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Abstract: In this study, we present a third-order tensor-based multilinear eigenECG (MEECG) and
multilinear Fisher ECG (MFECG) for individual identification based on the information obtained
by an electrocardiogram (ECG) sensor. MEECG and MFECG are based on multilinear principal
component analysis (MPCA) and multilinear linear discriminant analysis (MLDA) in the field
of multilinear subspace learning (MSL), respectively. MSL directly extracts features without the
vectorization of input data, while MSL extracts features without vectorizing the input data while
maintaining most of the correlations shown in the original structure. In contrast with unsupervised
linear subspace learning (LSL) techniques such as PCA (Principal Component Analysis) and LDA
(Linear Discriminant Analysis), it is less susceptible to small-data problems because it learns more
compact and potentially useful representations, and it can efficiently handle large tensors. Here,
the third-order tensor is formed by reordering the one-dimensional ECG signal into a two-dimensional
matrix, considering the time frame. The MSL consists of four steps. The first step is preprocessing,
in which input samples are centered. The second step is initialization, in which eigen decomposition
is performed and the most significant eigenvectors are selected. The third step is local optimization,
in which input data is applied by eigenvectors from the second step, and new eigenvectors are
calculated using the applied input data. The final step is projection, in which the resultant
feature tensors after projection are obtained. The experiments are performed on two databases
for performance evaluation. The Physikalisch-Technische Bundesanstalt (PTB)-ECG is a well-known
database, and Chosun University (CU)-ECG is directly built for this study using the developed ECG
sensor. The experimental results revealed that the tensor-based MEECG and MFECG showed good
identification performance in comparison to PCA and LDA of LSL.

Keywords: electrocardiogram; multilinear eigenECG; multilinear Fisher ECG; individual identification;
multilinear discriminant analysis; distance similarity

1. Introduction

Individual identification is a technique that is used to identify a user using behavioral or physical
characteristics that are the sole characteristics of an individual. Currently, the range of services, such
as security, banking, access control, medical care, and entertainment, is expanding, and so individual
identification methods are studied using diverse characteristics [1–6]. Such individual identification
using the face, fingerprint, and so forth has vulnerability to falsification and disguise, and it must be
moved to a special place where a system is installed for individual identification [7]. Furthermore,
human needs for health are demanding measures that can easily determine the state of the body as
technology develops. Therefore, companies have developed and released small, light, convenient,

Symmetry 2018, 10, 487; doi:10.3390/sym10100487 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-3821-0711
http://www.mdpi.com/2073-8994/10/10/487?type=check_update&version=1
http://dx.doi.org/10.3390/sym10100487
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 487 2 of 21

and function-rich wearable devices. In particular, the collection function of various bio-signals, which
are important for health checks, is becoming essential. The measurement procedure of biometric
information has been simplified and conveniently changed. If some bio-signals are gathered in real
time, they could be used for individual identification and clinical diagnosis [8].

Recently, individual identification using electrocardiogram (ECG) signals in the body has been
studied, and studies have shown good performance [9–11]. An ECG is a measurement of the change
in dislocation during the cardiac cycle. ECG signals can be used for biometrics because of the
physiological and geometric differences of the heart making the unique signal of each person [8].

The tensor is a larger category than the vector and the matrix. The scalar, vector, and matrix
are tensors of zero- to second orders, and more than the third order is a higher-order tensor [12,13].
As sensors, memories, and network technologies evolve, much data are generated day-by-day in various
fields. Most Big Data is based on a tensor representation of a multidimensional array, containing a large
amount of information [14]. The important thing in big data [15] is to extract only the important features,
because the information includes both important and useless aspects. Thus, with the development
of cloud computing [16] and big data like the MapReduce model [17], tensor-based processing has
attracted attention.

Tensors are generally multidimensional, and computing and classifying them in this state yields a
curse of the dimension [18]: in addition to not performing well because the classifiers do not model
high-dimensional data properly from small amounts of samples compared to its dimension during
training, processing high-dimensional data is very computationally expensive. However, the direct
use of high-dimensional tensors is limited in most applications. The tensor is essentially limited to
subspaces, which are several low dimensions, because the elements of the tensor often have correlations
with the neighbor elements [18,19]. Therefore, feature extraction [20] is used to transform the high
dimensional data into low dimensions while maintaining the implied correlations in the original
structure [21].

Principal component analysis (PCA) and linear discriminant analysis (LDA) are conventional
unsupervised linear analyses for feature extraction. PCA is a method of reducing the dimension of the
data while preserving the distribution of the data existing in the original data as much as possible [22].
PCA computes the principal components, and the larger the principal component, the more the
variance of the original data, and it is represented by a few components to reduce the dimension.
Directly applying the tensor to the PCA requires the reordering of high dimensional data to a high
dimensional vector that has high computational load.

2D PCA is an attempt at dimension reduction without the vectorization of the input data at an
initial study of multilinear subspace learning (MSL). The 2D PCA receives the image as an input
to obtain the image covariance matrix. However, only the rows of the input image are applied by
PCA [23]. As a result, the 2D PCA is applied only to one mode, and it does not completely reduce the
high dimensional data. The less restrictive 2D PCA method analyzes the correlation of local area in the
space [24]. For the input image, two PCAs are applied to the rows and columns, so that PCA is applied
in 1-mode and 2-mode to achieve better dimensional reduction [25]. Tensor subspace analysis finds
local geometrical information by training low dimensional subspaces in the input image [26]. Studies
on multilinear subspace method for feature extraction from tensor are recently receiving attention.
MSL is a projection that maps high dimensional tension to low dimensional vectors or tensors. Linear
subspace learning such as PCA and LDA requires reordering of high dimensional data as a vector,
destroying the structural correlations of the original data. Furthermore, there is a problem that the
dimension of data is much larger than the number of data that is required for training. The latest
multilinear subspace learning (MSL) preserves the geometric information of the original data by
extracting and mapping features without deformation of the tensor structure, and it is possible to
deal with large tensors efficiently because the problem is that the dimension of the data can be larger
than the number of data for training. Here, multilinear principal component analysis (MPCA) and
multilinear discriminant analysis (MLDA) are considered as MSL methods [27,28].
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In the most active area, with three-dimensional information, such as a 3D object [29], hyperspectral
cube [30], or gait video sequence [31] with three modes following the x-axis, y-axis, and z-axis, a third-order
tensor, has been noted as an important point of study [32–34]. Individual identification using ECG signals
can be also considered as a multilinear tensor space with temporal dimension. However, it is not
commonly considered to use an ECG signal as a multidimensional tensor and to extract features with
multilinear projections. An ECG is normally gathered continuously as serial data. By applying it to a
tensor, the input could arrange sequential information symmetrically in a tensor. Thus, tensor-based
sequential input with the variant noisy ECG signals could be complementarily classified

In this paper, we apply third-order tensor-based multilinear eigenECG (MEECG) and multilinear
Fisher ECG (MFECG) for individual identification from the information source of an electrocardiogram
sensor. The MEECG and MFECG are defined by MPCA-based ECG and MLDA-based ECG, respectively.
The databases of Physikalisch-Technische Bundesanstalt (PTB) diagnosis and Chosun University
(CU)-ECG are used for performance evaluation. The PTB-ECG is a well-known benchmarking database
for ECG analysis [35] and CU-ECG is a database of ECG signals directly built by Chosun University for
this study.

This paper is organized in the following manner. Section 2 introduces MSL such as MPCA and
MLDA for multilinear projection. In Section 3, ECG biometrics based on the MEECG and MFECG
are described. Section 4 covers the performance comparison and experimental results from two ECG
databases. Finally, concluding comments are presented in Section 5.

2. Multilinear Subspace Learning (MSL)

2.1. Multilinear Principal Component Analysis (MPCA)

Assume that {Ak, k = 1, . . . , K} are K tensors in RI1 ⊗ RI2 . . . ⊗ RIM . The entire scatter matrix
of these tensors is written as ΨA = ∑K

k=1 ‖ Ak − A ‖2
F, where A is the average tensor,

computed as A = 1
K ∑K

k=1Ak. The m-mode entire scatter matrix of these tensors is then written

as: S(m)
TA

= ∑K
k=1

(
Ak(m) −A(m)

)(
Ak(m) −A(m)

)T
, where Ak(m) is the m-mode spread matrix of

Ak. The following definition are generated by the words above to solve the problem: K tensors
{X1, X2, . . . , XK} can be used for training. Each tensorXK ∈ RI1×I2×...×IM sets values in a tensor space
RI1 ⊗RI2 . . .⊗RIM , where Im is the m-mode dimensional tensor. The MPCA is a multilinear projection
of {Ũ(m) ∈ RIm×Pm , m = 1, . . . , M}, mapping a high dimensional tensor space of RI1 ⊗RI2 . . .⊗RIM

to a low dimensional subspace of RP1 ⊗ RP2 . . . ⊗ RPM (with Pm < Im, for m = 1, . . . , M) : Yk =

Xk ×1 Ũ(1)T
×2 Ũ(2)T

. . .×M Ũ(M)T
, k = 1, . . . , K, such that most of the variations presented in the

original tensor are obtained by
{
Yk ∈ RP1 ⊗RP2 . . .⊗RPM , k = 1, . . . , K

}
, assuming that the entire

tensor scatter measures these variations. That is, the MPCA is performed by obtaining the N
projection matrices

{
Ũ(m) ∈ RIm×Pm , m = 1, . . . , M

}
that make the entire tensor scatter ΨY become

large. The flowchart of MPCA is described in Figures 1 and 2 shows the process of multilinear
projection [27,36]: {

Ũ(m), m = 1, . . . , M
}
= argmaxŨ(1),Ũ(2),...,Ũ(M)ΨY (1)
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2.2. Multilinear Linear Discriminant Analysis (MLDA)

The LDA looks for a straight line after projecting the data on a specific axis to separate the two
classes [27]. The straight lines separating the two classes after the projection make the centers of the
two classes away from each other, and make each variance small. y is a one-dimensional vector where
a vector x of p-dimension is projected on vector w. For C1 class with N1 data and C2 class with N2 data,
the center vector of each class is m1 and m2:

y =
→
w

T→
x (2)

m1 =
1

N1
∑n∈C1

xn (3)

m2 =
1

N2
∑n∈C2

xn (4)

In order to calculate the vector w separating the centers of the two classes after projection,
the relation between each center and w is the same as below:

m2 −m1 = wT(m2 −m1) (5)

mk = wTmk (6)
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When the projection is performed, the closer the data is to the center of each class in order to
reduce the variance, the better. The variance after projection is written as follows:

s2
k = ∑n∈Ck

(yn −mk)
2. (7)

The objective function maximizing the distance between centers and minimizing each variance is
as follows:

J(w) =
(m1 −m2)

2

s2
1 + s2

2
=

wTSBw
wTSWw

(8)

SB = (m1 −m2)(m1 −m2)
T (9)

SW = ∑
n∈C1

(xn −m1)(xn −m1)
T + ∑

n∈C2

(xn −m2)(xn −m2)
T (10)

The objective function J(w) becomes the largest when its derivative value for w is 0.

(wTSBw)SWw = (wTSWw)SBw (11)

The equation turns AX = λX because the parentheses are scalars. A new axis of w is an
eigenvector of S−1

B SW :
SWw = λSBw (12)

S−1
B SWw = λw (13)

SB and SW are the variances of the mean and variance of the data, respectively. The axis
of w could be obtained by eigendecomposition. The Fisher ECG method is that PCA is first
used as a pre-processing step to remove the null space of Sw, and then LDA is performed in the
lower-dimensional PCA subspace using ECG signals [37–39]. Figure 3 shows the process of multilinear
discriminant analysis.
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2.3. Comparison Multilinear Subspace Learning with Linear Subspace Learning

Figure 4 shows comparison of multilinear subspace learning. Traditional LSL methods include
independent component analysis (ICA), PCA, LDA, and they receive vectors as inputs. To apply a
two-dimensional or higher tensor to an LSL, such as an image or a video, the tensor must be rearranged
in one dimension. LSL causes two disadvantages while vectorizing a high dimensional tensor to a
one-dimensional tensor:

• Vectorization of LSL destroys the structural correlations of the original data, and that yields poor
feature extraction.

• When a high dimensional tensor such as a video is rearranged into a one dimensional vector,
the dimension of the one-dimensional tensor becomes very large. Analyzing a high dimensional
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vector results in a small sample size problem where the parameters to be estimated are larger
than the number of data for training and results in high computing loads.

MSL maps high dimensional input tensor to low dimensional tensor with maintaining its
structural information. Linear mapping requires the input to be rearranged as a vector, but multilinear
mapping allows feature extraction without rearrangement. Linear mapping in high dimensional
tensors requires many parameters, but multilinear mapping requires very few parameters. Linear
mapping can extract various features with many parameters, but multilinear mapping extracts more
compact features. This provides the following three advantages [40]:

• The input form of the tensor is preserved as the original shape.
• It is possible to extract more compact and useful features than LSL. MSL is less severe than LSL in

the problem that the dimension of the data is much larger than the number of data that is required
for training.

• High dimensional tensors can be efficiently processed in a lower dimension than in the
linear method.
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3. ECG Biometrics Based on Multilinear Subspace Learning

3.1. Preprocessing

The original signal as shown in Figure 5a contains both high- and low-frequency noise
components [41]. Therefore, the signal is normalized by subtracting the original signal from the
convolutional signal with a mean filter of size 500, and the normalized signal shown in Figure 5b
is convolved with a mean filter of size 10 to remove spikes. Next, 600 frames back and forth in the
spike-removed signal of Figure 5c are removed to obtain a valid signal. Then, R peaks are detected in
the ECG signal, and 392 frames back and forth are separated from the R peaks to obtain 784 frames.
Only the I-lead is used for this study [42]. Figure 5d shows the detected peaks.
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3.2. ECG Biometrics Based on Multilinear EigenECG (MEECG)

In the most active area, three-dimensional information, such as a 3D object [29], hyperspectral
cube [30], or gait video sequence [31] with three modes following the x-axis, y-axis, and z-axis,
a third-order tensor has been noted as an important point study [32–34]. Individual identification
using ECG signals can be also considered as multilinear tensor spaces with temporal dimensions.
However, the use of ECG signals is not commonly considered for a multidimensional tensor or for
extracting features with multilinear projections. An ECG is normally gathered continuously as serial
data. By applying it to a tensor, the input can include sequential information. Thus, tensor-based
sequential input with the variant noisy ECG signals could be effectively classified. An ECG signal,
a vector, is reshaped to 3D as a tensor. First, a vector is divided into several sub-vectors with regular
sizes in a regular sequence, and the vector becomes a 2D tensor by stacking the sub-vectors. Second,
sequential 2D tensors from ECG signals are reshaped to a 3D tensor by stacking following the temporal
axis. The MPCA-based ECG is defined as a MEECG in this paper. Figure 6 shows the input shapes of
LSL and MSL on the ECG signal.

For the training data, the ECG signals are reshaped into a 3D tensor and then input to the MEECG.
Each 3D tensor is subtracted by the mean of all training data, and the covariance matrix is obtained for
each mode. The eigenvalues and eigenvectors are obtained by the covariance matrix and sorted in
descending order to obtain the number of eigenvectors, including the upper percentage of variation
kept in each mode (Q-value) on the accumulated eigenvalue. The remaining eigenvectors are discarded
and features are extracted by projection with the eigenvectors of the upper Q-value in each mode.
The covariance matrix is obtained for each extracted feature again, eigenvectors and eigenvalues are
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obtained by the covariance matrix of the extracted feature, and the eigenvectors for the final projections
are obtained by sorting in descending order, resulting in the MEECGs. The MEECG accepts a 3D tensor
as input, and yields a 3D tensor as output from the training data. This output of a 3D tensor becomes a
feature vector through vectorization. Figure 7 shows the course of MEECG feature extraction [27].
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3.3. ECG Biometrics Based on Multilinear Fisher ECG (MFECG)

The MLDA-based ECG is defined as a MFECG in this paper. After constructing the feature vector
using MEECG, the entire mean and means of each class are calculated. Using the means of each class,
the variances indicating the spread of the data in each class are obtained, and the within-variance
is the sum of the values. In addition, the variance between the entire mean and the means of each
class are obtained, and the values are added together to obtain the between-variance. The Fisher ratio
is obtained by dividing the between-variance by the within-variance, and it is sorted in descending
order to reshape the feature vectors in descending order by a Fisher ratio, because the larger the Fisher
ratio value, the better the feature vector. The entire mean and means of each class are obtained from
the sorted feature vectors. The difference vector between the means of each class and entire mean
are obtained. The covariance matrix is calculated from the difference vector, and Sb is the sum of the
values. SW is obtained by subtracting the covariance of each class from the entire covariance for the
training data, and eigenvalues and eigenvectors are calculated from the inv(Sw) ∗ Sb matrix to yield
the MFECG data. Finally, the MFECG feature vectors can be obtained by projecting the MEECG feature
vectors for training and testing with these MFECG results. Figure 8 shows the course of MFECG
feature extraction [27,37–39].
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3.4. Similarity Measures

Individual identification using the ECG signal needs to classify similar signals, because humans
have similar ECG signals to each other. Conventionally, to identify individuals using ECG signals,
features based on fiducial points were successfully used and were defined as amplitudes and distances.
There are several methods to measure similarity. Herein, three distance measures are considered:
the Manhattan distance (dL1), Euclidean distance (dL2), and cosine similarity (dCos). The Manhattan
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and Euclidean distances are defined as the subtraction between two vectors. Cosine similarity (angle
distance, AD) measures the angle between two vectors:

dL1(xt, xv) = ∑|xt − xv|, (14)

dL2(xt, xv) =

√
∑(xt − xv)

2, (15)

dCos(xt, xv) =
xtxT

v
‖ xt ‖‖ xv ‖

, (16)

where ‖ · ‖ denotes the Euclidean distance, xt and xv are vector spaces with a fixed Cartesian coordinate
system, and Σ−1 is the inverse matrix of the group covariances of the class [43–45].

3.5. Evaluation

The evaluation of individual identification is based on the notion of the numbers of correct
classification (CC) and wrong classification (WC). Based on the individual identification results,
the accuracy has been defined as follows [46,47]:

Accuracy =
CC

CC + WC
(17)

3.6. Comparison of Correlation by Reshaping

LSL must perform vectorization in one dimension to analyze more than data of more than two
dimensions. This vectorization reduces a certain level of correlation among the data in the original
dimensionality. In other words, reshaping the data reduces the level of correlation in the original data.
In this study, a one-dimensional vector is reshaped to a 3D tensor to apply a one-dimensional ECG
signal to MSL. In the process, the correlation that the data have is reduced. If the one-dimensional
ECG signal is applied to the MSL, the correlation is reduced through reshaping, and the advantage of
the MSL is attenuated. However, assuming that there is only correlation between neighboring data,
there is a difference in the amount of correlation that must be reduced in order to reshape a vector to a
higher dimension from that of reshaping a tensor of higher dimension to a vector. Figure 9 shows a
comparison of correlation by reshaping. As shown in Figure 9a, the 1D vector had 15 correlations (the
number of arrows), but reshaping it to a 3D tensor, as shown in Figure 9b, maintained 12 correlations.
On the other hand, as shown in Figure 9c, the 3D tensor had 28 correlations before reshaping. However,
when reshaping it to a 1D vector, as shown in Figure 9d, only 12 correlations remained. That is,
in the case of an ECG signal, to reshape a tensor from a high dimension to a low dimension reduces
correlation, but to reshape a tensor from a low dimension to a high dimension retains most of the
correlations. Furthermore, as shown in Figure 10, when reshaping from a low dimension to a high
dimension, there is the possibility that new correlations can be generated. In this paper, we apply a 1D
ECG signal to MSL, to better conserve the correlations and to analyze the new correlations generated
from reshaping the 1D ECG signal to a 2D signal and from 2D to 3D as sequential information.
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Figure 9. Comparison of correlation by reshaping: (a) Correlation of a 1D vector; (b) correlation of a 3D
tensor reshaped from a low dimension to a high dimension; (c) correlation of a 3D tensor; (d) correlation
of a 1D vector reshaped from a high dimension to a low dimension.
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4. Experimental Results

Linear subspace learning like PCA and LDA requires the reordering of high dimensional data as
a vector, destroying the structural correlations of the original data. Furthermore, there is a problem
that the dimension of data is much larger than the number of data required for training. The latest
multilinear subspace learning (MSL) preserves the geometric information of the original data by
extracting and mapping features without deformation of tensor structure, and it is possible to deal
with large tensors efficiently because the problem that the dimension of data can be larger than the
number of data for training is alleviated. Here, MPCA and MLDA are considered to be MSL [27].
To apply 1D ECG signals to MSL, it is necessary to reshape the vector from a low dimension to a high
dimension. This also reduces some correlations, but few correlations are affected in the ECG signal,
and there is a possibility that new correlations can be generated. The PTB-ECG and the CU-ECG
databases are used for this study. PTB-ECG is a universally well-known database for ECG signals,
and CU-ECG is a database of ECG signals built specifically for this study. The MPCA-based ECG is
MEECG, and the MLDA-based ECG is MFECG in this paper.

4.1. PTB-ECG Database

This ECG data was acquired from the Physikalisch-Technische Bundesanstalt (PTB), the National
Metrology Institute of Germany to automatically diagnose with a computer and is a large database
with 27,000 recordings. The ECG signals were acquired in a sitting position in a resting state by
many people. Electrocardiogram signals were collected from healthy people and from people with
heart disease. The ECG signals were obtained from 290 people consisting of men and women of
different ages, including information from 15 leads. The 15 leads consisted of 12 standard leads (I,
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II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5 and V6) and three Frank leads (Vx, Vy, and Vz). The ECG
signal was measured at 1000 samples/s, and it was measured with 16 bit accuracy over a voltage
range of ±16.384 mV [35]. The ECG signals varied in the number of recordings for each person,
and most people were recorded two or three times, and the recording length varied from 23 s to 2 min.
The difference of the measured time between the ECG records of the same person was an average of
500 days [48].

4.2. CU-ECG Database

CU-ECG is a database of ECG signals directly built for this study. This database includes data of
100 subjects: 89 males and 11 females of ages ranging from 23 to 34 years old. The ECG signals were
measured 60 times per subject while the subjects were comfortably positioned in a chair; 10 s were
recorded at a time, and the type of ECG was lead-I. The sampling rate of the ECG signal was 500 kHz.
The developed device measuring ECG signals was composed of a wet-corrosion electrode, Atmega8
and Keysight MSO9104.

The base board of the developed device using Atmega8 and its diagram are described in Figure 11.
The base board was configured to receive a voltage of 6–12 V and to output a voltage of 5 V, and the
LD1117 was built in for a 5 V constant voltage output. The power supply of the base board was mainly
composed of two types of power sources. One supplied 5 V for the microcontroller (MCU) and other
parts and the other supplied 5 V and −5 V for BIO-AMPs. LM2664 was used as a chip that converts
5 V to −5 V for negative power input to the analog terminal. The A/D (Analog to Digital) converter of
Atmega8 can generate a 10-b resolution and can use 0–5 inputs through the MCU as 0–1024. In other
words, the input value of the voltage can be considered by dividing by 5 mV units, and there are
four such A/D input terminals. It is manufactured to enable external RS-232 communication and
USB (Universal Serial Bus) communication using UART1 inside Atmega8. USB communication is
programmed in the same way as ordinary serial communication, but it is made to convert data using a
USB-to-serial chip. The communication speed is 9600–115,200 bps, but the demo program is ported
at 115,200 bps. The input and output terminals consist of one input switch and four output LEDs
(Light-Emitting Diodes). The demo program is ported to allow four LEDs to toggle simultaneously
during device operation.
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The preamplifier section for measuring general bio-signals consists of a differential amplifier
section. The potential difference input from the positive and negative ends of the electrode to be
measured is checked and the bio-electrical potential generated between them is measured. In the
preamplifier section, all types of body signals were actually measured. The needed signals input from
the preamplifier became clear by rectifying and amplifying the band of the part in which the actual
bio-signal was present. The specific frequency band or amplification of the desired bio-signals could
be adjusted. However, this device was made by using minimum amplification with a wide bandwidth
in order to measure all the ECG, electroencephalogram (EEG), and electromyography (EMG) signals,
and it filtered them precisely using digital filters through a personal computer. Electricity for general
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use flows at a frequency of 60 Hz in our country. This affects analog measuring equipment and medical
equipment. For this reason, a band-stop filter was applied to the BIO-AMP to minimize the noise by
setting the frequency value to be slightly wider at around 60 Hz. The low-pass filter with a cut-off
frequency of 150 Hz was designed to eliminate noise generated at high frequencies and to measure
ECG and EEG waves below 150 Hz without problems. The voltage offset was adjusted using the adder
circuit in order to input the reference value by converting the final output signal, which has a value of
−5 V to 5 V, to the value of the MCU terminal, which is 0 V to 5 V. Figure 12 shows the measurement
environment of ECG signals.Symmetry 2018, 10, x FOR PEER REVIEW  13 of 21 
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4.3. Experimental Results

The computer specification used in the experiment is Intel(R) Core(TM) i5-4440 CPU at 3.10 GHz,
NVIDIA GeForce GT 630 and 8 GB RAM. In this study, individual identification with ECG was
performed by preprocessing the input ECG signal only with I-lead, and when the R peak points were
detected, 784 frames of data were acquired by 392 frames back and forth, based on the R peak point.
R peak points were detected for all recordings, and the numbers of R peak points detected for each
class were obtained. To construct an equal amount of data for each class, classes that had a very small
number of R peak points were excluded, and the number of samples of all classes was adjusted to the
smallest number of R peak points among the remaining classes. The preprocessed signals were then
rearranged symmetrically to 3D tensors. The lengths of row and column were same as each other to
construct a symmetric structure. The 784 frames extracted from ECG signal were directly transformed
to a 28 × 28 image. After that, the images of three signals were lined up following the temporal axis.
These symmetric tensors entered MPCA for feature extraction. Then classification was performed by
using three distance similarities. Figure 13 shows the symmetric tensor.

In the case of PTB-ECG, the 79 classes that have a very small number of R peak points were
excluded among 290 classes. The common maximum number of R peak points among the rest of the
classes was 120. That is, the data was composed of 120 samples per class. The constructed data size
is 784 × 25,320 (120 samples/class × 211 classes); the row indicates the dimension of the data and
the column indicates the number of samples. The preprocessed signals was vectors. That means that
LSL (PCA and LDA) could directly accept them as input, and the ratio of training was 50%. The sizes
of the data for training and test were 784 × 12,660 each. To make the input to MSL (MEECG and
MFECG), the vectors were reshaped to 2D with rows and columns of the same size, and the vectors
became 2D tensors of size 28 × 28 × 25,320. Then, the sequential 2D tensors were reshaped to 3D
tensors by stacking following the temporal axis. The size of the 3D tensor was 28 × 28 × 3 × 8440 by
three stacked 2D tensors, and the ratio of training was 50%. The sizes of data for training and test
were 28 × 28 × 3 × 4220 each. Tables 1–4 show the accuracies of PCA, LDA, MEECG, and MFECG
on the PTB-ECG database, respectively. The PCA dimension in LDA was set to 21, which made the
Q-value 97%. The dimensions of PCA, MEECG, and MFECG varied from 10 to 100 with a step size
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of 10. The best dimensions were selected as the best accuracies. In the case of PTB-ECG, the highest
accuracies of PCA in each distance were 98.82% of L1, 98.76% of L2, and 98.69% of AD; the highest
accuracies of LDA in each distance were 98.74% of L1, 98.78% of L2, and 98.77% of AD; the highest
accuracies of MEECG in each distance were 99.15% of L1, 99.10% of L2, and 99.15% of AD; and the
highest accuracies of MFECG in each distance were 98.89% of L1, 98.93% of L2, and 99.03% of AD.
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Table 1. Accuracies of PCA on Physikalisch-Technische Bundesanstalt (PTB)-ECG.

PCA Dimension L1 (%) L2 (%) Angle distance (AD) (%)

10 98.70 98.71 98.51
20 98.74 98.76 98.69
30 98.82 98.74 98.68
40 98.73 98.72 98.68
50 98.72 98.72 98.66
60 98.68 98.72 98.67
70 98.68 98.72 98.67
80 98.68 98.72 98.67
90 98.68 98.72 98.67

100 98.67 98.72 98.67

Table 2. Accuracies of LDA on PTB-ECG.

LDA Dimension PCA Dimension L1 (%) L2 (%) AD (%)

21

11 98.70 98.70 98.64
12 98.72 98.77 98.66
13 98.73 98.72 98.64
14 98.72 98.71 98.67
15 98.71 98.74 98.69
16 98.70 98.76 98.70
17 98.74 98.74 98.71
18 98.72 98.78 98.77
19 98.70 98.76 98.71
20 98.63 98.77 98.74
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Table 3. Accuracies of MEECG on PTB-ECG.

MEECG Dimension L1 (%) L2 (%) AD (%)

10 98.91 98.65 98.25
20 99.10 99.03 98.82
30 99.15 99.10 99.15
40 99.05 98.98 99.08
50 99.05 98.98 99.12
60 98.96 98.86 98.98
70 98.96 98.74 98.82
80 98.96 98.72 98.79
90 98.96 98.72 98.74

100 98.74 98.65 98.67

Table 4. Accuracies of MFECG on PTB-ECG.

MFECG Dimension L1 (%) L2 (%) AD (%)

10 98.72 98.89 98.77
20 98.89 98.93 98.98
30 98.86 98.93 99.00
40 98.82 98.91 99.03
50 98.82 98.89 99.00
60 98.82 98.86 99.03
70 98.84 98.84 99.03
80 98.70 98.82 98.91

In the case of CU-ECG, subsampling was performed from 500 kHz to 1 kHz because the data
is too big due to the high sampling rate for processing, and one class that has a very small number
of R peak points was excluded among the 100 classes. The common maximum number of R peak
points among the rest of the classes was 300. That is, the data was composed of 300 samples per class.
The constructed data size was 784 × 29,700 (300 samples/class × 99 classes); the row indicates the
dimension of the data and the column indicates the number of samples. The preprocessed signals are
vectors. That means that LSL (PCA and LDA) could directly accept them as input, and the ratio of
training is 50%. The sizes of data for training and test were 784 × 14,850 each. To make the input to
MSL (MEECG and MFECG), the vectors were reshaped to 2D with rows and columns of the same
size, and the vectors became 2D tensors of size 28 × 28 × 29,700. Then, the sequential 2D tensors
were reshaped to 3D tensors by stacking following the temporal axis. The size of the 3D tensor was
28 × 28 × 3 × 9900 by three stacked 2D tensors, and the ratio of training was 50%. The sizes of data for
training and test were 28 × 28 × 3 × 4950 each. Tables 5–8 show the accuracies of PCA, LDA, MEECG,
and MFECG on the CU-ECG database, respectively. The PCA dimension in LDA was set to 19, which
made the Q-value 97%. The dimensions of PCA, MEECG, and MFECG varied from 10 to 100 with
a step size of 10. The best dimensions were selected as the best accuracies. In the case of CU-ECG,
the highest accuracies of PCA in each distance were 93.64% of L1, 93.33% of L2, and 92.66% of AD;
the highest accuracies of LDA in each distance were 93.28% of L1, 93.30% of L2, and 93.02% of AD;
the highest accuracies of MEECG in each distance were 95.92% of L1, 95.68% of L2, and 94.65% of AD;
and the highest accuracies of MFECG in each distance were 95.94% of L1, 95.76% of L2, and 95.72%
of AD.
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Table 5. Accuracies of PCA on Chosun University (CU)-ECG.

PCA Dimension L1 (%) L2 (%) AD (%)

10 91.52 91.58 89.67
20 93.41 93.21 92.51
30 93.64 93.30 92.66
40 93.63 93.33 92.65
50 93.42 93.29 92.42
60 93.25 93.22 92.34
70 93.11 93.21 92.27
80 93.07 93.22 92.27
90 93.03 93.22 92.24

100 92.98 93.22 92.19

Table 6. Accuracies of LDA on CU-ECG.

LDA Dimension PCA Dimension L1 (%) L2 (%) AD (%)

19

9 91.86 91.89 90.70
10 92.84 92.84 91.98
11 93.16 93.18 92.65
12 93.08 93.21 92.95
13 93.23 93.30 93.02
14 93.16 93.12 92.97
15 93.19 93.14 92.96
16 93.28 93.17 92.92
17 93.14 93.16 92.88
18 93.00 93.17 92.86

Table 7. Accuracies of MEECG on CU-ECG.

MEECG Dimension L1 (%) L2 (%) AD (%)

10 93.84 93.45 91.43
20 95.92 95.68 94.65
30 95.62 95.07 94.14
40 94.73 94.34 93.45
50 94.26 94.02 93.07
60 94.20 93.90 92.89
70 94.10 93.96 92.87
80 94.00 93.96 92.69

Table 8. Accuracies of MFECG on CU-ECG.

MFECG Dimension L1 (%) L2 (%) AD (%)

10 95.94 95.70 94.99
20 95.90 95.76 95.72
30 95.72 95.72 95.45
40 95.41 95.43 95.33
50 94.99 95.13 95.13
60 94.59 95.01 94.95
70 94.30 94.93 94.85
80 93.66 94.77 94.79

Figure 14 shows the comparison of the highest accuracies for each distance and method on
PTB-ECG, and Figure 15 shows the same data on CU-ECG. In the case of PTB-ECG, the highest
accuracies of MEECG in L1, L2, and AD were 0.33%, 0.34%, and 0.46% higher than the highest
accuracies of PCA, and the highest accuracies of MFECG in L1, L2, and AD were 0.15%, 0.15%,
and 0.26% higher than the highest accuracies of LDA, respectively. In the case of CU-ECG, the highest



Symmetry 2018, 10, 487 17 of 21

accuracies of MEECG in L1, L2, and AD were 2.28%, 2.35%, and 1.99% higher than the highest
accuracies of PCA, and the highest accuracies of MFECG in L1, L2, and AD were 2.66%, 2.46%,
and 2.70% higher than the highest accuracies of LDA, respectively. Figure 16 shows the MEECG
feature space for 12 classes, and Figure 17 shows the MFECG feature space for 12 classes.
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5. Conclusions

We present third-order tensor-based multilinear EigenECG and multilinear FisherECG for
individual identification from the information of an electrocardiogram sensor. The vectorization
of LSL destroys the structural correlations of the original data. However, the MSL preserves the
geometric information of original data by extracting features without deformation of the tensor
structure. Normally, reshaping from a high dimension to a low dimension reduces some correlations,
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but reshaping from a low dimension to a high dimension preserves most correlations. Moreover, there is
a possibility that reshaping from a low dimension to a high dimension could generate new correlations.
An ECG is normally gathered continuously as serial data. By applying it to a tensor, the input
could arrange sequential information symmetrically in a tensor. Thus, tensor-based sequential input
with the variant noisy ECG signals could be complementarily classified. Even if some parts among
ECGs as sequential input are damaged, they can be complementary to each other. The databases
of PTB-ECG and CU-ECG are used for this study. PTB-ECG is a well-known database for ECG
signals, and the CU-ECG is a database of ECG signals built for this study. After preprocessing,
the ECG signal is reshaped to a 3D tensor by stacking three ECG beats for sequence data for input
to the MSL. The experiments are performed at distances of L1, L2, and AD. The MSL (MEECG and
MFECG) has better performance than LSL (PCA and LDA) when individual identification is performed
using ECG signals. For further research, we will study a method to build a more meaningful tensor
for classification.
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