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Abstract: A finite-type immersion or smooth map is a nice tool to classify submanifolds of Euclidean
space, which comes from the eigenvalue problem of immersion. The notion of generalized 1-type is a
natural generalization of 1-type in the usual sense and pointwise 1-type. We classify ruled surfaces
with a generalized 1-type Gauss map as part of a plane, a circular cylinder, a cylinder over a base
curve of an infinite type, a helicoid, a right cone and a conical surface of G-type.

Keywords: ruled surface; pointwise 1-type Gauss map; generalized 1-type Gauss map; conical
surface of G-type

1. Introduction

Nash’s embedding theorem enables us to study Riemannian manifolds extensively by regarding
a Riemannian manifold as a submanifold of Euclidean space with sufficiently high codimension.
By means of such a setting, we can have rich geometric information from the intrinsic and extrinsic
properties of submanifolds of Euclidean space. Inspired by the degree of algebraic varieties,
B.-Y. Chen introduced the notion of order and type of submanifolds of Euclidean space. Furthermore,
he developed the theory of finite-type submanifolds and estimated the total mean curvature of compact
submanifolds of Euclidean space in the late 1970s ([1]).

In particular, the notion of finite-type immersion is a direct generalization of the eigenvalue
problem relative to the immersion of a Riemannian manifold into a Euclidean space: Let x : M→ Em

be an isometric immersion of a submanifold M into the Euclidean m-space Em and ∆ the Laplace
operator of M in Em. The submanifold M is said to be of finite-type if x has a spectral decomposition by
x = x0 + x1 + ...+ xk, where x0 is a constant vector and xi are the vector fields satisfying ∆xi = λixi for
some λi ∈ R (i = 1, 2, ..., k). If the eigenvalues λ1, λ2, ..., λk are different, it is called k-type. Since this
notion was introduced, many works have been made in this area (see [1,2]). This notion of finite-type
immersion was naturally extended to that of pseudo-Riemannian manifolds in pseudo-Euclidean
space and it was also applied to smooth maps, particularly the Gauss map defined on submanifolds of
Euclidean space or pseudo-Euclidean space ([1,3–6]).

Regarding the Gauss map of finite-type, B.-Y. Chen and P. Piccini ([7]) studied compact surfaces
with 1-type Gauss map, that is, ∆G = λ(G +C), where C is a constant vector and λ ∈ R. Since then,
many works regarding finite-type Gauss map have been established ([1,3,4,8–15]).

However, some surfaces have an interesting property concerning the Gauss map: The helicoid in
E3 parameterized by

x(u, v) = (u cos v, u sin v, av), a 6= 0
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has the Gauss map and its Laplacian respectively given by

G =
1√

a2 + u2
(a sin v,−a cos v, u)

and

∆G =
2a2

(a2 + u2)2 G.

The right (or circular) cone Ca with parametrization

x(u, v) = (u cos v, u sin v, au), a ≥ 0

has the Gauss map

G =
1√

1 + a2
(a cos v, a sin v,−1)

which satisfies
∆G =

1
u2 (G + (0, 0,

1√
1 + a2

))

(Reference [8,10]). The Gauss maps above are similar to be of 1-type, but not to be of the 1-type Gauss
map in the usual sense. Based upon such cases, B.-Y. Chen and the present authors defined the notion
of pointwise 1-type Gauss map ([8]).

Definition 1. A submanifold M in Em is said to have pointwise 1-type Gauss map if the Gauss map G of
M satisfies

∆G = f (G +C)

for some non-zero smooth function f and a constant vector C. In particular, if C is zero, then the Gauss map is
said to be of pointwise 1-type of the first kind. Otherwise, it is said to be of pointwise 1-type of the second kind.

Let p be a point of E3 and β = β(s) a unit speed curve such that p does not lie on β. A surface
parameterized by

x(s, t) = p + tβ(s)

is called a conical surface. A typical conical surface is a right cone and a plane.
Let us consider a following example of a conical surface.

Example 1 ([15]). Let M be a surface in E3 parameterized by

x(s, t) = (s cos2 t, s sin t cos t, s sin t).

Then, the Gauss map G can be obtained by

G =
1√

1 + cos2 t
(− sin3 t, (2− cos2 t) cos t,− cos2 t).

After a considerably long computation, its Laplacian turns out to be

∆G = f G + gC

for some non-zero smooth functions f , g and a constant vector C. The surface M is a kind of conical surfaces
generated by a spherical curve β(t) = (cos2 t, sin t cos t, sin t) on the unit sphere S2(1) centered at the origin.

Inspired by such an example, we would like to generalize the notion of pointwise 1-type Gauss
map as follows:
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Definition 2 ([15]). The Gauss map G of a submanifold M in Em is of generalized 1-type if the Gauss map G
of M satisfies

∆G = f G + gC (1)

for some non-zero smooth functions f , g and a constant vector C.

Especially, we define a conical surface of G-type.

Definition 3. A conical surface with generalized 1-type Gauss map is called a conical surface of G-type.

Remark 1 ([15]). A conical surface of G-type is constructed by the functions f , g and the constant vector C by
solving the differential equations generated by Equation (1).

In [15], the authors classified flat surfaces with a generalized 1-type Gauss map in E3. In fact,
flat surfaces are ruled surfaces which are locally cones, cylinders or tangent developable surfaces.
In the present paper, without such an assumption of flatness, we prove that non-cylindrical ruled
surfaces with a generalized 1-type Gauss map are flat and thus we completely classify ruled surfaces
with generalized 1-type Gauss map in E3.

2. Preliminaries

Let M be a surface of E3. The map G : M→ S2(1) ⊂ E3 which maps each point p of M to a point
Gp of S2(1) by identifying the unit normal vector Np to M at the point with Gp is called the Gauss map
of the surface M, where S2(1) is the unit sphere in E3 centered at the origin.

For the matrix g̃ = (g̃ij) consisting of the components of the metric on M, we denote by g̃−1 = (g̃ij)

(resp. G ) the inverse matrix (resp. the determinant) of the matrix (g̃ij). Then the Laplacian ∆ on M is
in turn given by

∆ = − 1√
G ∑

i,j

∂

∂xi

(√
G g̃ij ∂

∂xj

)
. (2)

Let α = α(s) be a regular curve in E3 defined on an open interval I and β = β(s) a transversal
vector field to α′(s) along α. Then a ruled surface M can be parameterized by

x(s, t) = α(s) + tβ(s), s ∈ I, t ∈ R

satisfying 〈α′, β〉 = 0 and 〈β, β〉 = 1, where ′ denotes d/ds. The curve α is called the base
curve and β the director vector field or ruling. It is said to be cylindrical if β is constant, or,
non-cylindrical otherwise.

Throughout this paper, we assume that all the functions and vector fields are smooth and surfaces
under consideration are connected unless otherwise stated.

3. Cylindrical Ruled Surfaces in E3 with Generalized 1-Type Gauss Map

In this section, we study the cylindrical ruled surfaces with the generalized 1-type Gauss
map in E3.

Let M be a cylindrical ruled surface in E3. We can parameterize M with a plane curve α = α(s)
and a constant vector β as

x(s, t) = α(s) + tβ.

Here the plane curve α is assumed to be defined by α(s) = (α1(s), α2(s), 0) with the arc length s
and β a constant unit vector, namely β = (0, 0, 1). In the sequel, the Gauss map G of M is given by

G = α′ × β = (α′2,−α′1, 0) (3)
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and the Laplacian ∆G of the Gauss map G using Equation (2) is obtained by

∆G = (−α
′′′
2 , α

′′′
1 , 0), (4)

where ′ stands for d/ds.
From now on, ′ denotes the differentiation with respect to the parameter s relative to

the base curve.
Suppose that the Gauss map G of M is of generalized 1-type, i.e., G satisfies Equation (1). We now

consider two cases either f = g or f 6= g.

Case 1. f = g.
In this case, the Gauss map G is of pointwise 1-type described in Definition 1. According to

Classification Theorem in [10,11], we have that the ruled surface M is part of a plane, a circular cylinder
or a cylinder over a base curve of an infinite-type satisfying

sin−1

 c2 f−
1
3 − 1√

c2
1 + c2

2

−√c2
1 + c2

2 −
(

c2 f−
1
3 − 1

)2
= ±c3(s + k), (5)

where C = (c1, c2, 0), and c ( 6= 0) and k are constants.

Case 2. f 6= g.
By a direct computation using Equations (3) and (4), we see that the third component c3 of the

constant vector C is zero. We put C = (c1, c2, 0). Then, we have the following system of ordinary
differential equations

−α
′′′
2 = f α′2 + gc1,

α
′′′
1 = − f α′1 + gc2.

(6)

Since α is of unit speed, that is, (α′1)
2 + (α′2)

2 = 1, we may put

α′1(s) = cos θ(s) and α′2(s) = sin θ(s)

for a smooth function θ = θ(s) of s. One can write Equation (6) as

(θ′)2 sin θ − θ′′ cos θ = f sin θ + gc1,

(θ′)2 cos θ + θ′′ sin θ = f cos θ − gc2,

which give
(θ′)2 = f + g(c1 sin θ − c2 cos θ), (7)

− θ′′ = g(c1 cos θ + c2 sin θ). (8)

Taking the derivative of Equation (7), we have

2θ′θ′′ = f ′ + g′(c1 sin θ − c2 cos θ) + g(c1 cos θ + c2 sin θ)θ′.

With the help of Equations (7) and (8) it implies that

3
2
(θ′2)′ = f ′ +

g′

g
((θ′)2 − f ).

Solving the above differential equation, we get

θ′(s)2 = kg
2
3 (s) +

2
3

g
2
3 (s)

∫
g−

2
3 (s) f (s)(

f ′

f
− g′

g
)ds, k( 6= 0) ∈ R.
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If we put

θ′(s) = ±
√

p(s) , (9)

where p(s) = |kg
2
3 (s) + 2

3 g
2
3 (s)

∫
g−

2
3 (s) f (s)( f ′

f −
g′
g )ds| for some non-zero constant k, we get a base

curve α of M as follows:

α(s) =
(∫

cos θ(s)ds,
∫

sin θ(s)ds, 0
)

, (10)

where θ(s) = ±
∫ √

p(s) ds. In fact, θ′ is the signed curvature of the curve α which is precisely
determined by the given functions f , g and the constant vector C.

Note that if f and g are constant, the Gauss map G is of 1-type in the usual sense. In this case,
the signed curvature of α is non-zero constant and thus M is part of a circular cylinder.

Suppose that one of the functions f and g is not constant. Since a plane curve in E3 is of finite-type
if and only if it is part of a straight line or a circle, the base curve α defined by Equation (10) is of an
infinite-type ([2]). Thus, by putting together Cases 1 and 2, we have a classification theorem as follows:

Theorem 1. Let M be a cylindrical ruled surface in E3 with the generalized 1-type Gauss map. Then it
is an open part of a plane, a circular cylinder or a cylinder over a base curve of an infinite-type satisfying
Equations (5), (9) and (10).

4. Classification Theorem

In this section, we examine non-cylindrical ruled surfaces with generalized 1-type Gauss map in
E3 and obtain a classification theorem.

Let M be a non-cylindrical ruled surface in E3 parameterized by a base curve α and a director
vector field β. Up to a rigid motion, its parametrization is given by

x(s, t) = α(s) + tβ(s)

such that 〈α′, β〉 = 0, 〈β, β〉 = 1 and 〈β′, β′〉 = 1. Then, we have an orthonormal frame {β, β′, β× β′}
along α. With the frame {xs, xt} , we define the smooth functions q, u, Q and R as follows:

q = 〈xs, xs〉, u = 〈α′, β′〉, Q = 〈α′, β× β′〉, R = 〈β′′, β× β′〉.

With such functions above, we can express the vector fields α′, β′′, α′ × β, β× β′′ in the following:

α′ = uβ′ + Qβ× β′,

β′′ = −β + Rβ× β′,

α′ × β = Qβ′ − uβ× β′,

β× β′′ = −Rβ′,

(11)

from which, the smooth function q and the Gauss map G are represented respectively as

q = t2 + 2ut + u2 + Q2

and
G =

xs × xt

||xs × xt||
= q−1/2 (Qβ′ − (u + t)β× β′

)
. (12)
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Then, by straightforward computation, the mean curvature H and the Gaussian curvature K of M
are respectively represented as:

H =
1
2

q−3/2(−Rt2 − (2uR + Q′)t + u′Q−Q2R− u2R− uQ′),

K = −Q2

q2 .
(13)

Remark 2. If R = 0, then the director vector field β is a plane curve.

By the Gauss and Weingarten formulas, the following equation is easily obtained:

∆G = 2∇H + (trA2)G,

where ∇H is the gradient of H and A denotes the shape operator of M. From Equation (13), we get

2∇H = 2e1(H)e1 + 2e2(H)e2

= q−3B1e1 + q−5/2 A1e2

= q−7/2 (qA1β + (u + t)B1β′ + QB1β× β′
)

,

where e1 = xs
||xs || , e2 = xt

||xt || ,

A1 =Rt3 + (3uR + 2Q′)t2 + (Q2R− 3u′Q + 3u2R + 4uQ′)t

+ (uQ2R− 3uu′Q + u3R + 2u2Q′ −Q2Q′),

B1 =3(u′t + uu′ + QQ′){Rt2 + (2uR + Q′)t− u′Q + Q2R + u2R + uQ′}
+ (t2 + 2ut + u2 + Q2){−R′t2 − (2u′R + 2uR′ + Q′′)t

+ u′′Q− 2QQ′R−Q2R′ − 2uu′R− u2R′ − uQ′′}.

We also have
trA2 = q−3D1,

where

D1 = {−Rt2 − (2uR + Q′)t− u(uR + Q′) + Q(u′ −QR)}2 + 2Q2(t2 + 2ut + u2 + Q2).

Thus we obtain the Laplacian ∆G of the Gauss map G of M given by

∆G = q−7/2[qA1β + ((u + t)B1 + D1Q) β′ + (QB1 − D1(u + t)) β× β′]. (14)

Suppose that M has generalized 1-type Gauss map G. Then, with the help of Equations (1), (12)
and (14), we obtain

q−7/2[qA1β + {(u + t)B1 + D1Q}β′ + {QB1 − D1(u + t)}β× β′]

= f q−1/2{Qβ′ − (u + t)β× β′}+ gC.
(15)

By taking the inner product to Equation (15) with β, β′ and β × β′ respectively, we get
the following:

q−5/2 A1 = g 〈C, β〉, (16)

q−7/2{(u + t)B1 + D1Q} = f q−1/2Q + g 〈C, β′〉, (17)

q−7/2{QB1 − (u + t)D1} = − f q−1/2(u + t) + g 〈C, β× β′〉. (18)
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Combining Equations (16), (17) and (18), we have

qA1ω2 − {(u + t)B1 + D1Q}ω1 + f q3Qω1 = 0, (19)

qA1ω3 − {QB1 − (u + t)D1}ω1 − f q3(u + t)ω1 = 0, (20)

{(u + t)B1 + D1Q}ω3 − {QB1 − (u + t)D1}ω2 − f q3{Qω3 + (u + t)ω2} = 0, (21)

where we have put ω1 = 〈C, β〉, ω2 = 〈C, β′〉 and ω3 = 〈C, β× β′〉.
On the other hand, differentiating a constant vector C = ω1β + ω2β′ + ω3β× β′ with respect to

the parameter s and using Equation (11), we get

ω′1 −ω2 = 0,

ω′3 + ω2R = 0,

ω1 + ω′2 −ω3R = 0.

(22)

Combining Equations (19) and (20), we obtain

A1{ω2(u + t) + ω3Q} − B1ω1 = 0. (23)

First of all, we consider the case of R = 0.

Theorem 2. Let M be a non-cylindrical ruled surface in E3 with generalized 1-type Gauss map. If R = 0, then
M is part of a plane or a helicoid.

Proof. If the constant vector C is zero in the definition given by Equation (1), then the Gauss map G is of
nothing but pointwise 1-type Gauss map of the first kind. By Characterization Theorem, M is part of a
helicoid ([10]).

We now assume that the constant vector C is non-zero. In this case, we will show Q = 0 on M
and thus M is part of a plane due to Equation (13).

Suppose that the open subset U = {s ∈ dom(α)|Q(s) 6= 0} of R is not empty. Then, on a
component UC of U, we have from Equation (22) that ω3 is a constant and ω′′1 = −ω1. Since the left
hand side of Equation (23) is a polynomial in t with functions of s as the coefficients, the leading
coefficient consisting of functions of s must vanish and ω2

1Q′ is a constant on UC with the help of
Equation (22).

Next, from the coefficient of t2 in Equation (23), we obtain

3ω2u′Q− 2ω3QQ′ + 3ω1u′Q′ + ω1u′′Q = 0. (24)

Similar to the above, from the coefficient of the linear term in t of Equation (23) with the help of
Equation (24), we get

ω2QQ′ + ω3u′Q−ω1(u′)2 + ω1(Q′)2 = 0. (25)

In addition, the constant term in Equation (23) relative to t is automatically zero. If we make use
of Equation (24), we obtain

Q[ω1{3u(u′)2 + 3u′QQ′ − 3u(Q′)2 − u′′Q2} − 3ω2uQQ′

−ω3(3uu′Q + Q2Q′)] = 0.

Hence, on UC, we have

ω1{3u(u′)2 + 3u′QQ′ − 3u(Q′)2 − u′′Q2} − 3ω2uQQ′

−ω3(3uu′Q + Q2Q′) = 0.
(26)
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Using Equations (24) and (25), Equation (26) can be reduced to

2ω1u′Q′ + ω2u′Q−ω3QQ′ = 0. (27)

Suppose that there is a point s0 ∈ UC such that u′(s0) 6= 0. Then, u′(s) 6= 0 everywhere on an
open interval I containing s0. So, Equation (25) yields

ω3Q =
1
u′
{ω1(u′)2 −ω1(Q′)2 −ω2QQ′}. (28)

Putting Equation (28) into (27), (u′2 + Q′2)(ω2Q + ω1Q′) = 0, which implies ω2Q + ω1Q′ = 0.
Since ω2 = ω′1, we see that ω1Q is constant on I.

If ω1 = 0 on some subinterval J in I, ω2 = 0 on J. Equation (25) gives ω3 = 0 on J. Since C
is a constant vector, C is zero vector, which is a contradiction. Thus, without loss of generality we
may assume that ω1 6= 0 everywhere on I and it is of the form ω1 = k1 cos(s + s1) for some non-zero
constant k1 and s1 ∈ R. Since ω2

1Q′ is constant and ω1Q is constant on I, ω1 must be zero on I, which
contradicts ω1 = k1 cos(s + s1) for some non-zero constant k1. Therefore, the open interval I is empty
and thus u′ = 0 on UC. If we take into account Equations (25) and (27), we get Q′(ω2Q + ω1Q′) = 0
and ω3Q′ = 0, respectively.

Suppose that Q′(s2) 6= 0 at some point s2 ∈ UC. Then ω3 = 0 and ω1Q is a constant on an open
interval J1 containing s2. Similar to the above argument, since ω2

1Q′ and ω1Q are constant on J1, it
follows that ω1 = 0. By Equation (22), ω2 is zero. Hence the constant vector C is zero, a contradiction.
Thus J1 is empty. Therefore, Q is constant on UC. By continuity, Q is either a non-zero constant or
zero on M. Because of Equation (13), M is minimal and it is an open part of a helicoid, which means
that the Gauss map is of pointwise 1-type of the first kind. Therefore, the open subset U is empty.
Consequently, Q is zero on M. Hence, M is an open part of a plane. �

Now, we assume that the function R is not vanishing everywhere.
If f = g, the Gauss map G of M is of pointwise 1-type. Thus, M is characterized as an open part

of a right cone including the case that M is a plane or a helicoid depending upon whether the constant
vector C is non-zero or zero ([9]).

From now on, we may assume the constant vector C is non-zero and f 6= g unless otherwise
stated. Similarly as before, Equation (23) yields

ω2R + ω1R′ = 0. (29)

Since ω′1 = ω2 in Equation (22), we see that ω1R is constant. In addition, the coefficient of the
term involving t3 in Equation (23) must be zero.

With the help of Equation (29), we get

2ω2Q′ + ω3QR−ω1u′R + ω1Q′′ = 0. (30)

If we examine the coefficient of the term involving t2 in Equation (23), using Equations (29)
and (30) we obtain

ω1Q2R′ − 3ω2u′Q + 2ω3QQ′ −ω1QQ′R− 3ω1u′Q′ −ω1u′′Q = 0. (31)

Furthermore, from the coefficient of the linear term in t in Equation (23) with the help of
Equations (29)–(31), we also get

Q{ω2QQ′ + ω3u′Q−ω1(u′)2 + ω1(Q′)2} = 0. (32)
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Suppose that the function Q is not zero, i.e., the open subset V = {s ∈ dom(α)|Q(s) 6= 0} of
dom(α) is not empty. Equation (32) gives that

ω2QQ′ + ω3u′Q−ω1(u′)2 + ω1(Q′)2 = 0. (33)

Moreover, considering the constant term relative to t in Equation (23) and using
Equations (29)–(31), we obtain

Q[ω1{3u(u′)2 + 3u′QQ′ −Q2Q′R− 3u(Q′)2 − u′′Q2 + Q3R′}
− 3ω2uQQ′ −ω3(3uu′Q + Q2Q′)] = 0.

Hence, on the open subset V in R,

ω1{3u(u′)2 + 3u′QQ′ −Q2Q′R− 3u(Q′)2 − u′′Q2 + Q3R′}
− 3ω2uQQ′ −ω3(3uu′Q + Q2Q′) = 0.

(34)

Applying Equations (31) and (33) to Equation (34), we have

2ω1u′Q′ + ω2u′Q−ω3QQ′ = 0. (35)

On the other hand, since ω3R = ω1 + ω2
′ in Equation (22), Equation (30) becomes

(ω1Q)′′ + ω1Q−ω1u′R = 0. (36)

Suppose that the function u is not constant, i.e., the open subset V1 = {s ∈ V|u′(s) 6= 0} is not
empty. Then Equation (33) yields

ω3Q =
1
u′
{ω1(u′)2 −ω1(Q′)2 −ω2QQ′}. (37)

Putting Equation (37) into (35), (u′2 + Q′2)(ω2Q + ω1Q′) = 0 and thus ω2Q + ω1Q′ = 0.
Therefore, ω1Q is constant on a component C of V1. From Equation (36), we get ω1Q = ω1u′R.

If ω1 = 0 on an open interval Ĩ ⊂ C, the constant vector C is zero on M, a contradiction.
Thus, ω1 6= 0 and so Q = u′R on C. The fact that ω1Q and ω1R are constant on C implies that u′ is a
non-zero constant on C. Then, Equations (31) and (35) are simplified as follows:

ω1Q2R′ + 2ω3QQ′ −ω1QQ′R = 0, (38)

ω1u′Q′ −ω3QQ′ = 0. (39)

Putting Q = u′R into Equation (38), ω3Q′ = 0 is derived. Thus, Equation (39) implies that
ω1Q′ = 0 and so Q′ = 0 on C. Hence, Q and R are both non-zero constants on C.

On the other hand, without difficulty, we can show that the torsion of the director vector field
β = β(s) viewed as a curve is zero and so β is part of a plane curve which is a small circle on the unit
sphere centered at the origin with the normal curvature –1 and the geodesic curvature R on C. Up to a
rigid motion, we may put

β(s) =
1
p
(cos ps, sin ps, R)

on C, where we have put p =
√

1 + R2. Then, u = 〈α′, β′〉 = −α′1 sin ps + α′2 cos ps, where α′(s) =

(α′1(s), α′2(s), α′3(s)). Therefore, on C, we get

u′ = −(α′′1 + α′2 p) sin ps + (α′′2 − α′1 p) cos ps,
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from which, we see that u′ = 0 on C ⊂ V1, a contradiction. Hence, V1 is empty and so u′ = 0 on V.
Then, Equations (30), (33) and (35) can be respectively reduced to

2ω2Q′ + ω3QR + ω1Q′′ = 0, (40)

ω2QQ′ + ω1(Q′)2 = 0, (41)

ω3QQ′ = 0. (42)

Suppose that Q′(s̃0) 6= 0 at a point s̃0 in V. From Equations (41) and (42), ω3 = 0 and ω1Q is a
constant on an open interval J̃ ⊂ V containing s̃0. Hence, ω2

′Q = 0 is derived from Equation (40).
Therefore, ω2

′ = 0 on J̃. The third equation of (22) yields ω1 = 0. It follows that ω2 = 0. Since C is a
constant vector, C is zero on M, a contradiction. So, Q′ = 0 on V. Thus, Q is non-zero constant on each
component of V. If we consider Equations (30) and (31), we have

ω3R = 0 and ω1R′ = 0.

Since R 6= 0, ω3 = 0 on each component of V. By Equation (29), ω2R = 0, which yields that
C is zero on M. It is a contradiction. Hence, the open subset V of R is empty and the function Q is
vanishing on M. Thus, M is flat due to Equation (13). Since the ruled surface M is non-cylindrical, M
is one of an open part of a tangent developable surface or a conical surface. One of the authors proved
that tangential developable surfaces do not have a generalized 1-type Gauss map and a conical surface
of G-type can be constructed by the given functions f , g and the constant vector C ([15]).

Consequently, we have

Theorem 3. Let M be a non-cylindrical ruled surface in E3 with generalized 1-type Gauss map. Then, M is an
open part of a plane, a helicoid, a right cone or a conical surface of G-type.

Summing up our results, we obtain the following classification theorem.

Theorem 4. (Classification) Let M be a ruled surface in E3 with a generalized 1-type Gauss map. Then, M
is an open part of a plane, a circular cylinder, a cylinder over a base curve of an infinite-type satisfying
Equations (5), (9) and (10), a helicoid, a right cone or a conical surface of G-type.
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