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Abstract: In this paper, we find all Fibonacci and Lucas numbers written in the form 2a + 3b + 5c + 7d,
in non-negative integers a, b, c, d, with 0 ≤ max{a, b, c} ≤ d.
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1. Introduction

Let {Fn}n≥0 be the Fibonacci sequence which is a second-order linear recursive sequence given by
Fn+2 = Fn+1 + Fn, its initial values are F0 = 0 and F1 = 1, and its companion Lucas sequence {Ln}n≥0

follows the same recursive pattern as the Fibonacci numbers, but with initial values L0 = 2 and L1 = 1.
Fibonacci and Lucas numbers are very famous because they have amazing features (consult [1–3]).
The problem of looking for a specific form of second-order recursive sequence has a very rich history.
Bugeaud, Mignotte and Siksek [4] showed that 0, 1, 8, 144 and 1, 4 are the only Fibonacci and Lucas
numbers, respectively, of the form yt with t > 1 (perfect power). Other related papers searched for
Fibonacci numbers of forms such as px2 + 1, px3 + 1 [5], k2 + k + 2 [6], pa ± pb + 1 [7]. In 1989, Luo [8]
solved Vern Hoggatt’s conjecture and proved that the only triangle numbers in the Fibonacci sequence
{Fn} are 1, 3, 21, 55. In 1991, Luo [9] found all triangular numbers in the Lucas sequence {Ln}. In
[10], Eric F. Bravo and Jhon J. Bravo found all positive integer solutions of the Diophantine equation
Fn + Fm + Fl = 2a in non-negative integers n, m, l, and a with n ≥ m ≥ l. In [11], Normenyo, Luca
and Togbé determined all base-10 repdigits that are expressible as sums of four Fibonacci or Lucas
numbers. In [12], Marques and Togbé searched for Fibonacci numbers of the form 2a + 3b + 5c which
are sum of three perfect powers of some prescribed distinct bases.

In this paper, we are interested in Fibonacci numbers and Lucas numbers which are sum of four
perfect powers of several prescribed distinct bases. The number of perfect powers involved in the
Diophantine equation solved by the literature [12] is one less than the perfect powers involved in the
equation solved by us and the amount of computation in the literature [12] is relatively small. More
precisely, our results are the following.

Theorem 1. The solutions of the Diophantine equation

Fn = 2a + 3b + 5c + 7d (1)

in non-negative integers n, a, b, c, d with 0 ≤ max{a, b, c} ≤ d are (n, a, b, c, d) ∈ {(7, 1, 1, 0, 1), (10, 1, 1, 0, 2
), (10, 2, 0, 0, 2), (14, 1, 3, 1, 3), (14, 3, 0, 2, 3)}.
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Theorem 2. The solutions of the Diophantine equation

Ln = 2a + 3b + 5c + 7d (2)

in non-negative integers n, a, b, c, d with 0 ≤ max{a, b, c} ≤ d are (n, a, b, c, d) ∈ {(3, 0, 0, 0, 0), (5, 1, 0, 0, 1),
(9, 0, 0, 2, 2)}.

2. Preliminaries

Before proceeding further, we recall some facts and tools which will be used later.
First, we recall the Binet’s formulae for Fibonacci and Lucas sequences:

Fn =
γn − µn

γ− µ

and
Ln = γn + µn,

where γ = 1+
√

5
2 and µ = 1−

√
5

2 are the roots of F′ns characteristic polynomial x2 − x− 1 = 0 . For all
positive integers n, the inequalities

γn−2 ≤ Fn ≤ γn−1, γn−1 ≤ Ln ≤ 2γn (3)

hold.
In order to prove our theorem, one tool used is a Baker type lower bound for a linear form in

logarithms of algebraic numbers, and such a bound was given by the following result of Matveev (see
[13]).

Lemma 1. Let γ1, γ2, · · · , γt be real algebraic numbers and let b1, · · · , bt be non-zero rational integers. Let D
be the degree of the number field Q(γ1, γ2, · · · , γt) over Q and let Aj be a real number satisfying

Aj ≥ max{Dh(γj), |logγj|, 0.16}

for j = 1, · · · , t. Assume that
B ≥ max{|b1|, · · · , |bt|}.

If γb1
1 · · · γ

bt
t 6= 1, then

|γb1
1 · · · γ

bt
t − 1| ≥ exp(−1.4× 30t+3 × t4.5 × D2(1 + logD)(1 + logB)A1 · · · At).

As usual, in the above statement, the logarithmic height of an s−degree algebraic number γ is
defined as

h(γ) =
1
s
(log|a|+

s

∑
j=1

logmax{1, |γ(j)|},

where a is the leading coefficient of the minimal polynomial of γ (over Z) and γ(j), 1 ≤ j ≤ s are the
conjugates of γ (over Q).

After finding an upper bound on n which is in general too large, the next step is to reduce it.
For that, we need a variant of the famous Baker–Davenport lemma which was developed by Dujella
and Pethő [14]. For a real number x, we use ‖x‖ = min{|x− n| : n ∈ Z} for the distance from x to the
nearest integer.

Lemma 2. (see [10]) Let M be a positive integer, let p
q be a convergent of the continued fraction of the

irrational number α such that q > 6M, and let A, B, τ be some real numbers with A > 0 and B > 1.
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Let ε := ‖τq‖ −M‖αq‖, where ‖ · ‖ denotes the distance from the nearest integer. If ε > 0, then no solution to
the inequality

0 < |uα− v + τ| < AB−ω

exists in positive integers u, v, and ω with u ≤ M and w ≥ log(Aq/ε)
logB .

Next, we are ready to handle the proofs of our results.

3. Proof of Theorem 1

3.1. Bounding n

By combining the Binet formula together with (1), we get

γn
√

5
− 7d = 2a + 3b + 5c +

µn
√

5
> 0, (4)

because |µ| < 1 while 2a ≥ 1. Thus,

γn7−d
√

5
− 1 =

2a

7d +
3b

7d +
5c

7d +
µn

7d
√

5
> 0 (5)

yields

| γn7−d
√

5
− 1 |< 4

70.1d . (6)

From the first inequality of (3), we obtain the estimate γn−2 < 4× 7d and 7d < γn−1, which
implies that 0.24n− 1.9 < d < 0.25(n− 1); also, this yields d < n.

We are in a situation where we can apply Matveev’s result Lemma 1 to the left side of (6). The left
expression of (6) is nonzero, since, if this expression is zero, it means that γ2n = 72d× 5 ∈ Z, so γ2n ∈ Z
for some positive integer n, which is false. We take t := 3, γ1 := γ, γ2 := 7, γ3 :=

√
5 and b1 := n, b2 :=

−d, b3 := −1. Then we have D = [Q(
√

5) : Q] = 2. Note that h(γ1) = 1
2 logγ, h(γ2) = log7 and

h(γ3) = log
√

5. Thus, we can take A1 := 0.5, A2 := 3.9 and A3 := 1.7. Note that max{|b1|, |b2|, |b3|} =
max{n, d, 1} = n. We are in position to apply Matveev’s result Lemma 1. This lemma together with
a straightforward calculation gives

| γn7−d
√

5
− 1 |> exp(−C(1 + logn)), (7)

where C = 3.22× 1012. Thus, from (6), (7) and d > 0.24n− 1.9, taking logarithms in the inequalities
(6), (7) and comparing the resulting inequalities, we get

0.046n− 1.8 < 3.22× 1012 × (1 + logn),

giving n < 2.56× 1015. We summarize the conclusions of this section as follows.

Lemma 3. If (n, a, b, c, d) is a solution in positive integers to Equation (1) with 0 ≤ max{a, b, c} ≤ d, then

d < n < 2.56× 1015.

3.2. Reducing the Bound on n

We use Lemma 2 several times to reduce the bound for n. We return to (6). Put

ΛF := nlogγ− dlog7− log
√

5.
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Then (5), (6) implies that

0 < ΛF < eΛF − 1 <
4

70.1d . (8)

Dividing across by log7, we get

0 < |n logγ

log7
− d− log

√
5

log7
| < 2.1

70.1d . (9)

We are now ready to apply Lemma 2 with the obvious parameters,

α :=
logγ

log7
, v := d, τ := −

√
5

log7
, A := 2.1, B := 1.2.

It is easy to see that α is irrational. In fact, we assume that α = p
q , where p, q ∈ Z+ and

gcd(p, q) = 1. Then γq = 7p, hence γq = 7p, where γ is the conjugate of γ. Thus, we can get
γqγq = 72p; hence, (−1)q = 72p which is an absurdity. We can take M := 2.56× 1015. Let pk

qk
be the kth

convergent of the continued fraction of α. By applying Lemma 2 and performing the calculations with
q39 > 6M and ε = ‖τq39‖ −M‖αq39‖ = 0.42904 · · · , we get that if (n, a, b, c, d) is a solution in positive
integers of Equation (1), then d < 225, which implies that

n <
226.9
0.24

= 945.417 < 946.

Then we can take M := 946. By applying Lemma 2 again and performing the calculations with
q8 > 6M and ε = ‖τq8‖ −M‖αq8‖ = 0.07417 · · · , we get that if (n, a, b, c, d) is a solution in positive
integers of Equation (1), then d < 73, which implies that

n < 313.

Finally, we apply a program written in Mathematica to determine the solutions to (1) in the
range 0 ≤ max{a, b, c} ≤ d < 73 and n < 313. Quickly, the program returns the following solutions:
(n, a, b, c, d) ∈ {(7, 1, 1, 0, 1), (10, 1, 1, 0, 2), (10, 2, 0, 0, 2), (14, 1, 3, 1, 3), (14, 3, 0, 2, 3)}. This proof has
been completed.

4. Proof of Theorem 2

4.1. Bounding n

By combining Binet formula together with (2), we get

γn − 7d = 2a + 3b + 5c − µn > 0, (10)

because |µ| < 1 while 2a ≥ 1. Thus,

γn7−d − 1 =
2a

7d +
3b

7d +
5c

7d − µn7−d > 0 (11)

yields

| γn7−d − 1 |< 4
70.1d . (12)

From the second inequality of (3) and (2) , we obtain the estimate γn−1 < 4× 7d and 7d < 2× γn,
which implies that 4.04d− 1.45 < n < 4.05d + 3.89; also, this yields d ≤ n.

We are also in a situation where we can apply Matveev’s result Lemma 1 to the left side of (12). The
left expression of (12) is nonzero, since, if this expression is zero, it means that γn = 7d ∈ Z, so γn ∈ Z
for some positive integer n, which is false. We take t := 2, γ1 := γ, γ2 := 7 and b1 := n, b2 := −d.
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Then we have D = [Q(
√

5) : Q] = 2. Note that h(γ1) = 1
2 logγ, h(γ2) = log7. Thus, we can take

A1 := 0.5, A2 := 3.9. Note that B = max{|b1|, |b2|} = max{n, d} = n. We are in position to apply
Matveev’s result Lemma 1. This lemma together with a straightforward calculation gives

| γn7−d − 1 |> exp(−C(1 + logn)), (13)

where C = 1.02× 1010. Thus, from (12), (13) and d > n−3.89
4.05 , taking logarithms in the inequalities (12),

(13) and comparing the resulting inequalities, we get

0.1(n− 1)logγ− 1.1× log4 < C× (1 + logn),

giving n < 6.47× 1012. The conclusions of this section are as follows.

Lemma 4. If (n, a, b, c, d) is a solution in positive integers to Equation (2) with 0 ≤ max{a, b, c} ≤ d, then

d ≤ n < 6.47× 1012.

4.2. Reducing the Bound on n

We use the extremality property of continued fraction to reduce the bound for n. We return to (12)
and put

ΛL := nlogγ− dlog7.

Then (11), (12) implies that

0 < ΛL < eΛL − 1 <
4

70.1d . (14)

Dividing by log7, we get

0 < n
logγ

log7
− d <

2.1
1.2d . (15)

Let [a0, a1, a2, a3, a4, · · · , ] = [0, 4, 22, 1, 5, 1, 1, 17, · · · ] be the continued fraction of logγ
log7 , and let pk

qk

be its kth convergent. Recall that n < 6.47× 1012 by Lemma 4. A quick inspection using Mathematica
reveals that q19 < 1.662× 1012 < q20. Furthermore, aM := max{ai : i = 0, 1, · · · , 27} = a14 = 35. So, in
accordance with the extremality property of continued fraction, we obtain that

|n logγ

log7
− d| > 1

(aM + 2)n
=

1
37n

. (16)

By comparing estimates (15) and (16), we get right away that

1
37n

<
2.1
1.2d .

This leads to

d <
log(2.1× 37n)

log1.2
< 186,

which implies that
n < 757.

This can lead to

d <
log(2.1× 37n)

log1.2
< 61,

which implies that
n < 251.
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Finally, we use a program written in Mathematica to find the solutions to (2) in the range
0 ≤ max{a, b, c} ≤ d < 61 and n < 251. Quickly, the program returns the following solutions:
(n, a, b, c, d) ∈ {(3, 0, 0, 0, 0), (5, 1, 0, 0, 1), (9, 0, 0, 2, 2)}. This completes the proof.

5. Conclusions

In this paper, we find all the solutions of the Diophantine equation (1) by using a Baker type
lower bound for a nonzero linear form in logarithms of algebraic numbers and the Lemma 2 from
Diophantine approximation to reduce the upper bounds on the variables of the equation. For the
Diophantine equation (2), we solve the equation by using the lower bound for a nonzero linear form
in logarithms of algebraic numbers and the extremality properties of continued fraction to reduce the
upper bounds on the variables of the equation.

6. Future Developments

We remark that we can further take advantage of our method to prove that there are only
finitely many solutions (and all of them are effectively computable) for the Diophantine equation
Fn = −2a − 3b − 5c + 7d, Ln = −2a − 3b − 5c + 7d in non-negative integers n, a, b, c, d with 0 ≤
max{a, b, c} ≤ d. We leave this as a problem for other researchers.
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