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Abstract: In this work, we extend the fundamental results of Schu to the class of monotone
asymptotically nonexpansive mappings in modular function spaces. In particular, we study the
behavior of the Fibonacci–Mann iteration process, introduced recently by Alfuraidan and Khamsi,
defined by

xn+1 = tnTφ(n)(xn) + (1− tn)xn,

for n ∈ N, when T is a monotone asymptotically nonexpansive self-mapping.
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1. Introduction

Modular function spaces (MFS) find their roots in the study of the classical function spaces Lp(Ω)

and their extensions by Orlicz and others. For more details on MFS, we recommend the book by
Kozlowski [1]. Another interesting use of the modular structure, for whoever is looking for more
applications, is the excellent book by Diening et al. [2] about Lebesgue and Sobolev spaces with
variable exponents. Fixed point theory in MFS was initiated in 1990 in the original paper [3]. Since then
this theory has become prevalent, culminating in the publication of the recent book by Khamsi and
Kozlowski [4]. In this work, we continue investigating the fixed point problem in MFS. To be precise,
we investigate the case of monotone mappings. This area of metric fixed point theory is new and
attracted some attention after the publication of Ran and Reuring’s paper [5]. An interesting reference
with many applications of the fixed point theory of monotone mappings is the excellent book by
Carl and Heikkilä [6]. We also suggest the work of Marin [7] for some applications associated to the
iteration problem.

Since this work deals with the metric fixed point theory, we recommend the book by Khamsi
and Kirk [8].

2. Preliminaries

For the basic definitions and properties of MFS, we refer the readers to the books [1,4]. Throughout
this work, we assume the following:
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(i) Ω is a nonempty set;
(ii) Σ is a nontrivial σ-algebra of subsets of Ω;
(iii) P is a δ-ring of subsets of Ω such that A ∩ B ∈ P for any A ∈ P and B ∈ Σ;
(iv) there exists an increasing sequence {Ωn}n≥1 in P such that Ω =

⋃
n≥1

Ωn.

Consider the setM∞ of extended measurable functions f : Ω→ [−∞, ∞] such that there exists a
sequence { fn} of simple functions whose supports are in P with | fn| ≤ | f | and lim

n→∞
fn(t) = f (t), for

any t ∈ Ω.

Definition 1. ([1,4]) A convex and even function ρ :M∞ → [0, ∞] is called regular modular if

(i) ρ( f ) = 0 implies f = 0;
(ii) | f (t)| ≤ |g(t)| for all t ∈ Ω implies ρ( f ) ≤ ρ(g), where f , g ∈ M∞ (we will say that ρ is monotone);
(iii) | fn(t)| ↑ | f (t)| for all t ∈ Ω implies ρ( fn) ↑ ρ( f ), where f ∈ M∞ (ρ has the Fatou property).

Recall that C ∈ Σ is said to be ρ-null if ρ( f1C) = 0, for any simple function f whose support is in
P , where 1C denotes the characteristic function of C. A property holds ρ-almost everywhere (ρ-a.e.) if
the subset where it does not hold is ρ-null.

Remark 1. Let ρ be convex regular modular. Let f , g, h ∈ M∞ be such that f ≤ g ≤ h ρ-a.e. Then
0 ≤ g− f ≤ h− f and 0 ≤ h− g ≤ h− f ρ-a.e., which imply

ρ(g− f ) ≤ ρ(h− f ) and ρ(h− g) ≤ ρ(h− f ).

Consider the set
M = { f ∈ M∞; | f (t)| < ∞ ρ− a.e}.

The MFS Lρ is defined as

Lρ = { f ∈ M; ρ(λ f )→ 0 as λ→ 0}.

The following theorem is essential throughout this work.

Theorem 1 ([1,4]). Let ρ be convex regular modular.

(1) If ρ(βhn)→ 0, for some β > 0, then there exists a subsequence {hψ(n)} such that hψ(n) → 0 ρ− a.e.

(2) If hn → h ρ− a.e., then ρ(h) ≤ lim inf
n→∞

ρ(hn).

The following definition mimics the metric properties using the modular.

Definition 2 ([1,4]). Let ρ be convex regular modular.

(1) {gn} is said to ρ-converge to g if lim
n→∞

ρ(gn − g) = 0.

(2) A sequence {gn} is called ρ-Cauchy if lim
n,m→∞

ρ(gn − gm) = 0.

(3) A subset C of Lρ is said to be ρ-closed if for any sequence {gn} in C ρ-convergent to g implies that g ∈ C.
(4) A subset A of Lρ is called ρ-bounded if its ρ-diameter

δρ(A) = sup{ρ(g− h); g, h ∈ A}

is finite.

Note that, despite the fact that ρ does not satisfy the triangle inequality in general, the ρ limit
is unique. However, the ρ-convergence may not imply ρ-Cauchy behavior. Despite this setback,
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we can prove that any ρ-Cauchy sequence in Lρ is ρ-convergent, i.e., Lρ is ρ-complete [1,4]. Moreover,
the Fatou property will show that the ρ-balls Bρ( f , r) = {g ∈ Lρ; ρ( f − g) ≤ r} are ρ-closed.

The following result will be used throughout:

Theorem 2 ([1,4]). Let ρ be convex regular modular. Let {gn} ⊂ Lρ be a sequence which ρ-converges to g.
The following hold:

(i) if {gn} is monotone increasing, i.e., gn ≤ gn+1 ρ-a.e., for any n ≥ 1, then gn ≤ g ρ-a.e., for any n ≥ 1.;
(ii) if {gn} is monotone decreasing, i.e., gn+1 ≤ gn ρ-a.e., for any n ≥ 1, then g ≤ gn ρ-a.e., for any n ≥ 1.

Next we discuss a property called uniform convexity, which plays an important part in metric
fixed point theory.

Definition 3 ([4]). Let ρ be convex regular modular. Let r > 0 and ε > 0. Consider the following set:

D(r, ε) = {( f , g); f , g ∈ Lρ, ρ( f ) ≤ r, ρ(g) ≤ r, ρ( f − g) ≥ εr}.

Then define

δρ(r, ε) = inf
{

1− 1
r

ρ
( f + g

2

)
; ( f , g) ∈ D(r, ε)

}
.

(i) ρ is said to be uniformly convex (UC) if for every r > 0 and ε > 0, we have δρ(r, ε) > 0.
(ii) ρ is said to be (UUC) if for every s ≥ 0, ε > 0 there exists η(s, ε) > 0 such that δρ(r, ε) > η(s, ε) > 0,

for r > s.

Example 1. As an example of modular function spaces, we consider the Orlicz spaces. These spaces were
introduced by Orlicz and Birnbaum [9]. The function space is defined as follows:

Lϕ = { f : R→ R; ∃λ > 0 :
∫
R

ϕ(λ| f (x)|) dm(x) < ∞}

where ϕ : [0, ∞)→ [0, ∞) is assumed to be a convex function which is increasing to infinity. In other words,
ϕ behaves similarly to the power functions ϕ(t) = tp, p ≥ 1. The functional ρ : Lϕ → [0, ∞) defined by

ρ( f ) =
∫
R

ϕ(| f (x)|) dm(x)

is convex regular modular. In this case, the uniform convexity of the modular was investigated in [10,11].
For example, the Orlicz functions that will generate a uniformly convex modular, one may take ϕ1(t) =

e|t| − |t| − 1 and ϕ2(t) = et2 − 1 [12,13].

Modular functions which are uniformly convex enjoy a property similar to reflexivity in
Banach spaces.

Theorem 3 ([4,10]). Let ρ be (UUC) convex regular modular. Then Lρ has the property (R), i.e., every sequence
{Cn} of nonempty, ρ-bounded, ρ-closed, convex subsets of Lρ such that Cn+1 ⊂ Cn, for any n ∈ N,
has a nonempty intersection, i.e.,

⋂
n∈N

Cn 6= ∅.

Remark 2. Let ρ be (UUC) convex regular modular. Let K be a ρ-bounded convex ρ-closed nonempty subset
of Lρ. Let { fn} ⊂ K be a monotone increasing sequence. Since order intervals in Lρ are convex and ρ-closed,
then the property (R) implies ⋂

n≥1

{
f ∈ K; fn ≤ f ρ− a.e.

}
6= ∅.
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In other words, there exists f ∈ K such that fn ≤ f ρ-a.e., for any n ≥ 1. A similar conclusion holds for
decreasing sequences.

The following lemma is useful throughout this work.

Lemma 1 ([14]). Let ρ be (UUC) convex regular modular. Let R > 0 and {αn} ⊂ [a, b] with 0 < a ≤ b < 1.
Let { fn} and {gn} be in Lρ. Assume that

lim sup
n→∞

ρ( fn) ≤ R,

lim sup
n→∞

ρ(gn) ≤ R,

lim
n→∞

ρ(αn fn + (1− αn) gn) = R.

Then lim
n→∞

ρ( fn − gn) = 0 holds.

The concept of ρ-type function is fundamental in investigating the existence of fixed points.
First let us recall the definition of a modular type function.

Definition 4 ([4]). Let ρ be convex regular modular. Let K be a nonempty subset of Lρ. The function
ϕ : K → [0, ∞] is said to be a ρ-type if there exists a sequence {hm} in Lρ such that

ϕ( f ) = lim sup
m→∞

ρ(hm − f ),

for any f ∈ K. A sequence { fn} in K is called a minimizing sequence of ϕ if lim
n→∞

ϕ( fn) = inf{ϕ( f ); f ∈ K}.

We have the following amazing result about ρ-type functions in MFS.

Lemma 2 ([14]). Let ρ be (UUC) convex regular modular. Then any minimizing sequence of any ρ-type
defined on a ρ-bounded ρ-closed convex nonempty subset C of Lρ is ρ-convergent. Its ρ-limit is independent of
the minimizing sequence.

Before we finish this section, we give the modular definitions of monotone Lipschitzian mappings.

Definition 5. Let ρ be convex regular modular. Let C be nonempty subset of Lρ. Let T : C → C be a mapping.

(i) T is said to be monotone if f ≤ g ρ-a.e. implies T( f ) ≤ T(g) ρ-a.e., for any f , g ∈ C.
(ii) T is called monotone asymptotically nonexpansive (in short M-A-N) if T is monotone and there exists
{kn}, with kn ≥ 1 for any n ≥ 1 such that lim

n→∞
kn = 1 and

ρ(Tn(g)− Tn(h)) ≤ kn ρ(g− h),

for any g and h in C such that g ≤ h ρ-a.e., and n ≥ 1.
(iii) g is a fixed point of T whenever T(g) = g.

The fixed point theory for asymptotically nonexpansive mappings finds its root in the work
of Goebel and Kirk [15]. Following the success of the fixed point theory of monotone mappings,
an existence fixed point theorem for M-A-N mappings was proved in [16] and its modular version
in [17]. Before we state the main result of [17], recall that a map T is said to be ρ-continuous if {gn}
ρ-convergent to g implies {T(gn)} ρ-convergent to T(g).
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Theorem 4 ([17]). Let ρ be (UUC) convex regular modular. Let C be a ρ-bounded ρ-closed convex nonempty
subset of Lρ. Let T : C → C be a ρ-continuous M-A-N mapping. Assume there exists f0 ∈ K such that
f0 ≤ T( f0) (resp. T( f0) ≤ f0) ρ-a.e. Then T has a fixed point f such that f0 ≤ f (resp. f ≤ f0) ρ-a.e.

The original proof of the existence of a fixed point of asymptotically nonexpansive mappings was
not constructive. It was Shu [18] who considered a modified Mann iteration to generate an approximate
fixed point sequence for such mappings. While studying asymptotically nonexpansive mappings,
Schu modified the Mann iteration by

xn+1 = tnTn(xn) + (1− tn)xn,

for tn ∈ [0, 1] and n ∈ N. Schu used the iterate Tn because it is becoming almost nonexpansive. In the
investigation of monotone mappings, it is unknown whether Schu’s iteration sequence generates
a sequence which is monotone provided x0 and T(x0) are comparable. A very important fact when
investigating the existence of fixed points of such mappings. This problem forced the authors in [16] to
modify Schu’s iteration sequence by using the Fibonacci sequence {φ(n)} defined by

φ(0) = φ(1) = 1, and φ(n + 1) = φ(n) + φ(n− 1),

for any n ≥ 1. The Fibonacci–Mann iteration [16] ((FMI) in short) is defined by

hn+1 = αn Tφ(n)(hn) + (1− αn) hn,

for αn ∈ [0, 1] and n ∈ N. This new iteration scheme allowed the authors of [16] to prove the main
results of Schu [18] for M-A-N mappings defined in uniformly convex Banach spaces. This is surprising
since this class of mappings may fail to be continuous.

Next we discuss the behavior of the iteration (FMI) which will generate an approximate fixed
point of M-A-N mapping in MFS.

The proof of the following lemma uses solely the partial order and is similar to the original proof
done in [16] in the context of Banach spaces.

Lemma 3. [16] Let ρ be convex regular modular. Let C be a convex nonempty subset of Lρ. Let T : C → C be a
monotone mapping. Let h0 ∈ C be such that h0 ≤ T(h0) (resp. T(h0) ≤ h0) ρ-a.e. Let {αn} ⊂ [0, 1]. Consider
the (FMI) sequence {hn} generated by h0 and {αn}. Let f ∈ C be a fixed point of T such that h0 ≤ f (resp.
f ≤ h0) ρ-a.e. Then

(i) h0 ≤ hn ≤ hn+1 ≤ Tφ(n)(hn) ≤ f (resp. f ≤ Tφ(n)(hn) ≤ hn+1 ≤ hn ≤ h0) ρ-a.e.;

(ii) h0 ≤ Tφ(n)(h0) ≤ Tφ(n)(hn) ≤ f (resp. f ≤ Tφ(n)(hn) ≤ Tφ(n)(h0) ≤ h0) ρ-a.e.;

for any n ∈ N.

The next lemma is crucial in the proof of the main results of this work.

Lemma 4. Let ρ be convex regular modular. Let C be a ρ-bounded and convex nonempty subset of Lρ.

Assume T : C → C is an M-A-N mapping with the Lipschitz constants {kn} satisfying
∞
∑

n=1
(kn − 1) < ∞.

Let h0 ∈ C be such that h0 ≤ T(h0) (resp. T(h0) ≤ h0) ρ-a.e. Let {αn} ⊂ [0, 1]. Consider the (FMI) sequence
{hn} generated by h0 and {αn}. Let f ∈ C be a fixed point of T such that h0 ≤ f (resp. f ≤ h0) ρ-a.e.
Then lim

n→∞
ρ(hn − f ) exists.

Proof. Without loss of generality, assume that h0 ≤ T(h0) ρ-a.e. Note that, since C is ρ-bounded,
we must have lim sup

m→∞
ρ(hm − f ) ≤ δρ(C) < +∞. From the definition of {hn}, we have
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ρ(hn+1 − f ) ≤ αn ρ(Tφ(n)(hn)− f ) + (1− αn) ρ(hn − f )
= αn ρ(Tφ(n)(hn)− Tφ(n)( f )) + (1− αn) ρ(hn − f )
≤ αn kφ(n) ρ(hn − f ) + (1− αn) ρ(hn − f )
= αn (kφ(n) − 1) ρ(hn − f ) + ρ(hn − f )
≤ (kφ(n) − 1) ρ(hn − f ) + ρ(hn − f )

for any n ∈ N, where we used the fact that f is a fixed point of T, the definition of the Lipschitz
constants {kn} and {αn} ⊂ [0, 1]. Hence

ρ(hn+1 − f )− ρ(hn − f ) ≤ (kφ(n) − 1) δρ(C),

for any n ∈ N, which implies

ρ(hn+m − f )− ρ(hn − f ) ≤ δρ(C)
m

∑
i=0

(kφ(n+i) − 1),

for any n, m ≥ 1. Let us rewrite this inequality as

ρ(hn+m − f ) ≤ ρ(hn − f ) + δρ(C)
m

∑
i=0

(kφ(n+i) − 1),

for any n, m ≥ 1. Next, we let m→ ∞ to obtain

lim sup
m→∞

ρ(hm − f ) ≤ ρ(hn − f ) + δρ(C)
∞

∑
i=n

(kφ(i) − 1) ≤ ρ(hn − f ) + δρ(C)
∞

∑
i=n

(ki − 1),

for any n ≥ 1. Finally if we let n→ ∞, we have

lim sup
m→∞

ρ(hm − f ) ≤ lim inf
n→∞

ρ(hn − f ) + δρ(C) lim inf
n→∞

∞

∑
i=n

(ki − 1) = lim inf
n→∞

ρ(hn − f ),

since the series
∞
∑

n=1
(kn − 1) is convergent. Therefore, we have

lim sup
m→∞

ρ(hm − f ) = lim inf
n→∞

ρ(hn − f ),

which implies the desired conclusion.

3. Main Results

The next result shows that the sequence generated by (FMI) has an approximate fixed point
behavior which is crucial throughout.

Proposition 1. Let ρ be (UUC) convex regular modular. Let C ⊂ Lρ be a ρ-bounded ρ-closed convex nonempty

subset. Let T : C → C be an M-A-N mapping with the associated constants {kn} satisfying
∞
∑

n=1
(kn − 1) < ∞.

Let h0 ∈ C be such that h0 ≤ T(h0) (resp. T(h0) ≤ h0) ρ-a.e. Let f ∈ C be a fixed point of T such that h0 ≤ f
(resp. f ≤ h0) ρ-a.e. Let {αn} ⊂ [a, b], with 0 < a ≤ b < 1. Consider the (FMI) sequence {hn} generated by
h0 and {αn}. Then

lim
n→∞

ρ(hn − Tφ(n)(hn)) = 0.

Proof. Without loss of generality, we assume h0 ≤ T(h0) ρ-a.e. From Lemma 3, we know that
hn ≤ hn+1 ≤ f ρ-a.e. Using Remark 1, we have ρ( f − hn+1) ≤ ρ( f − hn), for any n ∈ N, i.e.,
{ρ( f − hn)} is a decreasing sequence of positive numbers. Hence R = lim

n→∞
ρ(hn − f ) exists. Assume
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that R = 0, i.e., {hn} ρ-converges to f . From Lemma 3, we obtain hn ≤ Tφ(n)(hn) ≤ f ρ-a.e.,
which implies

ρ(Tφ(n)(hn)− hn) ≤ ρ( f − hn),

for any n ∈ N. Hence, we have lim
n→∞

ρ(Tφ(n)(hn)− hn) = 0. Next, we assume R > 0. We have

lim sup
n→∞

ρ(Tφ(n)(hn)− f ) = lim sup
n→∞

ρ(Tφ(n)(hn)− Tφ(n)( f ))

≤ lim sup
n→∞

kφ(n) ρ(hn − f )

= R,

since lim
n→∞

kn = 1 and f is a fixed point of T. On the other hand, we have ρ(hn+1 − f ) ≤
αn ρ(Tφ(n)(hn) − f ) + (1− αn) ρ(hn − f ), for any n ≥ 1. Let U be a non-trivial ultrafilter over N.
We have

R = lim
U

ρ(hn+1 − f ) ≤ α lim
U

ρ(Tφ(n)(hn)− f ) + (1− α) R,

with lim
U

αn = α ∈ [a, b]. Since α 6= 0, we have lim
U

ρ(Tφ(n)(hn)− f ) ≥ R. Since U was an arbitrary

ultrafilter, we have

R ≤ lim inf
n→∞

ρ(Tφ(n)(hn)− f ) ≤ lim sup
n→∞

ρ(Tφ(n)(hn)− f ) ≤ R.

Therefore, lim
n→∞

ρ(Tφ(n)(hn)− f ) = R. Since

lim
n→∞

ρ
(

αn Tφ(n)(hn) + (1− αn) hn − f
)
= lim

n→∞
ρ(hn+1 − f ) = R,

and ρ is (UUC), then, by using Lemma 1, we conclude that

lim
n→∞

ρ(hn − Tφ(n)(hn)) = 0,

which completes the proof of our claim.

Recall that the map T : C → C is said to be ρ-compact if {T( fn)} has a ρ-convergent subsequence
for any sequence { fn} in C. The following result is the monotone version of Theorem 2.2 of [18].

Theorem 5. Let ρ be (UUC) convex regular modular. Let C ⊂ Lρ be a ρ-bounded and ρ-closed convex
nonempty subset of Lρ. Let T : C → C be an M-A-N mapping with the Lipschitz constants {kn}. Assume
that Tm is ρ-compact for some m ≥ 1. Let h0 ∈ C be such that h0 ≤ T(h0) (resp. T(h0) ≤ h0) ρ-a.e. Let
{αn} ⊂ [a, 1] with 0 < a ≤ 1. Consider the (FMI) sequence {hn} generated by h0 and {αn}. Then {hn}
ρ-converges to a fixed point f of T such that h0 ≤ f (resp. f ≤ h0) ρ-a.e.

Proof. Without loss of generality, we assume h0 ≤ T(h0) ρ-a.e. Since T is monotone, the sequence
{Tn(h0)} is monotone increasing. Since Tm is ρ-compact, there exists a subsequence {Tϕ(n)(h0)}which
ρ-converges to f ∈ C. Let us show that {Tn(h0)} ρ-converges to f and f is a fixed point of T. Using the
properties of the ρ-a.e. partial order, we have Tn(h0) ≤ f ρ-a.e., for any n ∈ N. In particular, we have

Tϕ(n)(h0) ≤ Tϕ(n)+1(h0) ≤ f ρ− a.e.

for any n ∈ N. Using Remark 1, we have

ρ( f − Tϕ(n)+1(h0)) ≤ ρ( f − Tϕ(n)(h0)),
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for any n ∈ N. This will imply {Tϕ(n)+1(h0)} ρ-converges to f . But

ρ(T( f )− Tϕ(n)+1(h0)) ≤ k1 ρ( f − Tϕ(n)(h0)),

for any n ∈ N, which implies that {Tϕ(n)+1(h0)} ρ-converges to T( f ) as well, which implies T( f ) = f
from the uniqueness of the ρ-limit. It is clear from the properties of the modular ρ, that {ρ( f − Tn(h0))}
is a decreasing sequence of positive real numbers. Hence,

lim
n→∞

ρ( f − Tn(h0)) = lim
n→∞

ρ( f − Tϕ(n)(h0)) = 0,

i.e., {Tn(h0)} ρ-converges to f . Let us finish the proof of Theorem 5 by showing that {hn} ρ-converges
to f . Since f is a fixed point of T, which satisfies h0 ≤ f , then Lemma 3 implies Tφ(n)(h0) ≤ Tφ(n)(hn) ≤
f ρ-a.e., which implies

ρ( f − Tφ(n)(hn)) ≤ ρ( f − Tφ(n)(h0)),

for any n ∈ N. Hence {Tφ(n)(hn)} ρ-converges to f . Since {hn} is monotone increasing and bounded
above by f , we know that {ρ( f − hn)} is a decreasing sequence of positive real numbers. Hence,
lim

n→∞
ρ( f − hn) = R exists. Let us prove that R = 0. Let U be a non-trivial ultrafilter over N. Using the

definition of {hn}, we have

ρ(hn+1 − f ) ≤ αn ρ(Tφ(n)(hn)− f ) + (1− αn) ρ(hn − f )

for any n ∈ N. If we set lim
U

αn = α ∈ [a, 1], we get

lim
U

ρ(hn+1 − f ) ≤ α lim
U

ρ(Tφ(n)(hn)− f ) + (1− α) lim
U

ρ(hn − f ).

Since lim
U

ρ(hn+1 − f ) = lim
U

ρ(hn − f ) = R, and lim
U

ρ(Tn(hn)− f ) = 0, we get R ≤ (1− α) R.

Since α 6= 0, we conclude that R = 0, i.e., {hn} ρ-converges to f .

Before we investigate a weaker convergence of the (FMI) sequence, we will need the following
result, which may be seen as similar to the classical Opial condition [19]. First, we recall that a subset C
of Lρ is ρ-a.e.-compact if any sequence { fn} in C has a ρ-a.e.-convergent subsequence and its ρ-a.e.-limit
is in C.

Proposition 2. Let C ⊂ Lρ be a ρ-a.e.-compact and ρ-bounded convex nonempty subset of Lρ. Let { fn} be a
monotone increasing (resp. decreasing) bounded sequence in C. Set C∞ = {h ∈ C; fn � h (resp. h � fn)

for any n ∈ N}. Consider the ρ-type function ϕ : C∞ → [0,+∞) defined by

ϕ(h) = lim
n→∞

ρ( fn − h).

Then { fn} is ρ-a.e. convergent to f ∈ C∞ and

ϕ( f ) = inf{ϕ(h); h ∈ C∞}.

Moreover, if ρ is (UUC), then any minimizing sequence {hn} of ϕ in C∞ ρ-converges to f . In particular,
ϕ has a unique minimum point in C∞.

Proof. Without loss of generality, assume that { fn} is monotone increasing. Since C is ρ-a.e.-compact,
there exists a subsequence { fψ(n)}, which is ρ-a.e. convergent to some f ∈ C. Using Theorem 2,
we conclude that fn ≤ f ρ-a.e., for any n ∈ N. Hence, f ∈ C∞, which implies that C∞ is nonempty.
Let h ∈ C∞. Then the sequence {ρ(h− fn)} is a decreasing sequence of finite positive numbers since
C is ρ-bounded. Hence ϕ(h) = lim

n→∞
ρ( fn − h) exists. As we saw before, there exists a subsequence
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{ fψ(n)} of { fn}, which ρ-a.e.-converges to f ∈ C∞. Let us prove that { fn} ρ-a.e.-converges to f . Indeed,
for any n ≥ ψ(0), there exists a unique kn ∈ N such that ψ(kn) ≤ n < ψ(kn + 1). Clearly, we have
kn → ∞ when n → ∞. Moreover, we have fψ(kn) ≤ fn ≤ f , for any n ∈ N. Since { fψ(kn)} ρ-a.e.
converges to f , we conclude that { fn} also ρ-a.e. converges to f . Next let h ∈ C∞. Then we must have
fn ≤ f ≤ h ρ-a.e., which implies

ρ( f − fn) ≤ ρ(h− fn),

for any n ∈ N. Hence, ϕ( f ) ≤ ϕ(h), i.e.,

ϕ( f ) = inf{ϕ(h); h ∈ C∞}.

The last part of Proposition 2 is a classical result which may be found in [14].

Now we are ready to state a modular monotone version of Theorem 2.1 of [18].

Theorem 6. Let ρ be (UUC) convex regular modular. Let C ⊂ Lρ be a ρ-a.e.-compact and ρ-bounded convex
nonempty subset of Lρ. Let T : C → C be an M-A-N mapping with the Lipschitz constants {kn}. Assume

that
∞
∑

n=1
(kn − 1) < ∞. Let h0 ∈ C be such that h0 and T(h0) are ρ-a.e.-comparable. Let {αn} ⊂ [a, b] with

0 < a ≤ b < 1. Consider the (FMI) sequence {hn} generated by h0 and {αn}. Then {hn} is ρ-a.e.-convergent.
Its ρ-a.e.-limit is a fixed point of T ρ-a.e.-comparable to h0.

Proof. Without loss of generality, assume that h0 � T(h0) ρ-a.e. In this case, we know that {Tn(h0)} is
monotone increasing. Proposition 2 implies that {Tn(h0)} is ρ-a.e.-convergent to f ∈ C∞ with

C∞ = {h ∈ C; Tn(h0) ≤ h ρ− a.e. for any n ∈ N}.

Since ρ is (UUC), f is the unique minimum point of the ρ-type ϕ : C∞ → [0,+∞) defined by

ϕ(h) = lim
n→∞

ρ(Tn(h0)− h).

By definition of {kn}, we get

ϕ( f ) ≤ ϕ(Tm( f )) ≤ km ϕ( f ),

for any m ≥ 1. Hence {Tm( f )} is a minimizing sequence of ϕ since lim
m→∞

km = 1. Using Proposition 2,

we conclude that {Tm( f )} ρ-converges to f . Note that since Tn(h0) ≤ f ρ-a.e., we get Tn+1(h0) ≤ T( f )
ρ-a.e., for any n ∈ N, which implies f ≤ T( f ) ρ-a.e., for any n ∈ N. Hence {Tm( f )} is monotone
increasing and ρ-converges to f , which implies Tm( f ) ≤ f ρ-a.e. Hence T( f ) = f holds, i.e., f is a
fixed point of T. Using Lemma 3, we have

Tφ(n)(h0) ≤ Tφ(n)(hn) ≤ f ρ− a.e.,

for any n ∈ N, which implies that {Tφ(n)(hn)} also ρ-a.e.-converges to f . Proposition 1 implies

lim
n→∞

ρ(hn − Tφ(n)(hn)) = 0.

Using the properties of ρ-convergence and ρ-a.e.-convergence [4], there exists a sequence of
increasing integers {jn} such that {hjn − Tφ(jn)(hjn)} ρ-a.e.-converges to 0. Therefore, we must have
{hjn} ρ-a.e.-converges to f . Since {hn} is monotone increasing and hn ≤ f ρ-a.e., we conclude that
{hn} ρ-a.e.-converges to f . This completes the proof of Theorem 6 by noting that f is a fixed point of T
and h0 ≤ f ρ-a.e.
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