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Abstract: Topological indices and connectivity polynomials are invariants of molecular graphs.
These invariants have the tendency of predicting the properties of the molecular structures. The
honeycomb network structure is an important type of benzene network. In the present article,
new topological characterizations of honeycomb networks are given in the form of degree-based
descriptors. In particular, we compute Zagreb and Forgotten polynomials and some topological
indices such as the hyper-Zagreb index, first and second multiple Zagreb indices and the Forgotten
index, F. We, for the first time, determine some regularity indices such as the Albert index, Bell
index and IRM(G) index, as well as the F-index of the complement of the honeycomb network
and several co-indices related to this network without considering the graph of its complement or
even the line graph. These indices are useful for correlating the physio-chemical properties of the
honeycomb network. We also give a graph theoretic analysis of some indices against the dimension
of this network.

Keywords: M-polynomial; degree-based topological index; honeycomb network; connectivity
polynomial; degree-based index; degree-based co-index

1. Introduction

Chemical graph theory relates the topology of hydrogen-depleted molecular graphs of chemical
structures with physio-chemical properties. Some basic tools used so far are characteristic polynomials
of different matrices relating to these graphs, topological indices and connectivity polynomials. There
has been an urge to find a general polynomial that can capture almost complete information about
the properties of a structure. The first attempt was carried out by Weiner when he defined the pass
number to determine properties such as boiling point, heats of formation, chromatic retention time and
strain energy [1]. In 1971, Hosoya proposed the Hosoya index and also redefined the pass number W
of Wiener by using the distance matrix [2]. Although Wiener’s original definition was applicable only
to acyclic graphs and did not draw the attention of chemists at all, Hosoya’s paper shone a spotlight
on it. Further, in 1988, Hosoya wrote another paper to elaborate the definition of W by proposing the
Wiener polynomial, which, however, is now known as the Hosoya polynomial according to Gutman
[3]. The next addition is the M-polynomial, which plays the same role in parallel with the Hosoya
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polynomial. This polynomial determines degree-based indices easily after applying differential and
integral operators [4]. The authors in [5–10] computed the M-polynomial and related topological
indices of nanostar dendrimers, titania and polyhex nanotubes, V-phenylenic nanotubes and nanotori,
hex-derived networks and zigzag and rhombic benzenoid systems. This polynomial is considered as
the most general polynomial developed till now and is rich in determining degree-based indices of
molecular graphs.

Let us denote a simple, connected graph by G = (V, E) with vertex set V(G) and edge set E(G).
Graph G = (V, E) is said to be connected if there is a connection between any pair of vertices in G.
The number of vertices in a graph represents its order, the number of edges its size and the number of
edges connected to a single vertex the degree of that vertex. The topological index is an invariant of
the molecular graph, which preserves the topological properties of the structure. The degree-based
topological index usually encodes important topological properties of the structure, which play a
significant role in determining the physio-chemical properties of the molecules under discussion.
These indices are also effectively utilized in quantitative structure-activity relationships (QSARs) and
has many applications in risk assessment, toxicity prediction, regularity decisions, drug discovery and
lead optimization [2,11–13]. Networks as special kind of graphs are used in drug design, computer
networking and the representation of chemical structures. In the present article, new topological
characterizations of the honeycomb network are given in the form of degree-based descriptors.

1.1. Connectivity Polynomials and Degree-Based Descriptors

Here, we give brief overview of some connectivity polynomials and degree-based descriptors.
We reserve d(t) for the degree of vertex t and M1, M2 for the first and second Zagreb indices.
The authors in [14] introduced the concept of first and second Zagreb polynomials as:

M1(G, x) = ∑xyεE(G) x[d(x)+d(y)],

M2(G, x) = ∑xyεE(G) x[d(x)×d(y)].

In fact, these polynomials are used to determine Zagreb indices. In 2015, Forgotten index F(G)

and Forgotten polynomial F(G, x) were re-introduced by Furtula and Gutman [15] as:

F(G) = ∑xyεE(G)[d(x)2 + d(y)2],

F(G, x) = ∑xyεE(G) x[d(x)2+d(y)2].

These indices are also correlated with some chemical properties relating to the energies of
molecular graphs. The authors in [16] proved that M1 + cF generates a relatively more accurate
model of the chemical properties of alkanes. In 2013, Shirdel et al. introduced a new degree-based
Zagreb index named the hyper-Zagreb index HM(G) [17], defined as:

HM(G) = ∑xyεE(G)[d(x) + d(y)]2,

The first and second multiple Zagreb indices PM1(G), PM2(G) were introduced by Ghorbani et al.
in 2012 [18] as:

PM1(G) = ∏xyεE(G)[d(x) + d(y)],

PM2(G) = ∏xyεE(G)[d(x)× d(y)].

The hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index and Zagreb
polynomials are applied to predict the bioactivity of a nano-structure [19]. The authors in [20]
introduced Albertson index A(G) to determine the irregularity of a graph as:

A(G) = ∑xyεE(G) |d(x)− d(y)|,
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and the Bell index B(G) [21],

B(G) = ∑xεV(G)(d(x)− 2m
n )2,

where m is the size and n the order of G.
IRM(G) is defined as:

IRM(G) = ∑xyεE(G)[d(x)− d(y)]2.

Albertson, Bell and IRM indices measure the irregularities of the graph. The reformulated Zagreb
index was introduced by Milicevic et al. in 2004 [22] as:

M1(L(G)) = ∑xyεE(G)[d(x) + d(y)− 2]2.

This index is actually the ordinary first Zagreb index of the line graph of G. Line graphs have
useful applications in chemistry. Heilbronner et al. proved that the eigen values relating to line
graph of the hydrogen-filled molecular graph are linearly related to the s-electron energy levels of the
corresponding saturated hydrocarbon [23,24].

In 2006, Doslic [25] gave the concept of the first and second Zagreb co-indices, which are defined as:

M1(G) = ∑xy 6εE(G)[d(x) + d(y)],

M2(G) = ∑xy 6εE(G) d(x)d(y),

In [16], the authors gave some results related to first and second Zagreb co-indices given as:

M1(G) = 2m(n− 1)−M1(G),

M2(G) = 2m2 − 1
2 M1(G)−M2(G),

The F-coindex is defined as:

F(G) = ∑xy 6εE(G)[d(x)2 + d(y)2],

In [16], the author computed some results related to the F-coindex, which are given as:

F(G) = n(n− 1)3 − 6m(n− 1)2 + 3(n− 1)M1(G)− F(G),

F(G) = (n− 1)M1(G)− F(G),

F(G) = 2m(n− 1)2 − 2(n− 1)M1(G) + F(G).

1.2. Honeycomb Network, HCn for n > 1

In the present article, we focus on the degree-based indices and co-indices of the honeycomb
network, HCn for n > 1. HCn is a subclass of the benzenoid network. These networks are formed with
the benzene units sharing common edges in a particular symmetric pattern. Figure 1 contains four
different networks of such a type.

On the top right is a triangular benzenoid, whereas on the top left, we have the hourglass
benzenoid obtained by two copies of triangular benzenoids. At the bottom left, we have rectangular
benzenoid. A honeycomb network HCn, n > 1, is a network having 6n2 vertices and 9n2 − 3n edges.
HCn contains vertices of degree two and three, as shown in the figures below.

A honeycomb network of dimension one is simply a benzene; see Figure 2.
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Figure 1. Some benzenoid networks.

Figure 2. HC1.

Figures 3 and 4 are the honeycomb network of dimension two and three, respectively.

Figure 3. HC2.
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Figure 4. HC3.

HCn networks are extensively studied in mathematics because of their extreme importance in
chemistry and computer science [26–28]. In [29], the authors computed some degree-based indices
of line graphs of the subdivision of honeycomb graphs. Paul et al. computed the minimum metric
dimension of the honeycomb network [27]. The authors discussed the conditional resolvability of
honeycomb and hexagonal networks in [28]. In [30], the authors computed the Zagreb and Randic
index of honeycomb networks. In this article, we compute for the first time Zagreb and Forgotten
polynomials and some topological indices such as the hyper-Zagreb index, first and second multiple
Zagreb indices and Forgotten index. We also determine closed forms of the Albert index, Bell index
and IRM(G) indices. We also compute the F-index of the complement of the honeycomb network
and several co-indices related to this network. These indices and polynomials are different from those
computed in [29,30]. It is important to remark that we compute these above-mentioned co-indices
of the honeycomb network without computing the complement and line graph of the honeycomb
network. Moreover, index analysis is also given at the end.

2. Main Results

The first theorem contains some results for the connectivity polynomials of honeycomb networks.

Theorem 1. Let (HCn) be a honeycomb network, then:
a. M1(HCn; x, y) = 6x4 + 12(n− 1)x5 + (9n2 − 15n + 6)x6,
b. M2(HCn; x) = 6x4 + 12(n− 1)x6 + (9n2 − 15n + 6)x9,
c. F(HCn; x) = 6x8 + 12(n− 1)x13 + (9n2 − 15n + 6)x18.

Proof. We already discussed that HCn, n > 1 has only vertices of degree two or three. Then, the partition
of vertex sets of HCn can be written as:
V{2} = {vεV(G)|dv = 2} → |V{2}| = 6n,
V{3} = {vεV(G)|dv = 3} → |V{3}| = 6n2 − 6n.

Now, the edge partitions of (HCn) are:
E{2,2} = {e = uvεE(HCn)|du = 2, dv = 2} → |E{2,2}| = 6,
E{2,3} = {e = uvεE(HCn)|du = 2, dv = 3} → |E{2,3}| = 12(n− 1),
E{3,3} = {e = uvεE(HCn)|du = 3, dv = 3} → |E{3,3}| = 9n2 − 15n + 6.
a. M1(HCn, x) = ∑uvεE(HCn) x[du+dv ],
= ∑uvεE1(HCn) x[du+dv ] + ∑uvεE2(HCn) x[du+dv ] + ∑uvεE3(HCn) x[du+dv ]

= |E1(HCn)|x4 + |E2(HCn)|x5 + |E3(HCn)|x6,
= 6x4 + 12(n− 1)x5 + (9n2 − 15n + 6)x6.
b. M2(HCn, x) = ∑uvεE(HCn) x[du×dv ],
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= ∑uvεE1(HCn) x[du×dv ] + ∑uvεE2(HCn) x[du×dv ] + ∑uvεE3(HCn) x[du×dv ],
= |E1(HCn)|x4 + |E2(HCn)|x6 + |E3(HCn)|x9

= 6x4 + 12(n− 1)x6 + (9n2 − 15n + 6)x9.
c. F(HCn; x) = ∑uvεE(HCn) x[d

2
u+d2

v ],

= ∑uvεE1(HCn) x[d
2
u+d2

v ] + ∑uvεE2(HCn) x[d
2
u+d2

v ] + ∑uvεE3(HCn) x[d
2
u+d2

v ],
= |E1(HCn)|x8 + |E2(HCn)|x13 + |E3(HCn)|x18,
= 6x8 + 12(n− 1)x13 + (9n2 − 15n + 6)x18.

Proposition 1. For HCn, we have:
a. HM(HCn) = 12(27n2 − 20n + 1),
b. PM1(HCn) = 212 × 512(n−1) × 32(9n2−15n+6),
c. PM2(HCn) = 212n × 318n(n−1),
d. F(HCn) = 162n2 − 114n.

Proof. a. By the definition of the hyper-Zagreb index:
HM(HCn) = ∑uvεE(HCn)[du + dv]2,
= ∑uvεE1(HCn)[du + dv]2 + ∑uvεE2(HCn)[du + dv]2 + ∑uvεE3(HCn)[du + dv]2,
= 16|E1(HCn)|+ 25|E2(HCn)|+ 36|E3(HCn)|+,
= 12(27n2 − 20n + 1).
b. Recalling the definition of PM1(HCn) as:
PM1(HCn) = ∏uvεE(HCn)[du + dv],
= ∏uvεE1(HCn)[du + dv] + ∏uvεE2(HCn)[du + dv] + ∏uvεE3(HCn)[du + dv],
= 4|E1(HCn)| × 5|E2(HCn)| × 9|E3(HCn)|,
= 212 × 512(n−1) × 32(9n2−15n+6).
c. PM2(HCn) = ∏uvεE(HCn)[du × dv],
= ∏uvεE1(HCn)[du × dv]×∏uvεE2(HCn)[du × dv]×∏uvεE3(HCn)[du × dv],
= 4|E1(Hcn)| × 6|E2(HCn)| × 9|E3(HCn)|,
= 212n × 318n(n−1).
d. F(HCn) = ∑uvεE(HCn)[d

2
u + d2

v],
= ∑uvεE1(HCn)[d

2
u + d2

v] + ∑uvεE2(HCn)[d
2
u + d2

v] + ∑uvεE3(HCn)[d
2
u + d2

v],
= 8|E1(HCn)|+ 13|E2(HCn)|+ 18|E3(HCn)|,
= 162n2 − 114n.

Theorem 2. Let HCn be a honeycomb network, then:
a. A(HCn) = 12(n− 1),
b. B(HCn) =

1
n2 (6n3 − 12n2 + 18n− 12),

c. IRM(HCn) = 12(n− 1),
d.M1(L(HCn)) = 144n2 − 132n + 12.

Proof. Let HCn be a honeycomb network having order 6n2 and size 9n2− 3n. From the figure, we come
to know that the honeycomb network (HCn) has only vertices of degree two and three.Let V1 and V2

represent vertices of degree two and three, respectively, where |V1| = 6n and |V2| = 6n2 − 6n. The
edge partitions of (HCn) are:
E{2,2} = e = uvεE(HCn)/du = 2, dv = 2→ |E{2,2}| = 6,
E{2,3} = e = uvεE(HCn)/du = 2, dv = 3→ |E{2,3}| = 12(n− 1),
E{3,3} = e = uvεE(HCn)/du = 3, dv = 3→ |E{3,3}| = 9n2 − 15n + 6.
a. Albertson index:
A(HCn) = ∑xyεE(HCn) |d(x)− d(y)|,
= ∑xyεE1(HCn) |d(x)− d(y)|+ ∑xyεE2(HCn) |d(x)− d(y)|+ ∑xyεE3(HCn) |d(x)− d(y)|,
= |E1(HCn)||2− 2|+ |E2(HCn)||2− 3|+ |E3(HCn)||3− 3|,
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= (6)(0) + (12n− 12)(1) + (9n2 − 15n + 6)(0),
= 12(n− 1).
b. Bell index:
B(HCn) = ∑xεV(HCn)(d(x)− 2m

n )2,
= ∑xεV1(HCn)(d(x)− 2m

n )2 + ∑xεV2(HCn)(d(x)− 2m
n )2,

= |V1(HCn)|(2− 2(9n2−3n)
6n2 )2 + |V2(OXn)|(3− 2(9n2−3n)

6n2 )2,

= 6n(2− 2(9n2−3n)
6n2 )2 + (12(n− 1))(3− 2(9n2−3n)

6n2 )2,
= 1

n2 (6n3 − 12n2 + 18n− 12).
c. IRM(G):
IRM(HCn) = ∑xyεE(HCn)[d(x)− d(y)]2,
= ∑xyεE1(HCn)[d(x)− d(y)]2 + ∑xyεE2(HCn)[d(x)− d(y)]2 + ∑xyεE3(HCn)[d(x)− d(y)]2,
= |E1(HCn)|[2− 2]2 + |E2(HCn)|[2− 3]2 + |E3(HCn)|[3− 3]2,
= 12(n− 1).
d. M1(L(G)):
M1(L(G)) = ∑xyεE(G)[d(x) + d(y)− 2]2,
M1(L(HCn)) = ∑xyεE1(HCn)[d(x) + d(y) − 2]2 + ∑xyεE2(HCn)[d(x) + d(y) − 2]2 + ∑xyεE3(HCn)[d(x) +
d(y)− 2]2,
= |E1(HCn)|[2 + 2− 2]2 + |E2(HCn)|[2 + 3− 2]2 + |E3(HCn)|[3 + 3− 2]2,
= (6)(2)2 + (12n− 12)(3)2 + (9n2 − 15n + 6)(4)2,
= 144n2 − 132n + 12.

Theorem 3. For honeycomb network (HCn), we have:
a. M1(G) = 36n(3n3 − n2 − 2n + 1),
b. M2(G) = 6(27n4 − 18n3 − 15n2 + 13n− 1).

Proof. Let honeycomb network HCn have order 6n2 and size 9n2 − 3n. The first Zagreb index
M1(HCn) is 54n2 − 30n, and the second Zagreb index M2(HCn) is 81n2 − 63n + 6. Then:
a. M1(G),
M1(G) = 2m(n− 1)−M1(G),
M1(HCn) = 2(9n2 − 3n)(6n2 − 1)− (54n2 − 30n),
= 36n(3n3 − n2 − 2n + 1).
b. M2(G):
M2(G) = 2m2 − 1

2 M1(G)−M2(G),
M2(HCn) = 2(9n2 − 3n)2 − 1

2 (54n2 − 30n)− (81n2 − 63n + 6),
= 6(27n4 − 18n3 − 15n2 + 13n− 1).

Theorem 4. For honeycomb network HCn, we have:
a. F(HCn) = 1296n8 − 2592n6 + 648n5 + 1728n4 − 756n3 − 384n2 + 132n,
b. F(HCn) = 324n4 − 108n3 − 216n2 + 144n,
c. F(HCn) = 648n6 − 216n5 − 864n4 + 432n3 − 36n2 − 120n.

Proof. Let honeycomb network (HCn) have order 6n2 and size 9n2 − 3n, with first Zagreb index
M1(HCn) = 54n2 − 30n and the Forgotten index F(HCn) = 162n2 − 144n, then,
a. F(HCn):
F(G) = n(n− 1)3 − 6m(n− 1)2 + 3(n− 1)M1(G)− F(G),
F(HCn) = 6n2(6n2 − 1)3 − 6(9n2 − 3n)(6n2 − 1)2 + 3(6n2 − 1)(54n2 − 30n)− (162n2 − 144n),
F(HCn) = 1296n8 − 2592n6 + 648n5 + 1728n4 − 756n3 − 384n2 + 132n.
b. F(HCn):
F(G) = (n− 1)M1(G)− F(G),
F(HCn) = (6n2 − 1)(54n2 − 30n)− (162n2 − 144n),
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F(HCn) = 648n6 − 216n5 − 864n4 + 432n3 − 36n2 − 120n.
c. F(HCn):
F(G) = 2m(n− 1)2 − 2(n− 1)M1(G) + F(G),
F(HCn) = 2(9n2 − 3n)(6n2 − 1)2 − 2(6n2 − 1)(54n2 − 30n) + (162n2 − 144n),
F(HCn) = 648n6 − 216n5 − 864n4 + 432n3 − 36n2 − 120n.

3. Index Analysis of Honeycomb Networks

In this section, we draw graphs of key features that determine the properties of the honeycomb
network relating to parameter n. It has been established that many properties of the materials are
related to topological indices. These indices depend on the dimension of the honeycomb network
in many different ways. In turn, we can establish that the properties of honeycomb networks
are controlled by the dimension n. The following graphs (Figures 5–10) show the trends of this
controllability. The first graph, Figure 5, includes the graph of the connectivity polynomials of
HC2. Different properties such as π-electron energy, heat of formation and the strain energy of the
honeycomb network can be predicted using these polynomials.

Figure 5. Graphs of Zagreb and Forgotten polynomials.

The following Figure 6 shows the dependencies of HM, in n. The graph of HM keeps on increasing
with the increase in n. The properties depending on these indices are directly related to n.

Figure 6. Graph of HM(HCn).

The graphs of PM1 and PM2 show the same behavior. The following Figure 7 shows that the
Forgotten index varies directly with the change in n.
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Figure 7. Graph of F(HCn).

The following graphs, Figure 8, show that the Alberton and Bell indices increase linearly with the
increase in the dimension n.

Figure 8. Graphs of Alberton and Bell indices.

The following graphs, Figures 9 and 10, can also be helpful in the computation of the dependencies
of the relevant index with the change in n. Almost all indices show an upward trend with the increase
in the dimension of honeycomb networks. The figures can be easily understood on the basis of the
analysis they depict; however, the graph of IRM shows a constant behavior.

Figure 9. Graphs of IRM and M1.
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Figure 10. Graphs of Zagreb co-indices.

4. Conclusions

In the present article, we computed degree-based indices and co-indices of HCn. We also
computed degree-based connectivity polynomials such as Zagreb polynomials and the Forgotten
polynomial of this network. We also gave index analysis of these network, which shows the
dependency on and relation of indices to the dimension of the network n. Almost all indices increase
sharply with the increase in n, except the case of the Alberton and Bell indices, which increase linearly.
These facts may be useful for people working in computer science and chemistry who encounter
honeycomb networks. An optimum level of any particular index can be obtained by putting a
restriction on n.
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