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Abstract: In this article, we combine the original VIKOR model with a triangular fuzzy neutrosophic
set to propose the triangular fuzzy neutrosophic VIKOR method. In the extended method, we use
the triangular fuzzy neutrosophic numbers (TFNNs) to present the criteria values in multiple criteria
group decision making (MCGDM) problems. Firstly, we summarily introduce the fundamental
concepts, operation formulas and distance calculating method of TFNNs. Then we review some
aggregation operators of TFNNSs. Thereafter, we extend the original VIKOR model to the triangular
fuzzy neutrosophic environment and introduce the calculating steps of the TFNNs VIKOR method,
our proposed method which is more reasonable and scientific for considering the conflicting criteria.
Furthermore, a numerical example for potential evaluation of emerging technology commercialization
is presented to illustrate the new method, and some comparisons are also conducted to further
illustrate advantages of the new method.

Keywords: MCGDM problems; triangular fuzzy neutrosophic sets (TFNSs); VIKOR model; TFNNs
VIKOR method; potential evaluation; emerging technology commercialization

1. Introduction

The VIKOR (VIseKriterijumska Optimizacija I KOmpromisno Resenje) method [1] has been used
to investigate multiple criteria group decision making (MCGDM) problems and has been widely
used in many domains. In the existing literature, more and more traditional MCGDM models have
been studied, such as: the grey relational analysis model [2-4]; the multi-objective optimization by
ratio analysis plus the full multiplicative form (MULTIMOORA) model [5,6]; the Preference Ranking
Organization Method for Enrichment of Evaluations (PROMETHEE) model [7]; the ELimination Et
Choix Traduisant la REalité (ELECTRE) model [8]; and the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS) model [9,10].

In many real MCGDM problems, it is not easy to describe the criteria values with accurate
values due to the fuzziness and complexity of the alternatives, and so it can be more effective and
useful to describe the criteria values with fuzzy information. Fuzzy set theory [11] has been used
as a feasible tool for MCGDM [12,13] problems. Smarandache [14,15] proposed the neutrosophic
set (NS). Then, Wang et al. [16,17] defined the single-valued neutrosophic sets (SVNSs) and interval
neutrosophic sets (INSs). Wang et al. [18,19] explored some aggregation operators of SVNNSs and
extended the SVNS to a 2-tuple linguistic neutrosophic number environment. Wu et al. [20] studied
SVNNs with Hamy operators under 2-tuple linguistic neutrosophic numbers. Biswas et al. [21]
provided the definition of a triangular fuzzy neutrosophic number (TFNN) in which the degree
of truth-membership (MD), indeterminacy-membership (IMD) and falsity-membership (FMD) are
depicted by TFNNs. Sahin et al. [22] studied multiple attribute decision making (MADM) problems
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with centroid single valued triangular neutrosophic numbers. Samah et al. [23] studied two ranking
means based on information systems quality (ISQ) theory and the TFNNs environment. Ye [24]
provided the definition of trapezoidal neutrosophic sets. Biswas et al. [25] studied some applications
under the trapezoidal fuzzy neutrosophic environment. Tan and Zhang [26] defined some trapezoidal
fuzzy neutrosophic aggregation operators.

Opricovic [1] used the VIKOR model to investigate some MCGDM problems with conflicting
criteria [27,28]. Bausys and Zavadskas [29] established the INS VIKOR model. Liu and
Park et al. [30] studied the VIKOR model under interval-valued intuitionistic fuzzy sets (IVIFSs).
Selvakumari et al. [31] proposed the extended VIKOR model by constructing an octagonal
neutrosophic soft matrix. Wan et al. [32] proposed the VIKOR model with triangular intuitionistic
fuzzy numbers (TIFN), Liu et al. [33] provided the linguistic VIKOR model, and Qin et al. [34]
developed the interval type-2 fuzzy VIKOR model. Chen [35] proposed the remoteness index-based
Pythagorean fuzzy VIKOR methods with a generalized distance measure for multiple criteria decision
analysis. Liao et al. [36] explored the VIKOR method with the hesitant fuzzy linguistic information.
Ren et al. [37] provided the dual hesitant fuzzy VIKOR model. Li et al. [38] provided the VIKOR
model with linguistic intuitionistic fuzzy numbers. Pouresmaeil et al. [39] established the SVNNs
VIKOR model. Huang et al. [40] extended the VIKOR method to INSs. Zhang and Wei [41] extended
the VIKOR method to a hesitant fuzzy environment.

However, there has been no study about the VIKOR model for MCGDM problems with TENNSs,
so taking the TFNNs VIKOR model into account is of necessity. The goal of our article is to combine
the original VIKOR model with TFNNs to study MCGDM problems. The structure of our paper is as
follows. Section 1 introduces the concepts, operation formulas and the distance calculating method
of TFNNSs. Section 2 reviews some aggregation operators of TFNNs. Section 3 extends the original
VIKOR model to a TEN environment and introduces the required calculating steps of TFNNs VIKOR
method. Section 4 provides a numerical example for potential evaluation of emerging technology
commercialization and introduces a comparison between our proposed methods and the existing
method. Section 5 summarises our conclusions.

2. Preliminaries

2.1. Triangular Fuzzy Neutrosophic Sets

Based on the concepts of a traditional triangular fuzzy set and the fundamental theory of a single
valued neutrosophic set (SVNS), the triangular fuzzy neutrosophic sets (TFNSs), which were first
defined by Biswas et al., [21] can be depicted as follows:

Definition 1 [21]. Let X be a fixed set. The TFNSs y can be depicted as:

1= { (x,¢y(x), @y (x), 7y (x)) |x € X} @

where ¢y (x), ¢y (x) and vy (x) € [0,1] represent the degree of the truth membership, the indeterminacy
membership and the falsity membership, respectively, which can be expressed by triangular fuzzy numbers
as follows.

§y(x) = (95 (), @)1 (x), 8} (x)),0 < @l (x) < @1 (x) < il (x) <1 @
@1(x) = (95(x), @) (x), 9}/ (x)),0 < 9} (x) < @} (x) < g}l (x) <1 ®)

() = (750, W), ()),0 < 7(x) < 7(x) < i) <1 @
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and the truth membership function can be defined:

x—¢f(x) L <y < pM
O —9E ) ¢y (x) < x < ¢y (x),

_ x—gll
W) =\ et e <x <ollx), ®
0, otherwise.

For convenience, we let 1 = { (¢%, oM, ¢1), (¢, oM, o), (vL,vM, v } be a TENN which satisfies
the condition 0 < ¢pH + gt + 4 < 3.

Definition 2 [21]. Assume there are three TFNNs 11 = { (¢, oM, ¢!, (9%, oM, ol1), (71/71 ,'yl t
n2 = {(92.92",93). (93,92, #5), (v2, 12", 73) fand = { (9%, 9™, ¢1), (9", 9", 9%), (4!, 7™, v

the operation laws of them can be defined:

(o1 + 95 — o107, 01" + 93 — oV o), of + 05 — of' 95, (07 93, 91 93", 0f F)
(Dmen =

}/
ty,

(7172,71 'Yz I’Yl 72 )

@) mem =] (OT65,9193, 91145, (o1 + 0k — obas, o1 + 93 — ol ol + o — olle})
(1 +72 = ' -t F - i)

(1-94)"1 <—¢M%vwvw%64ww%wwﬁwwﬁ,}

( -
A A A ’ ’
{(ww,wﬂww>)
A A A A A
[ (e @ @) (1 e - et
- A A ’ :
(1-(a-H"1-(- 7) ( — ")
According to Definition 2, it is clear that the operation laws have the following properties:
A
Mmem=mn&n, MOmn=mndin, ((,71))\1) = ()M (6)
A @) = A & A, (@ m2)" = ()" @ (12)"; @)
Mo @ Aot = (a+A2)m, ()™ & ()= = () ) ®)

Definition 3 [21]. Let 7 = { (¢, oM, p1), (9L, oM, 1), (v£,¥™,y!) } be a TFNN, the score and accuracy
functions of 1 can be expressed:

L M uy _ L M u
s(1) :113 J(FW(L(P;;WZ;E;;L?)) (742974 97) ] s(n) € [0,1] )
h(n) = [11{(4’ +2¢M + ¢ )*<7L+27M+'y”)], h(n) € [-1,1] (10)

Let 7 and 772 be two TENNSs. Then, based on Definition 3, the following assertion holds true.

(1) if s(m) <s(2), then . <12
(2)if s(im) > s(i12), then i1 > 12;
(3) if s(im1) = s(112), k(1) < h(112), then 11y < 112;
(4) if s(im) = s(112), h(m1) > h(i12), then 111 > 12;
(5) if s(m) = s(n2),h(1m) = h(12), then 1 = 1.
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2.2. The Normalized Hamming Distance between TFNNs

Definition 4 [32]. Let ;1 = {(of o} o), (oL o} ¢t), (v, 1Y 0Y)}  and
2 = { (o5, oM, o), (95, o3, @4, (75, ¥M, +5) } be two TFNNSs. Then the normalized Hamming distance
is defined by:
) |91 — 93|+ ot — 92" | + |9 — &3]
d(mm) = 5| +let — 5| +[e" = o5 + o1 — ¢} (1)
ot =g+ [ =+ [ =

Theorem 1. Assume that there are three TENNs 11 = {(¢f, oM, ¢th), (o, oM, 9l0), (’h,’yl /71 01
= {(¢5,92",95), (97, 92", 95), (v3, 13" 75 ) } and yp = { (" 9™, ), (9" @™, @1), (75, 7M7) },
the Hamming distance d(11,12) has the following properties:
(P1) 0 <d(m,m2) <1; (P2) if d(ip1,12) = O, then iy = 12;

(P3) d(n71,m2) =d(m2,m);  (P4) d(ip1,m2) +d(n2,m3) = d(171,73)-

Proof. (P1) 0 <d(y1,m2) <1

Since 0 < ¢L < 1, then 0 < [pF — ¢k| < 1, similarly we see 0 < |pM — | < <
9l =98] < 1,0 < [gf — ] < 1,0 < [p}f— M| < 1,0 < ol — g¥| < 1,0 < |7t — 9} <
LO< | fvz!<10<|vlwz\<1 So0 < |1 — @3] + 91" —93"| + |91 — 92| + |01 — 93] +

o — | + [ — 5| + vk — 25|+ |2 = M + [ =2 <o
Therefore 0 < d(11,12) <1, which completes the proof.
(P2) if d(1,172) =0, then 1 = 12
(,71,,72)_1( 01 =51 191" — o3| + |o¥ 4’2|+|‘P%*9”5‘+|4’1 — o'+ lof o+ _
vy =3[+ At =+ I _72
:><|‘P1L_4’2L|:0'}‘P{VI ‘P§M|—O}‘P1 —¢; %_(Pﬂ:O"(Pl _(Pz _(Pz )
|71 - -7y *WZI—O

= (o1 = 05,01" = 92", 91" =93 o1 = 93, 91" = 92", 91 = 931 =95, = = %)
That means #1 = 1, and so (P2) if d(1,12) =0, then 1 = 15 is correct.

(P3) d(n1,12) = d(112,111)

d0rn) = (100~ @2l 101" = 93"| +{gr' —g5'| + ot — 9ol +lo1" — 2| + |oF — 97
U\ b = o -
:1< (B — L] + |03 — M| + |94 — pU| + |k — k| + | — o] + 94 — 9] )

—d
c) QYIRS T WY TR TN Or2em)

So we complete the proof of (P3), which asserts that equality d(#1,72) = d(12,71) holds.
(P4) d(i1,12) +d (2, 13) = d(i1,713)

A 13) — 1< 01 = 9%+ 01! — 9|+ o' — 4| +[of — 5] + [} — b
+loft = o5+ [ =5+ It =3+ -
¢ — o5 + ¢ — o5 | + [l — ) + o2 — o3| + @1 — 3 + pi — ¥

= 35| +|of — oL+ ok — o5+ |9} — M + o} — M| + | @Y — o5 + @Y — Y|
Hot =+ =B+ -+t = Y - -
|91 — 5| + 03 — 5[+ |¢1" — 92| + 9" — 93| + [ — 5| + |93 — 5|+

< 5| loF — o5+ |95 — 95| + [} — o} | + |9 — @3] + [0} — ¢8| + |9 — 9|

Rl TR I e R b e e B b U o S LU
=d(m,nm2) +d(12,13)
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Then, triangular fuzzy neutrosophic number weighted averaging (TFNNWA) and triangular
fuzzy neutrosophic number weighted geometric (TFNNWG) operators are introduced as follows:

Definition 5 [21]. Let 17; = {(¢JL,¢;\A,¢}J), ((ij, (p;VI, (p]U), ('y]L,'y]z"I, 'y]U) }(]’ =1,2,...,n) bea group of
TFNNS, then the TENNWA and TENNWG operators proposed by Biswas et al. [21] are defined as follows.

n
TENNWA (71,72, . . ., 1n) = w111 D walfa . .. ® Wylly = ® wjllj (12)
]:
and .,
TENNWG (71,72, -+ 11n) = (1) @ (12)% . @ ()" = & (1) (13)
]:

where w; is weight vector of n,j=12,...,n, which satisfies 0 < w;j <1, 2;7:1 wj=1.

Theorem 2 [21]. Let ; = {(4)},4)}\4, 4)}“), ((p]-L, go]M, go]U>, ('y]-L,'y]z\A, 'y]u) }(] =1,2,...,n) be a group of
TENN , then the operation results by TENNWA and TENNWG operators are also a TENN where

n
TENNWA(y1, 72, -, 11n) = & wjil;
i

(G B (e (-, o
A A A7) (07 A 60 0

and

A T e ).
(- (-) 111 (1= M) - T (1) "
=4 (=) =T (=) A= T (1) )

1 (o) 1 (o) i (41)”)

2.3. VIKOR Method

Denote n alternatives under consideration as Oq1,0,,---,0,, the evaluation attribute as
C1,Cy,---,Cy, and the rating of each alternative O]-( j = 1,---,n) with respect to attribute
Ci(j=1,---,m)as f;;. Then the compromise ranking algorithm of the VIKOR method [42-45] has the
following steps:

Step 1. Determine the best rating f;" and the worst rating f;~ for all the attributes. For example,
it the attribute 7 represents a benefit, then

fir= m].infij/ fi = m]infz‘j (16)

Naturally, a candidate having scores (f;",f,, -+, fsf) would be positive ideal whereas a
candidate having scores (f; , f, ,- - , f ) would be a negative ideal candidate. It is assumed that such
a positive ideal candidate does not exist; otherwise, the decision would be trivial.
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Step 2. Compute the values and S; and R;(j = 1,---,n) which represent the average and the
worst group scores of the alternatives O}, respectively, with the relations

n + _ i
S] = ;wiw, S] S [0,1] (17)
+ _ £
R; = max [W’M ,R; = [0,1] (18)

m
Here, w; (‘21 w; =1,w; € [0,1],i =1,2,--- ,m) is the relative importance weights of the criteria
1=
set by the decision maker. The smaller values of S; and R; correspond to the better, average and worse

group scores of alternatives O, respectively.
Step 3. Compute the Q; values for j =1,2,- - - ,m with the relation

Ca(Sj—-S)  (1-a)(R;—R*)

Q= G- —s9) T T (R RV " (19
where
St = minS;, S~ = max$; (20)
] ]
Rt = minR;, R~ = maxR; (21)
] ]

and « is the weight of decision making strategy “the majority of attribute” (or “the maximum
group utility”). The compromise can be selected with “voting by majority” (« > 0.5), with “consensus”
(v = 0.5), with “veto” (« < 0.5).

Step 4. Rank the alternatives by sorting each S, R and Q values in a decreasing order. The result
is a set of three ranking lists denoted as S(), Rjj and Q.

Step 5. Propose the alternative Oj; corresponding to Oy (the smallest among Q; values) as
compromise solution if

C1. The alternative O;; has an acceptable advantage; in other words, Q[z] — Q[l] > DQ where
DQ = ﬁ, and m is the number of alternatives.

C2. The alternative Oj; is stable within the decision making process; in other words, it is also the
best ranked in S| or R.

If one of the above conditions is not satisfied, then a set of compromise solutions is proposed,
which consists of:

e  Alternatives Oj; and Oj; where Qjp = Q[z] if only the condition is not satisfied, or

e  Alternatives Oj1,Op, - - -, Oj if the condition C; is not satisfied; and Oj; is determined by the
relation Q; — Q[l] < DQ for the maximum k where Qj = Q[k] (the positions of these alternatives
are in closeness).

3. VIKOR Model for MCGDM Problems with TFNNs

Let {¢1,¢2, ...¢m} be a group of alternatives, {dj,dy,...d;} be a list of experts
with weighting vector being {v1,vp,...v:}, and {cj,cp,...cn} be a list of criteria with
weighting vector being {wy,w>,...w,}, which thereby satisfies w; € [0,1],v, € [0,1] and

Yiiwi = 1,Zf\:1 v, = 1. Construct the evaluation matrixes 17A = where

A
;7’] mxn

= ((05)" ()" o)) (o) (o) ) ") ((36) " (1) " (34) ") } meams e

estimate results of the alternative ¢;(i = 1,2,...,m) based on the criterion ¢;(j =1,2,...,n) by

A A A
expert d,. Let LY (M), (oY € [0,1] denote the degree of truth-membership (TMD),
p 9bl] 4)1] (Pl] g p
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A A A
(((pIL]) , <gol]}/1) , (goff) ) € [0,1] denote the degree of indeterminacy-membership (IMD) and

()" () o
(4’iLj'I>A+ (W}})A <3i=12...,mj=12...,mA=12-- t

Considering both the TFNNSs theories and the traditional VIKOR model, we try to propose a

TFNNs VIKOR model to study MCGDM problems effectively. The model can be depicted as follows:

Step 1. Construct the decision matrixes 7" = [17-)‘} , and utilize overall values of 5 = [77-)‘-
mxn

=

A A
) ) € [0,1] denote the degree of falsity-membership (FMD) 0 < ((])ZL]I) +

g Y } mxn
ton = [171-]-} e, DY using equal (14) or (15);
Step 2. Compute the positive ideal solution (PIS) ¢ and the negative ideal solution (NIS) ¢~;

o = { (00 @) ) ) (o) (o) o)) (01 () (o)) f
o = L) @) () ) (o) @) () (01 () () )}

For benefit attribute

(@) (o)) | [ (o) mon(o) mon(of) ).
(o) (o) o (a) ") p = (min(ot) min(e)min(etf)). ¢ 2
(1)) ()) (i (28),min (1) mim (44 )
(1) (o) o) ) | [ (min(o) min(t)minot) )
(o1 (o) (o1) ) =1 (mon(ol) mon(otf) mon() ). 29
(1) () (1)) () max () () )
(o) (o) (o)) | [ (min(o) min(ot)minot))
(o) (o) (o)) = (mon(ot)man(t) mon(oh) ). ¢ 0
(1) ()" (1)) () max (1) () )
(o) (1) (o)) (max(g}) max (93 ), max(4f]) ).
(o) (o) (o) ) p = (min(ot) min(e)min(etf)). ¢ @
(O5) () () (min(v§),min(+}) min (+4)) )
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Step 3. Based on Equation (11) and the attribute weighting vector wj, we can calculate the values
of x; and y; which express the average and the worst group scores of ¢;.

<(¢]'L )i (o )i (f ):) (0 o, 04),
(o) (o) (08) ). 1 <¢s/¢zﬂf¢5gf

)
(R () (1))

where d is the normalized Hamming distance an
satisfies } ! ; w; = 1.

Step 4. Compute the values of (); based on the results of x; and ;, the calculating formula is
characterized as follows:

(
O (0 T D A .
S(E ) ) [ () o) ()
al § (o) ()" (o)), 13 (o) (o )W))
(G560 ) )L (66 6))
((¢JL)+’ (¢JM)+' (¢]L[)+) ok, oM, g}
[l ()" () (o)) g% o) %% }
. <(7]L)+ (7]1.\/1)+, (7]u>+> (%] %]/%J> o
L] () ) ), (¢f) JM (o))
a3 () ()" (o)) ))

Q.
o
IN

(7(1 X ) (lpl ¢+)
Q= A L (11— L 30
o —xn) T 30)
where
X" =miny;, x~ = maxy; (31)
$* = ming;, p~ = maxyp; (32)

where & means the coefficient of decision making strategic. « > 0.5 depicts “the maximum
group utility”, « = 0.5 depicts equality and « < 0.5 depicts the minimum regret.

Step 5. To choose the best alternative in accordance with the values of ();, the alternative with
minimum value is the best choice.

4. Numerical Example

4.1. Calculating Steps Based on MCGDM Problems

In this section we present a numerical example to show potential evaluation of emerging
technology commercialization with TFNNSs in order to illustrate the method proposed in this paper.
There is a panel with five possible emerging technology enterprises ¢;(i = 1,2,3,4,5) to select from.
The experts select four criteria to evaluate the five possible emerging technology enterprises: (O c;
stands for the technical advancement; ) c; stands for the potential market and market risk; @) c3
stands for the industrialization infrastructure, human resources and financial conditions; (4) ¢4 stands
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for the employment creation and the development of science and technology. The five possible
emerging technology enterprises ¢;(i = 1,2,3,4,5) are to be evaluated using the TFNNs with the
four criteria by three experts d) (A = 1,2, 3) (criteria weight w = (0.42,0.13,0.25,0.30), experts weight
v = (0.35,0.45,0.20).), which are given in Tables 1-3.

Table 1. Triangular fuzzy neutrosophic numbers (TFNNs) evaluation matrix by d.

C1 Co C3 Ca
(0.6,0.8,0.9), (0.3,0.5,0.7), (0.5,0.6,0.7), (0.4,0.7,0.9),
@1 (0.2,0.3,0.5), (0.4,0.5,0.6), (0.1,0.2,0.3), (0.5,0.6,0.8),
(0.1,0.3,04) (0.2,04,0.5) (0.2,0.3,04) (0.2,0.4,0.6)
(0.5,0.6,0.7), (0.2,0.4,0.6), (0.5,0.6,0.9), (0.4,0.5,0.7),
@2 (0.4,0.5,0.6), (0.3,0.5,0.7), (0.6,0.7,0.8), (0.3,0.4,0.6),
(0.3,0.4,0.5) (0.2,0.3,0.5) (0.5,0.6,0.7) (0.5,0.6,0.8)
(0.3,0.5,0.6), (0.2,0.3,04), (0.7,0.8,0.9), (0.4,0.5,0.8),
3 (0.2,0.4,0.5), (0.4,0.5,0.6), (0.3,0.5,0.6), (0.5,0.7,0.9),
(0.5,0.6,0.8) (0.6,0.7,0.8) (0.2,0.4,0.5) (0.2,0.3,04)
(0.2,0.5,0.7), (0.5,0.7,0.8), (0.4,0.6,0.8), (0.5,0.7,0.9),
o (0.3,0.6,0.8), (0.3,0.4,0.5), (0.3,0.4,0.5), (0.4,0.6,0.8),
(0.1,0.2,0.3) (0.2,0.5,0.7) (0.2,0.3,0.6) (0.2,0.3,0.5)
(0.7,0.8,0.9), (0.5,0.7,0.8), (0.5,0.6,0.7), (0.3,0.4,0.9),
@5 (0.2,0.3,0.4), (0.4,0.5,0.8), (0.2,0.4,0.5), (0.2,0.4,0.5),
(0.2,0.3,04) (0.2,0.4,0.5) (0.1,0.4,0.6) (0.1,0.5,0.6)

Table 2. TFNNs evaluation matrix by dj.

C1 C2 C3 C4
(0.5,0.7,0.8), (0.2,0.4,0.6), (0.4,0.5,0.6), (0.3,0.5,0.8),
¢ (0.1,0.2,0.4), (0.3,0.4,0.5), (0.2,0.4,0.5), (0.4,0.5,0.7),
(0.1,0.2,0.3) (0.1,0.3,0.4) (0.3,0.5,0.7) (0.3,0.4,0.5)
(0.4,0.5,0.7), (0.3,0.4,0.5), (0.4,0.5,0.7), (0.2,0.4,0.6),
¢ (0.3,0.6,0.8), (0.2,0.4,0.6), (0.5,0.6,0.9), (0.2,0.3,04),
(0.4,0.6,0.7) (0.3,0.4,0.5) (0.3,0.4,0.6) (0.1,0.3,0.5)
(0.4,0.7,0.9), (0.1,0.3,0.5), (0.2,0.4,0.5), (0.4,0.5,0.7),
3 (0.3,0.5,0.8), (0.2,04,0.7), (0.3,0.5,0.7), (0.5,0.8,0.9),
(0.6,0.8,0.9) (0.5,0.8,0.9) (0.2,04,0.6) (0.2,0.3,0.6)
(0.3,0.4,0.7), (0.2,0.8,0.9), (0.5,0.7,0.9), (0.4,0.5,0.6),
Q4 (0.3,0.7,0.9), (0.4,0.5,0.6), (0.3,0.4,0.5), (0.2,0.3,04),
(0.2,04,0.5) (0.4,0.5,0.7) (0.2,0.3,04) (0.1,0.2,0.3)
(0.5,0.6,0.7), (0.6,0.7,0.9), (0.5,0.6,0.8), (0.3,0.4,0.7),
@5 (0.1,04,0.5), (0.4,0.5,0.7), (0.3,04,0.5), (0.1,0.4,0.5),
(0.2,0.3,0.6) (0.3,0.4,0.5) (0.4,0.5,0.6) (0.1,0.3,0.6)

Table 3. TFNNs evaluation matrix by ds.

C1 Co C3 Cq
(0.5,0.6,0.8), (0.3,0.4,0.6), (0.4,0.5,0.8), (0.4,0.6,0.8),
@1 (0.1,0.2,0.6), (0.4,0.5,0.7), (0.3,0.4,0.5), (0.4,0.6,0.7),
(0.1,0.2,04) (0.2,0.3,04) (0.3,0.6,0.8) (0.3,0.4,0.5)
(0.4,0.5,0.6), (0.3,0.4,0.6), (0.3,0.5,0.7), (0.3,0.4,0.6),
@2 (0.5,0.6,0.7), (0.2,0.4,0.5), (0.2,0.6,0.9), (0.2,0.3,0.5),
(0.5,0.6,0.7) (0.3,0.4,0.5) (0.3,0.4,0.7) (0.2,0.3,0.5)
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Table 3. Cont.
C1 3 Cq
(0.5,0.7,0.8), (0.2,0.3,0.5), (0.3,04,0.5), (0.3,0.5,0.7),
@3 (0.4,0.5,0.7), 0 2,04,0.5), (0.3,0.4,0.6), (0.5,0.7,0.9),
(0.7,0.8,0.9) (0.5,0.7,0.9) (0.2,04,0.5) (0.2,0.3,0.4)
(0.3,04,0.5), (0.2,0.5,0.8), (0.5,0.6,0.9), (0.3,0.5,0.7),
o (0.3,0.8,0.9), 0 4,0.5,0.9), (0.3,0.4,0.6), (0.2,0.3,0.5),
(0.1,0.4,0.5) (0.4,0.6,0.7) (0.2,0.3,0.5) (0.1,0.2,0.4)
(0.5,0.6,0.8), (0.6,0.7,0.8), (0.5,0.6,0.7), (0.3,0.4,0.5),
@5 (0.1,0.4,0.6), (0.4,0.5,0.6), (0.3,0.4,0.6), (0.2,0.4,0.5),
(0.2,0.3,0.5) (0.3,0.4,0.5) (0.4,0.5,0.7) (0.1,0.3,0.4)

Step 1. Utilize overall values of y* =

aggregation results are listed in Table 4 as follows.

] 10 = W

Table 4. The aggregation values by TENNWA operator.

using the TENNWA operator; the

C1

C2

(0.5376,0.7243,0.8431),
(0.1275,0.2305, 0.4690),

(0.2566,0.4371,0.6383),
(0.3514,0.4522,0.5700),

91
(0.1000, 0.2305,0.3514) (0.1464,0.3318,0.4325) }
(0.4371,0.5376,0.6822), (0.2665,0.4000, 0.5577),
P2 (0.3675,0.5629,0.7043), (0.2305,0.4325,0.6106),
(0.3782,0.5206, 0.6222) (0.2603,0.3617,0.5000)
(0.3894,0.6413,0.8134), (0.1565,0.3000, 0.4671),
@3 (0.2757,0.4624,0.6608), (0.2549,0.4325,0.6201),
(0.5805,0.7234,0.8637) (0.5329,0.7434,0.8637)
(0.2665,0.4371,0.6677), (0.3213,0.7231,0.8536),
o (0.3000,0.6812,0.8637), (0.3617,0.4624,0.6105),
(0.1366,0.3138,0.4181) (0.3138,0.5186,0.7000)
(0.5819,0.6862,0.8117), (0.5675,0.7000, 0.8536),
@5 (0.1275,0.3617,0.4796), (0.4000,0.5000,0.7112),
(0.2000, 0.3000, 0.5020) (0.2603,0.4000, 0.5000)
C3 Cq
(0.4371,0.5376,0.6851), (0.3569,0.6001,0.8431),
91 (0.1702,0.3138,0.4181), (0.4325,0.5527,0.7335),
(0.2603,0.4337,0.5911) (0.2603,0.4000, 0.5329)
(0.4195,0.5376,0.7958), (0.2957,0.4371,0.6383),
P2 (0.4437,0.6333,0.8637), (0.2305,0.3318, 0.4820),
(0.3587,0.4610, 0.6531) (0.2018,0.3824,0.5894)
(0.4474,0.5915,0.7153), (0.3812,0.5000, 0.7397),
@3 (0.3000,0.4782,0.6431), (0.5000, 0.7434, 0.9000),
(0.2000, 0.4000, 0.5428) (0.2000, 0.3000, 0.4801)
(0.4671,0.6486,0.8725), (0.4195,0.5819,0.7675),
o (0.3000,0.4000,0.5186), (0.2549,0.3824,0.5331),
(0.2000, 0.3000, 0.4820) (0.1275,0.2305, 0.3800)
(0.5000, 0.6000, 0.7500), (0.3000,0.4000, 0.7738),
@5 (0.2603,0.4000,0.5186), (0.1464, 0.4000, 0.5000),
(0.2462,0.4624,0.6188) (0.1000, 0.3587,0.5533)
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Step 2. Compute the values of ¢ (PIS) and ¢~ (NIS), for all benefit attributes and based on the
Formulas (24) and (25), we can obtain the (PIS) ¢+ and (NIS) ¢~ as follows.

—~

0.5819,0.7243,0.8431),
0.5675,0.7231,0.8536),
0.5000, 0.6486, 0.8725),
0.4195,0.6001,0.8431),

—~

0.1275,0.2305, 0.4690),
0.2305,0.4325,0.5700),
0.1702,0.3138,0.4181),
0.1464,0.3318,0.4820),

—~

0.1000, 0.2305,0.3514) },
0.1464,0.3318,0.4325) },
0.2000, 0.3000, 0.4820) },
0.1000, 0.2305,0.3800) }

—~
—~
—~

—~
—~
—~

{
o)
{
{

—~
—~
—~

{(0.2665,0.4371,0.6677), (0.3675,0.6812, 0.8637),
_ {(0.1565,0.3000, 0.4671), (0.4000,0.5000, 0.7112),
{(0.4195,0.5376,0.6851), (0.4437,0.6333,0.8637),
{(0.2957,0.4000, 0.6383), (0.5000, 0.7434, 0.9000),

—~

0.5805,0.7234,0.8637) },
0.5329,0.7434,0.8637) },
0.3587,0.4624,0.6531) }
0.2603, 0.4000,0.5894) }

o~ o~

7

—~

Step 3. Based on Equation (11) and the attribute weighting vector wj, calculate the values of x;
and ¢;.
X1 = 0.3101, x = 0.6959, x3 = 0.7621, x4 = 0.3877, x5 = 0.3039,

1 = 0.1738, 1, = 0.2683, 13 = 0.2963, 1p4 = 0.2486, 5 = 0.1038.

Step 4. Compute the values of (); based on the results of x; and ;; the calculating values are
listed as follows. (Let & = 0.6)

0y = 0.1534, 0y = 0.8550, )3 = 1.0000, 4 = 0.4106, Q5 = 0.0000.

Step 5. To choose the best alternative by rank the values of ();, the ranking of (3; is Q5 > () >
Q4 > ) > 3, and the best alternative is ¢s.

4.2. Comparative Analyses

In this section, we compare our proposed extended TFNNs VIKOR model with the TFNNWA
and TENNWG operators defined by Biswas [21].

Based on the values of Table 4 and attributes weighting vector w = (0.42,0.13,0.25, 0.30)T, we can
utilize overall 77;; to 17; by TENNWA and TENNWG operators.

Calculate results 17; by TENNWA operator:

{(0.4720,0.6616,0.8270), (0.1835,0.3051,0.4956), (0.1413,0.2884,0.4196) }
{(0.4071,0.5302,0.7247), (0.2852,0.4513,0.6269), (0.2672, 0.4113,0.5744) }
{(0.4064,0.5970,0.7779), (0.2930,0.4935, 0.6851), (0.3026, 0.4654, 0.6354) }
{( ) ( ) ( )}
{( ) ( ) ( )}

0.3941,0.6060,0.8109), (0.2595, 0.4589, 0.6196), (0.1344, 0.2689, 0.4126

m
2
3
14
15 0.5302,0.6414,0.8251), (0.1500, 0.3602, 0.4843), (0.1508, 0.3246, 0.5081

Calculate results 77; by TENNWG operator:

{(0.3854,0.5761,0.7590), (0.2812,0.4078,0.5965), (0.2060, 0.3674, 0.5071)
{(0.3321,0.4569,0.6516), (0.3634,0.5475,0.7355), (0.2672, 0.4113,0.5744)
{(0.3238,0.5054,0.6977), (0.3755,0.5954, 0.7831), (0.4438, 0.6137, 0.7741)
{( ) ( ) ( )
{( ), ( ). ( )

}
}
}
}

0.3154,0.5166,0.7381), (0.3200, 0.5653, 0.7461), (0.1873, 0.3436, 0.4993
0.4336,0.5449,0.7733), (0.2185,0.4286, 0.5624), (0.2096, 0.3963, 0.5793) }

m
12
73
T4
15

Calculating the alternative scores s(1;) by score functions of TFNNSs as listed in Table 5.
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Table 5. Alternative scores s(77;) by TENNWA and TENNWG operators.

TFNNWA Operator TFNNWG Operator
s() = 0.6277,s(1p) = 0.5431, s(i1) = 0.5692,s(1,) = 0.4928,
s(n73) = 0.5299,5(114) = 0.5961, s(n3) = 0.4507,s(n4) = 0.5444,

s(n5) = 0.6078. s(n5) = 0.5546.

The ranking of alternatives by TFNNWA and TENNWG operators are listed in Table 6.

Table 6. Rank of alternatives by TENNWA and TENNWG operators.

Order
TFNNWA P1>P5> P4 > ¢2 > @3
TENNWG P1>P5> P14 > ¢2 > @3
TFNNs VIKOR @5 > Q1 > @4 > P2 > @3

Comparing the values of our proposed TFNNs VIKOR method with those of TENNWA and
TFNNWG operators, the results are slightly different in their ranking of the alternatives and the best
alternatives are not same. The TFNNs VIKOR method can consider the conflicting attributes and can
be more reasonable and scientific in the application of MCGDM problems.

5. Conclusions

In our article, we proposed the TFNNs VIKOR method based on the fundamental theories of
TFNNs and the original VIKOR model. Firstly, we introduced the concepts, operation formulas
and the distance calculating method of TFNNs. Then we reviewed some aggregation operators of
TFNNSs. Thereafter, the calculating steps of the VIKOR model for TEFNNs MCGDM problems were
simply presented using our proposed method, which is more scientific and reasonable for considering
the conflicting attributes. Furthermore, a numerical example for potential evaluation of emerging
technology commercialization has been proposed to illustrate the new method and some comparisons
were also conducted to further illustrate the advantages of the new method.

In the future, our proposed TENN VIKOR model can be applied to risk analysis,
MCGDM problems [46-57] and many other uncertain and fuzzy environments [58-74].
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