {ES : all}

where L and U indicate the value changes to the left and right, respectively; for example, the {WS : 3, L}
means the WS attribute values should be less than three years.

Acquiring the MDS

Acquiring the MDS from a given cfd” is the core of the DLA. For data tuples with N attributes,
T(Ty, T, T3,...,Ty), and an initial dependency set, D, the mathematical forms of obtaining the rc fd”
after selecting a start attribute, T;, are shown as follows:

. i—1 N
RCFD?(i,D) = H; 1 mdeDA? X UgepAf x H]' = it1 deDA? @

In Expression (2), A; is the values space of the jy, attribute, and A;i is the values space of the jy,
attribute, which does not satisfy the dependency, d.

Selecting the WS attribute as the start_attr, and the vio(cfd}) and vio(cfdl) as input,
the computing process of obtaining the rcfd} is as follows:

rcfd’f(WS, {Uio(cfdf),vio(cfd’;)})
= {ES: TYN{ES :all} x {WS:3,L} U{WS:1,U} x {AGE : all} N {AGE : 19, L}
— {ES: T} x {WS:all} x {AGE : 19,L}

where “U” and “N” operations of the ES, WS, and AGE attributes involves the merging process of
different pointers, which are similar to the combination of intervals on a number axis. The WS attribute
is shown as an example in Figure 2.

v e —
7 AN
a1 0 4

1 2 3

.
3

—— {WS:1.U}
— {WS3L}

Figure 2. Pointer merging processes of the WS attribute.

In Figure 2, the {WS : 3, L} and {WS : 1, U} are shown in different colors, and the new domain
of the WS attribute can be obtained after doing “U” operations for two different color areas, that is
{WS:3, LJU{WS : 1, U} ={WS : all}.

In this way, a new dependency, rcfd?, is obtained:

rcfdd : ES = T — AGE > 19

The MDS will be obtained after all attributes in Attr(R) are traversed once. Then, we judge the
data elements in the data instance through the MDS and finally get the inconsistent data.

Location and Representation of Inconsistent Data

For the inconsistent data detected by the MDS, we use the quadruple in Expression (1) to express
and locate them. The inconsistent data-elements set (IDS) of staff instance in Table 2 can be expressed
as follows:

IDS : {(tz, MSy, DM, cfdb), (t3, ES, WS, cfd), (t3, AGE, ES, rcfdf)} 3)
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2.2.2. Inconsistent Data Reparation Module

The inconsistent data reparation module takes the repair times of data instances as the repair cost,
and first computes the counts of violating dependencies for every inconsistent data element to get the
priority queue (PQ). Then, putting the corresponding data instance with no inconsistent data, I,,,, as
the training set, we learn the correlation among attributes in I, by the symmetric uncertainty method
in information theory. At last, we select the candidate repair data element from PQ and do reparation
based on the improved KNN algorithm. The whole module takes a data instance, I, and the MDS and
the IDS as input, and can also be divided into three sub-stages: Candidate repair data priority queue,
attribute correlation computing, and attribute values reparation.

Candidate Repair Data Priority Queue

We choose repair times of the data instance as the repair cost in this paper, establish the PQ based
on the IDS, and select the first element from PQ to repair. Taking the VioCount(t;, A) as the violation
counts of attribute, A, in tuple, ¢;, for n dependencies in MDS, the way to get VioCount(t;, A) can be
expressed as follows:

n
VioCount(t;, A) = ) (A ecfd?)t, AelIDS 4)
j=1

where A € ¢ fdf means the attribute, A, of the tuple, t;, is contained in a dependency, cf d}j ; and
t;, A € IDS means the attributes of tuples are all selected from the IDS to ensure the selected data
elements are all inconsistent.

Taking the MDS and IDS in Section 2.2.1, and the staff instance in Table 2 as an example too, all
VioCount(t;, A) in IDS are VioCount(ts3, ES) = 2, VioCount(t;, MSy) =  VioCount(ty, DM) =
VioCount(t3, WS) = VioCount(t3, AGE) = 1. Then, we establish the PQ according to the
VioCount(t;, A) and select the first element in PQ to be repaired:

PQ: {(t3,ES), (t2, MSy), (t2, DM), (t3, WS), (t3, AGE) } 5)

Attribute Correlation Computing

When computing the attribute correlation, we need to first delete inconsistent tuples in I to get
the corresponding conflict-free data instance, I,;», and learn the correlation from the training set, I;,.
For example, the I, of the staff instance in Table 2 does not contain tuples, ¢, and t3.

In real data sets, there may be a certain correlation among attributes, so it is more advantageous to
repair data sets considering the correlation under the unsupervised environment. Generally speaking,
in information theory, the way to compute a correlation is the information gain (IG) [18] (pp. 1-8) or the
symmetrical uncertainty (SU) [19] (pp. 429-438), however, the disadvantage of the IG is that it tends to
select attributes with multiple different values and should be standardized to ensure comparability.
In this case, the SU method is chosen to compute in ;.

In information theory, the uncertainty of a variable, X, can be measured by information entropy,
H(X), which increases with the uncertainty of the variable. The mathematical definition is as follows:

X) = =Y p(x)log, p(x) ©6)

xeX

where p(x) means the probability that a variable, X, takes the value of x. The conditional entropy,
H(X]Y), represents the uncertainty of a variable, X, when the Y is determined.

H(X[Y) = =) p(y) ) p(xly)log, p(xy) @)
yey xeX
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In Expression (7), p(x|y) means the probability that the variable, X, takes the value of x when the
variable Y is y. In this case, the IG can be expressed as:

IG(X,Y) = H(X)— H(X|Y) )

To eliminate the influence of variable units and variable values, the SU method is used to
normalize the IG:

IG(X,Y) ]
SUXY) = 2X | = 9
1) = 25t ©
Taking the staff instance in Table 2 as an example, the I, can be obtained as
Inw = {t1,t4, t5, te, ty, ts, to, t1p}. In view of the ES attribute, its domain contains two elements

{T, F} with the probabilities both 1/2; that is, p(T) = p(F) = 4/8 = 1/2, so the information entropy of
the ES is H(ES) = 1 using the method in Expression (6). Similarly, the domain of the AGE attribute is
{25, 36, 41, 26, 19} with the probabilities, p(25) = p(36) = p(41) =2/8 =1/4, p(26) = p(19) = 1/8, so the
information entropy is H(AGE) = 2.25. When the AGE attribute value is 25, the ES attribute values
are T and F, and the probabilities are both 1/2; that is p(ES = T| AGE = 25) = p(ES = FIAGE = 25) =
1/2. In a similar way, the conditional probability of the ES attribute when the AGE attribute takes
other values can be computed. Then, the conditional entropy, H(ES | AGE), can be obtained based on
Expression (7), H(ES | AGE) = 0.5. According to Expression (8), the IG can be computed too, IG(ES,
AGE) = H(ES)-H(ES | AGE) = 0.5. At last, the correlation between the ES and AGE attributes through
Expression (9) is:
0.5
14225
Similarly, the correlation between the ES and other attributes, ID, NM, WS, WP, MSs, MSy,
and DM, is 0, 0, 0.43, 0.11, 0.05, 0, and 0.43, respectively. It must be noted that because there are
only eight tuples in I,;;, the correlation among attributes learned from the I,,, can only represent the
correlation in Table 2, and may not be representative of the whole industry.

SU(ES, AGE) = 2 x (

) = 031

Attribute Values Reparation

In the stage of attribute values reparation, we choose the first element in PQ as the candidate repair
data element, and compute the distance between tuples according to the improved KNN algorithm
and the correlation. The improved KNN algorithm takes the SU among attributes as weight to get the
weighted distance (WDis) of tuples, which can be expressed as follows:

WDis(ti, t;) = /Y SU(X,Y) x RDis(t[Y],4;[Y]) X € PQ, Y € Others (10)

where SU(X,Y) means the correlation between the X and Y attributes, X is the attribute of the candidate
repair data element, and Y is another attribute in the data instance. The RDis(t;[Y], t;[Y]) means the
relative distance between tuples, t; and tj, on the attributem Y. Due to different types of attributes
(numeric, text, and boolean), it is not comparable directly through the Euclidean distance or the edit
distance. Therefore, we choose the relative distance (RDis) to measure the distance among attributes in
tuples in this paper, which makes the comparability between different types of attributes. For numerical
attributes, the ratio of their Euclidean distance to the larger value is computed as the RDis, and for
others, the ratio of their edit distance to the longer string is computed as the RD:is.

) Y € numeric
] max(t;[Y],t;Y
RDis(t[Y], 4j[Y]) = { a1 (11)
maxlen(6[Y],5Y]) Y € others

where EucD and EditD represent the Euclidean distance and the edit distance, respectively. Thanks to
the relative distance, the distance of attributes in different tuples can be well mapped to the interval
[0,1], which makes them comparable.
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Taking tuples, 3 and t, in Table 2 as an example, the candidate repair data element selected
from PQ is (t3, ES), and the correlation between the ES and other attributes{ID, NM, AGE, WS, WP,
MSs, MSy, DM} is SU = {0, 0, 0.31, 0.43, 0.11, 0.05, 0, 0.43}, respectively. In this case, the correlate set
of attribute ES is {AGE, WS, WP, MSs, DM}, then the RDis between the t3 and #; on the correlate set
is RDis = {0.28, 0.875, 0.125, 1, 0.89} based on the method in Expression (11). At last, we obtain the
WDis between tuples, t3 and t;, according to Expression (10), WDis(t3, t1) = 0.954. Similarly, the WDis
between the t3 and other tuples {t1, t4, t5, tg, t7, ts, to, f1o} in Ly is:

WDis(t;, ;) = {0.954, 0.960, 1.010, 0.963, 0.926, 0.930, 0.834, 1.004}
j=145678910

Selecting n(n 4 1) /2, (n > 2) nearest tuples as class tuples, we finish a reparation round by the
most frequent values of candidate repair attribute in the class tuples. Because there are only 10 tuples
in Table 2, the class tuples are {t7, tg, to} with n = 2, and the ES attribute values of class tuples are
{T, F, F}, respectively. Therefore, the reparation value of the (t3, ES) is “F”.

After the above repair process, the (t3, ES) is consistent now, which does not violate the cf df and
the rcfd?. Then, we consider a dynamic process that re-computes the PQ and continues to repair other
inconsistent data elements. In this way, the computational efficiency of the reparation algorithm is
improved effectively because one round of reparation can make multiple inconsistent data elements
consistent or produce new inconsistent data elements. However, in special cases, a candidate repair
data element in PQ may still be inconsistent after a round of reparation, and the algorithm will fall into
an endless-loop. To keep the convergence of the algorithm, we use a label, flag, to mark the repaired
data elements, which ensures every data element is repaired at most once and then is removed from
the PQ. The concrete implementation will be shown in Section 2.4.

2.3. Inconsistent Data Detection Algorithm

According to the inconsistent data cleaning framework in Section 2.2, we propose a dependency
lifting algorithm (DLA) to detect and locate the inconsistent data in data instances. The main idea of the
DLA is finding the rcfd” from the given cfd” to obtain the MDS, and then detecting the inconsistent
data based on the MDS. At last, the detected inconsistent data is expressed by the quadruple in
Expression (1).

2.3.1. Design of Detection Algorithm

To find the rcfd” from the cfd”, we need to first get all attributes (allattr) and attribute types in
data instances, choose one attribute as the start_attr, and obtain the dependencies, cf dP, related to the
start_attr. Then, we normalize the cfd” by using pointers that measure the direction of value change
(forward pointer, L, and backward pointer, U) after judging attribute types, and obtain the value space,
vio(cfd”), that does not satisfy the cfd”. At last, we do set operation and pointer merging for the
vio(cfd”) to get an rcfd®. If the resulting rcfd” is a new dependency in the original dependency set,
we add it to the MDS. The DLA will end while all attributes in the data instance are traversed once.

The DLA flow is shown in Algorithm 1. The L1 to L5 get all attributes from a data instance, selects
a start attribute(start_attr), and obtains the related dependencies, ¢ fd?; the L6 to L12 obtain the vioc fd?
from the cfd”; the L13 to L19 do union operation for the start_attr and intersection operation for the
non-start_attr; the L20 to L24 indicates the MDS will be obtained by adding into the cfd” and the new
viocfdP after all attributes are traversed once; and the L25 to L29 detect the inconsistent data based on
the MDS and express them by the quadruple in Expression (1).

In Algorithm 1, the function “union” in L15 and “intersection” in L17 mean union operation for
the start_attr and intersection operation for the non-start_attr, respectively, which includes the pointer
merging process. Different from the method for discrete data in the finite set proposed in paper [15]
(pp. 1-18), the DLA do operations similar to merge multiple intervals on a number axis, which is
suitable for continuous attributes too. The implements of the functions, “union” and “intersection”,
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are similar; they both need to merge various states of the forward pointer, L, and the backward pointer,
U. We select the function “union” as an example as shown in Algorithm 2, where the L5 to L15 mean
the possible cases of the pointer merging process.

Algorithm 1. The dependency lifting algorithm (DLA) flow.

Input: data instance I, cfd?
Output: IDS

01. get allattr from I;

02. //loop all attributes

03. for each attr € allattr do

04. start_attr < attr;

05. cfd? < realted cfdPs;

06. / / get vio(cfd?) of every cfd’

07. for each c¢fd” do

08. / /normalization of every cfdP by setting pointers.
09. nor_cfd’ < normalization (cfd?);

10. / /reverse right part of nor_cfd’ to get vio(cfd’)
11. vio(cfd’) < reverse RHS of nor_cfd";
12. end for;

13. for each € viocfd? do

14. if (B € allattr && P==start_attr)

15. result < union();

16. else if (B € allattr && B!=start_attr)
17. result < intersection();

18. end if;

19. end for;

20. MDS < MDS + cfdP;

21. if (IMDS.contains(result)

22. MDS <+ MDS + result;

23. end if;

24. end for;

25. //detect inconsistent data by MDS from I

26. ins_data.detect();27. / /express inconsistent data by quadruple in formula (2)
28. IDS.express(ins_data);

29. return IDS;
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Algorithm 2. The implementation of the function union.

Input: viocfd?

Output: result of pointer-merging

01. //B is start_attr in viocfdP

02. for each § € viocfd? do

03.  buffer < every B.value in viocfd’;

04. end for;

05. if (buffer only L, Not U)

06. choose max;

07. result < max+"L"

08. else if (buffer only U, Not L)
09. choose min;

10. result < min+"U";

11. else if (buffer exists L and U)
12. judge the location L and U;

13. do set operation in axis;
14. get result;
15. end if;

16. return result;

2.3.2. The Convergence and Complexity Analysis of DLA

Since we consider the dynamic process of acquiring the PQ in Section 2.2.2, it is necessary to detect
and locate the inconsistent data elements in data instances many times, therefore, the convergence
and complexity of detection by the MDS will be analyzed in Section 2.4.2. For a given dependency set,
computing the MDS is the key consumption of detecting inconsistent data without considering the
detection process by the MDS, and the DLA itself is a loop to obtain the rcfd” continuously. Therefore,
it is essential to analysis the convergence and computation complexity of the algorithm.

(1) Convergence analysis

The convergence of DLA means the terminality of the algorithm, which mainly indicates that
the process of computing the MDS from the given cfd” must terminate to get new dependency sets.
The DLA is convergent for the cfd”, and the proof is given below.

Proof 1. The DLA is convergent for the cfd”.

Suppose there are N attributes (A1, Aa, As,..., Ay)and ncfdP(cfdy, cfdb, cfdl,..., cfdl)in
a data instance, I. Every computing process of acquiring the MDS needs to select an attribute, A;, from
the attribute set, A, as the start attribute, and computes the related dependencies to generate m rcfd?.
The worst case is that all the n + m related cfd” (initial m = 0) of the selected start attribute, A;, are
involved in computation, resulting in, at most, [(n + m)x (n + m 4 1)] /2 new dependencies. Because
the generation of new dependencies mainly involves set operations and pointers merging (similar to
the idea of merging intervals on a number axis), the computational complexity of the two is O(1) and
O(n), respectively. Therefore, it will not fall into endless loops, and the algorithm is convergent to one
computation of acquiring the MDS. As a result, the DLA will also be convergent after N traversals. [J

(2) Complexity analysis

The time complexity of the DLA depends mainly on two parts: The traversal processes of all
attributes and the dynamic domain adjustment.

The traversal processes of all attributes need to select a start attribute, A;, from the attribute set, A,
which can be terminated by one traversal and the time complexity is O(N).
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The complexity of dynamic domain adjustment can also be subdivided into two parts: The
generation of the viocfd” and the pointer merging process. The generation of the viocfd” is to do
operations with n + m related cfdP and can be obtained by one loop, thus, the time complexity is
O(n + m). The pointer merging process (i.e., the “union” and “intersection” functions) can complete
three steps, the start_attr judgment, forward pointer, L, and backward pointer, U, location identification,
through one loop, and the time complexity is also O(n + m). In the worst case, the number of newly
generated dependencies is m = n(n + 1)/2. Therefore, the time complexity of dynamic domain
adjustmentis O(2n +2m) = O(n*>+3n) = O(n?).

Accordingly, the time complexity of acquiring MDS is O(Nn?). The DLA uses the MDS to detect
inconsistent data; when comparing with the traditional cfd” based algorithm, the time complexity of
the DLA is higher because of new recessive dependencies. The level is determined by the number of
the rcfdP and the size of the data instance. The time complexity of detecting inconsistent data elements
by the MDS in data instances will be analyzed in Section 2.4.2.

2.4. Inconsistent Data Reparation Algorithm

According to the inconsistent data cleaning framework in Section 2.2, we propose the C-Repair
algorithm to repair the inconsistent data detected, which integrates the minimum cost idea and
attribute correlation in a data instance, I. To ensure the convergence of the algorithm, we consider
a dynamic process to obtain the PQ and set a label, flag, to mark the repaired data elements. Finally,
we get the repaired data instance, I.

2.4.1. Design of Reparation Algorithm

The repair time of a data instance, I, is selected as the repair cost in the C-Repair algorithm.
We first sort the inconsistent data elements in the IDS with the minimum cost idea to get the PQ
and choose the first element in PQ as the candidate repair data. Then, we obtain the training set, I,
according to the IDS, compute the attribute correlation, SU, and the WDis between the tuple of the
candidate repair data and other tuples in I,,. At last, we select n(n+1)/2, (n > 2) class tuples with
smaller WDis, and do reparation based on the class tuples. The C-Repair algorithm flow is shown in
Algorithm 3.

In Algorithm 3, the L2 to L8 compute the PQ from the IDS using Expression (4), and select
a candidate repair data element, f3; the L9 to L14 treat the I, as a training set and learn the correlation
SU between the attribute of 3 and other attributes using Expression (9); the L15 to L21 obtain the WDis
between the tuple of 3 and other tuples in I, using Expressions (10) and (11); the L22 to L24 select
class tuples according to the WDis and repair the data element, 3; and the L25 to L28 re-compute the
IDS and PQ after a round of reparation to ensure the convergence, and set the label, flag, to ensure
every inconsistent data element is repaired at most once.
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Algorithm 3. The C-Repair algorithm flow.

Input: data instance I, MDS, IDS
Output: repaired result I’

01. forIDS # @ do

02. for(t;, A)e IDS do

03. / /calculate the count by Formula (4)
04. a < VioCount(t;, A);

05. PQ < descending order of «;

06. end for;

07. // Bis the data element firstly repaired
08. B < first element of PQ;

09. Iy < conflict-free data tuples in [;

10. //each attribute r.attr in I,;;

11. forrattr € Iyp.attr do

12. / /calculate the correlation by Formula (9)
13. SU(B.attr, r.attr);
14. end for;

15. //each data tuple t.tjin Ino
16. for ttj e I,,v.t]- do

17. / /calculate the relative distance by Formula (11)
18. RDis(B.t; , t.t));

19. / /calculate the weighted distance by Formula (10)
20. WDis(B.t; , t.t;);

21. end for;

22.  buffer + ascending order of WDis;

23.  class_tuple <— choose n(n+1)/2 tuples of buffer;
24. I’ < repair I by class_tuple;

25.  flag < B;

26. IDS < recalculate IDS by MDS;

27.  IDS « IDS - flag;

28. end for;

29. return I’;

2.4.2. The Convergence and Complexity Analysis of C-Repair

The C-Repair algorithm takes the IDS and MDS, which are output of the DLA, and a data instance,
I, as the input, and the output is the repaired data instance, I’. Similar to the DLA, the C-Repair
algorithm is also a continuous loop process to gradually repair the inconsistent data, therefore, it is
necessary to consider the convergence and complexity of the algorithm.

(1) Convergence analysis

The convergence of the C-Repair algorithm means that the algorithm should terminate and get
a stable repair result, I’, after multiple reparation rounds. It can be proved that the C-Repair algorithm
is convergent for a data instance, I, with limited tuples.

Proof 2. The C-Repair algorithm is convergent for a data instance, I, with limited tuples.

Suppose there are M tuples (t1, t, t3,..., tp) and N attributes (A1, Ap, As,..., An)ina data
instance, I, and m tuples (t1, t2, t3,..., t;m, m < M) in the corresponding conflict-free data instance,
Iip. The C-Repair algorithm is a loop process to repair the inconsistent data elements based on the IDS;
for one reparation round, we need first to select a candidate data element from the M x N elements
according to the IDS and PQ, and then, compute the correlation between the attribute of the candidate
repair element and other N — 1 attributes in I;;,. Finally, we obtain the WDis among tuples based on



Symmetry 2018, 10, 516 15 of 24

the correlation, and repair the inconsistent data. In this case, it is convergent to compute the PQ and
SU in a data instance with limited tuples, so it is convergent for one round of reparation. In view of
multiple reparations, the algorithm can ensure every data element is repaired once at most, because
we take a label, flag, to mark the repaired elements. In the worst case, all M x N data elements in |
are inconsistent; at this time, the algorithm will still be convergent due to every reparation round’s
convergence, but the loop times will increase. In summary, the C-Repair algorithm is convergent for
a data instance, I, with limited tuples. [

(2) Complexity analysis

The C-Repair algorithm needs to select an element as the candidate repair element from the
sorted IDS(PQ), and re-compute the IDS after one reparation round. When there are no elements in
the IDS, the algorithm ends. Suppose there are n cfd?(cfd?, cfdb, cfdl,..., cfdk) in the MDS and ¢
data elements in the IDS. For one reparation round, the complexity of the algorithm consists of four
parts: Obtaining the PQ, computing the attribute correlation, inconsistent data elements reparation,
and re-computing the IDS. There is an execution sequence among these four parts.

To obtain the PQ, we need to compute the violation counts of dependencies, VioCount, for every
element in the IDS, and computing the VioCount also requires a traversal for every dependency in
the MDS, so the time complexity is O(tn). When computing the correlation, SU(X,Y), between
attributes, X and Y, we need to first traverse the m tuples in I, to get the probability, p(x) and
p(y), of the attributes, X and Y, and compute the corresponding information entropy, H(X) and
H(Y), when the time complexity is O(m). Then, we traverse every value of the attribute, Y, to get
the conditional probability, p(x|y), and compute the correlation, SU(X, Y), according to Expression
(9),when the time complexity is also O(m). Therefore, the time complexity of computing the correlation
between the candidate repair attribute and other N — 1 attributes is O((N — 1)m?). The C-Repair
algorithm does reparation based on the improved KNN, which computes the WDis between the
tuple of the candidate repair element and other tuples in I, according to the attribute correlation.
It should traverse the m tuples and N — 1 attributes in I,;», and the time complexity is O((N — 1)m).
The purpose of re-computing the IDS is to re-detect the inconsistent data elements based on the MDS
of DLA. For a certain cfd?, it can be obtained after traversing the related attribute values of every tuple
in I, and the time complexity is O(Mn).

In summary, for one reparation round, the time complexity can be expressed intuitively as
O(tn+ (N —1)m? + (N —1)m + Mn). In the worst case, all elements in the data instance, I, are
inconsistent, that is ¢,y = MN, in this case, the time complexity is:

O(max(MNn, Nm?)

For multiple reparations, the maximum repair times can be t,;,;,x = MN, so the time complexity
of the C-Repair algorithm is:
O(max(M?N?n, MN?*m?) (12)

The time complexity in Expression (12) is obtained in the worst case where all elements in I are
inconsistent. In an actual data instance, the inconsistent data amount is often small, so the complexity
is much smaller than Expression (12).

3. Results

The experiment is divided into two parts in this paper, the detection part and the reparation part,
which analyses the validity of the DLA and C-Repair algorithm, respectively. Because it is difficult
to get an actual data instance and the contained dependencies at the same time, we use simulation
data instance for DLA. However, the C-Repair algorithm is verified both in simulation and actual
data instances.
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3.1. Experimental Configuration

3.1.1. Experimental Environment

The experiment selects a Core-i7 2.5 GHz processor and 8 GB memory on 64-bit Windows 10
operation system (Hasee, Shenzhen, China). The algorithm is written in Java language, and runs on
the Eclipse platform.

3.1.2. Experimental Data Instances

In the detection experiment, we use a simulation data instance (I) to verify the validity of the
DLA. Firstly, we specify several dependencies and generate an instance I which satisfies the given
dependencies with 1000 consistent data tuples, the staff relation schema in Section 2.1 is selected in I,
and the attributes description is shown in Table 1. There are 9 attributes (existing some continuous
attributes), 1000 data tuples and 9000 data elements in I, and we can test the applicability of the DLA
to continuous attributes.

In reparation experiment, we use both the instance I and the house price forecast instance in
Kaggle website (House Prices: Advanced Regression Techniques, HPART) to verify the validity of the
C-Repair, and the scale of HPART instance is 1460 x 81 (1460 tuples and 81 attributes). In unsupervised
environment, we randomly generate inconsistent elements in HPART, and compare the repaired results
with the original truth values to verify the effectiveness.

In the experiment, in order to reduce the contingency of experimental results, all the data of our
experiment are the average results of algorithms running for ten times.

3.1.3. Experimental CFD"s

In the experiment, we modified some elements in I to obtain the inconsistent data instance, Ic,
based on the given dependencies, and then, detected and repaired the inconsistent data elements in Ic
using the DLA and C-Repair algorithm, respectively. By setting multiple inconsistent elements and
data tuples in I, the efficiency of different algorithms was compared.

According to the attributes’ description in Table 1, we specified 10 dependencies, which should
be satisfied in Ic.

cfd] :ES = T — WS >3; cfdl : MSy > 4500 —+ MSs = T

cfdb : DM = manager — MSy > 6300; cfdh : DM = sale - MSy < 6100
cfdy : WS >1— AGE > 19; cfdh : WS > 2 — MSy > 5500
cfdy : WP = branch#5 — MSy > 5000;  cfds : WP = branch#7 — MSy < 7000
cfdf : AGE <25 — MSs = F; cfdly: DM = security — AGE < 23

3.2. Experimental Results of the DLA

For inconsistent data detection, the universal method is an algorithm based on the CFDPs, which
detects the inconsistent elements in data instances according to the given CFDFs. We compared the
DLA and the CFDPs based algorithm in the experiment, and analyzed the accuracy and time-cost of
the two algorithms.
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3.2.1. Acquiring the MDS

The DLA first computed the recessive dependencies contained in the given dependencies to get
the MDS, and detected and located inconsistent elements based on the MDS. According to the DLA
flow in Algorithm 1, we obtained six recessive dependencies.

rcfd? :ES = T — AGE > 19; rcfdy : WP = branch#5 — MSs = T
refdy : ES = T — MSy > 5500; rcfdf : DM = security — MSs = F
rcfdg : DM = manager — MSs = T; rcfdg tES =T—>MSs =T

Adding all new rcfd? to the MDS, we eventually obtain the corresponding MDS for the cfd”.
MDs = {cfdf,cfd,... cfah, refd}, refds, ... refdl }

3.2.2. Evaluation Indexes

In the inconsistent detection part, we selected two indexes, detection accuracy and time-cost,
to compare the DLA with the CFD''s based algorithm. The detection accuracy index indicates the
detection ability of different algorithms for inconsistent elements, and the time-cost index means the
time it takes for algorithms to detect inconsistent data.

(1) Detection Accuracy

In the experiment, we chose three sub-indexes, precision, recall, and F-measure, to measure the
detection accuracy of inconsistent data in data instances. Since the precision and recall indexes are
conflicting in nature, we used the F-measure, which is the harmonic mean of the precision and recall,
to do comprehensive consideration [20] (pp. 1-20). The computing methods of the three sub-indexes

are as follows: )
sum_vio N sum_real

precision = sum_vio (13)
recall — sum_vio N sum_real (14)
N sum_real

2-precision-recall
precision + recall

F — measure = (15)

where sum_vio and sum_real represent the detected inconsistent elements and actual inconsistent
elements in a data instance, respectively; and sum_vio N sum_real means inconsistent elements
correctly detected.

(2) Time-Cost

The time-cost index (T;) means the time of detecting inconsistent elements in a data instance.
In this paper, the time-cost of the two algorithms is measured by the system running time.

3.2.3. Analysis of the Experimental Results

There were 1000 data tuples, 9 attributes, and 9000 data elements in the original data instance,
I, with no missing elements. We obtained the detection accuracy of the DLA and the CFD'’s based
algorithm by setting multiple inconsistent elements (proportion), and the results are shown in Figure 3.



Symmetry 2018, 10, 516 18 of 24

211 P 14
3 E ¢ -
o] ol 4 @ > — -
- -~
g —— - S * —e B 09 —
I H
09 08 L
- - 08
08 g-------=--~ L S | S B | i e -
e B ] 07 - W T i n
07
07
06 08 06
05 05 »> o5
0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 .01 0.02 0.0 0.04 0.05
PROPORTION PROPORTION
~—&—DLA --®--CFDps o DLA --%--CFDps DLA --&-- CFDPs PROPORTION
(a) precision (b) recall (c) F-measure

Figure 3. The effect of different proportions on detection precision (the (a—c) are all conducted in the
instance, I, with 1000 data tuples).

We can see from Figure 3 that the two algorithms have little fluctuation in the detection accuracy of
different proportions, and the DLA always performs better than the CFD'’s based algorithm. However,
for a data instance, I, although the DLA performs well in all indexes of the detection accuracy, it is
not perfect in all the precision, recall and F-measure index. We think it is caused by errors of the LHS
attributes in dependencies.

Next, we analyzed the repair time-cost (T;) of the two algorithms by setting multiple inconsistent
data proportions (proportion) and data tuples (data-tuple) in I. The results of the required system time
for the two algorithms detection of inconsistent elements are shown in Figure 4.
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Figure 4. Time cost experimental results (the experiment is conducted in the instance, I, the (a) with
data-tuple = 1000 and the (b) with proportion = 0.03).

In the experiment, the T, was recorded by the average time of 10 runs. As can be seen from the
Figure 4a, in the case of fixed data tuples, multiple inconsistent elements” proportions have small
effects on the DLA or the CFDFs based algorithm, and Figure 4b shows a sharp increase in the T; of
the two algorithms as data tuples increase in the case of a fixed proportion. In summary, from the
experimental results in Figure 4, it is not difficult to see that the T. of the DLA is always higher than the
CFDPs based algorithm; that is mainly because the DLA needs get all 7cfd? contained in cfd?. In this
case, the dependencies in the MDS are often more than the given cfd?, resulting in a longer detection
time of the DLA.

According to the results in Figures 3 and 4, the DLA has a higher time-cost than the CFD's based
algorithm, but it has more advantages in detection accuracy. In this paper, we regard this phenomenon
as a process of time and accuracy exchange; the difference between detection accuracy and time-cost
of the two algorithms was influenced by data tuples and the number of dependencies.
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3.3. Experimental Results of the C-Repair

In view of inconsistent elements’ reparation in data instances, we compare the C-Repair with
both cost-based and interpolation-based algorithms in the data instance, I, and HPART, and analyze
the difference among algorithms in multiple data tuples (data-tuple) and inconsistent elements
(proportion).

3.3.1. Evaluation Indexes

In the experiment, we select three indexes, error-rate, time-cost, and validity, to evaluate the
pros and cons of C-Repair and two cost-based algorithms in the data instance, I, and select three
indexes, validity, satisfaction, and time-cost, to evaluate the pros and cons of C-Repair and two
interpolation-based algorithms in the data instance, HPART. Because the C-Repair uses an improved
K-NN algorithm combining the attribute correlation and repair cost to do reparation, which selects
the most relevant elements in the corresponding conflict-free data instance to replace the original
elements in nature, there is no guarantee that the data elements obtained by every reparation will
be conflict-free. The error-rate index was used to measure the inconsistent data amount remaining
after reparation, and the time-cost index was used to measure the running time of different reparation
algorithms, the validity index was used to measure the variation amount of inconsistent elements
before and after reparation, and the satisfaction index was used to measure the satisfaction degree of
repaired results and initial truth values. The specific computing method is shown as follows.

(1) Error-Rate

Because the repair results of two algorithms cannot always be conflict-free considering the
attribute correlation, we introduced the error-rate index, which can be computed as follows, to
measure the inconsistent elements remaining in the repaired data instance, I":

Y "p, sum_vio

error — rate = -
Y [ sum_vio

(16)

where Y sum_vio means the inconsistent elements amount remaining in a repaired instance, I’; and
I/
Y _sum_vio means the inconsistent elements” amount in the original instance, I.
i

(2) Time-Cost

Similar to the time-cost index in Section 3.2, the time-cost (T;) of the reparation algorithm is also
described by the system time of the algorithms.

(3) Validity

In the experiment, the validity index is described by the ratio of variation amount in inconsistent
elements before and after reparation to the total amount of inconsistent elements in the data instance, I,
which can be computed as follows:

Y [ sum_vio — Y j, sum_vio
Y sum_vio

validity = 17)

where ) sum_vio means the inconsistent elements amount in the original instance; and ) sum_vio
I I
means the inconsistent elements’ amount remaining in the repaired instance.

(4) Satisfaction

In inconsistent data reparation, different algorithms always have different repaired values,
although all of them may satisfy the given dependency, and there is a gap between them and truth
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values. In this case, we measured the quality of different repaired values by comparing relative
distances between repaired values and corresponding truth values:

¥ Dis(repaired,truth)
" Max(repaired,truth)

satisfaction = 1— (18)

n
where Dis(repaired, truth) means the distance between repaired values and the corresponding truth
values, which was measured by the Euclidean distance and edit distance for the numeric attributes and
other types, respectively. The Max (repaired, truth) indicates the larger one between repaired values
and truth values, which was measured by the numeric size and string length for the numeric attributes
and other types, respectively.

3.3.2. Analysis of the Experimental Results

In the experiment, we first compared the C-Repair algorithm with the cost-based algorithm by
setting multiple proportions and data tuples in the data instance, I, and observed the repair capabilities
of the two algorithms.

For the data instance, I, with 1000 tuples and 9 attributes, the results of error-rate, time-cost,
and validity indexes are shown in Figure 5a—c, respectively, by setting multiple proportions.
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Figure 5. Experimental results of two algorithms in I (the (a—c) are all conducted with data-tuple = 1000
and the (d) with proportion = 0.03).

To analyze the effect of data tuples on the time-cost (T;) and repair times (repair-times) of the
C-Repair algorithm, we set multiple tuples to do the experiment with the fixed inconsistent elements
amount (proportion = 0.03), and the results are shown in Figure 5d.

As we can see from Figure 5a—c, although every reparation round of the C-Repair algorithm cannot
guarantee a conflict-free result, there were few inconsistent data elements after reparation, and even in
the experiment, the repaired data instance, I’, is completely conflict-free many times. We think this is
due to a re-computing of the PQ after every reparation round. In Figure 5a—c, the C-Repair algorithm
outperforms the cost-based algorithm in both error-rate and validity indexes, but the time-cost is
relatively large.
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In Figure 5d, we changed the data tuples to observe the T, and repair-times of the C-Repair
algorithm with the fixed proportion. It is not difficult to see that the T, increased sharply as the data
tuples increases, but the repair times were basically stable for the fixed proportion.

For the HPART instance, we compared the C-Repair with the interpolation-based algorithm by
setting multiple proportions to observe the repair capabilities of two algorithms.

We set the inconsistent proportions to 0.01%, 0.02%, 0.03%, 0.04%, and 0.05% in the HPART,
and the results of the validity, satisfaction, and time-cost indexes are shown in Figure 6a—c, respectively.
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Figure 6. Experimental results of two algorithms in HPART instance (the (a—c) are all conducted in
HPART instance with 1460 tuples and 81 attributes).

From the results in Figure 6a,b, we can see that the validity and satisfaction of the C-Repair
algorithm is always higher than the interpolation-based algorithm with the inconsistent proportion
change in the HPART instance. In other words, the C-Repair can ensure better results compared
with the interpolation-based algorithm, and has less inconsistent data remaining and closer distance
between the repaired results and initial truth values. From the results in Figure 6¢ the time-cost of the
two algorithms increases dramatically, and the C-Repair is always higher.

In the experiment, there are two reasons why the C-Repair always has a higher time-cost: (1) We
need a high time-cost to learn the correlation from the corresponding I, because of large data tuples;
and (2) we need to compute the WDis between each tuple in I,;; and the candidate element to select
class tuples; in this case, the time-cost can be high too. In big data, we should make some improvements
to satisfy data sets with a huge scale, and it may be a good idea to divide the origin data set into blocks.
However, it is worth considering how to divide blocks to improve the time efficiency on the basis of
guaranteeing the repair ability.

Combining the results of Figures 5 and 6, we can find that, although the C-Repair can perform
better in validity and satisfaction indexes compared with the interpolation-based algorithm in the
HPART instance, it is hard to obtain such good results of the simulated instance, I. That is because,
unlike the MDS in the simulated instance, I, the truth value of every inconsistent element is unique
in the HPART instance. In this case, the repaired results only need to satisfy the MDS of instance, I,
to achieve our repair purpose, but a perfect repair result in the HPART instance must be exactly the
same as the initial truth value.

4. Discussion

For the inconsistent data cleaning in data instances, we propose the DLA and C-Repair to do
detection and reparation, respectively. From the results in Section 3.2, the DLA has a higher detection
accuracy and completeness than the traditional dependency-based detection algorithm (CFDs and
CFDPs), so we think it is feasible to detect inconsistent elements by finding the MDS from given
dependency sets. However, the DLA cannot perform perfectly on either the precision or recall index;
that is, it cannot detect all inconsistent elements in data instances. We hold the opinion that this
may be due to some errors on the LHS attributes of given dependencies, making such inconsistent
errors unable to be detected by the MDS, which is also the limitation of DLA. From the results in
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Section 3.3, the C-Repair algorithm performs better than the cost-based and interpolation-based
algorithm in the error-rate, validity, and satisfaction indexes in both simulated data instance, I and
HPART. In this case, we think it is feasible to do reparation based on the attributes correlation in
an unsupervised environment.

The reason why the DLA performance is better in inconsistent data detection is that it can find
recessive dependencies to enlarge the dependency amount, so the detection accuracy and completeness
can be improved accordingly. When repairing, there is always a certain correlation among attributes in
actual data sets, and the data is not a random occurrence, so we can obtain better results by learning
the correlation to guide our repair using the symmetric uncertainty method. Moreover, the C-Repair is
an unsupervised repair algorithm without manual intervention, which is also a feature and advantage
of the algorithm.

Meanwhile, we find two interesting phenomena in the experiment: (1) The C-Repair algorithm
considers the correlation among attributes, and the repair results select the most relevant elements
from the corresponding conflict-free instance, instead of directly modifying the values to satisfy the
dependencies. Therefore, there may still be a small number of inconsistent elements in the repaired
instance, I’. However, when we do experiments on the simulated instance, we get so many consistent
results; and (2) the C-Repair can perform better on the simulated instance, I, than the HPART, which
may be the unique truth value for every inconsistent element in the HPART instance. The repair results
only need to satisfy the MDS in instance, I, which reduces the requirements.

However, both the DLA and C-Repair have a higher time-cost while improving the detection
accuracy and repair ability, especially the C-Repair. So, how to reduce the time complexity of two
algorithms while maintaining the detection and reparation ability is a problem worth considering.
The subsequent research will explore the following three aspects:

(1) Because dependencies in data instances are not always specified in advance, we may improve
the applicability of the DLA through some data mining techniques (i.e., association rules
mining [21] (pp. 54-69) and frequent pattern mining [22] (pp. 104-114)), which can obtain
dependencies automatically;

(2) exploring whether we can reduce the time complexity of two algorithms while keeping the
detection and reparation ability, which means they can be applied to big data and improves the
ability of DLA algorithm to LHS attribute errors; and

(3) in an unsupervised environment, can the C-Repair algorithm, which integrates the minimum
cost idea and attribute correlation, be applied to other data quality problems, such as missing
data filling [23] (pp. 157-166) and inaccurate data correction [24] (pp. 230-234).

5. Conclusions

The main achievements of this paper are to propose a data cleaning framework for inconsistent
elements and two detection and repair algorithms, DLA and C-Repair. From the experimental results,
the DLA can improve the detection accuracy and completeness compared with the dependency-based
algorithm, while the C-Repair uses unsupervised machine learning to obtain the correlation among
attributes, and gets the most relevant repair results under minimal repair times. Compared
with the cost-based and interpolation-based algorithm, the C-Repair performs better in error-rate,
validity, and satisfaction indexes, and does not require any manual intervention, so it has a certain
applicability in unsupervised cleaning, but also provides a method that can be referenced by other
data quality problems.
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